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Abstract. In this paper, according to symmetric Lanczos algorithm and
general Gauss-type quadrature rule, we give some lower bounds on the
Resolvent Estrada index EE,(G) and the Resolvent energy ER(G).
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1. Introduction

Let G = (V,E) be a simple connected graph with vertex set V(G) =
{v1,v2,...,v,} and edge set E(G). Graph theoretical terms used but not
defined can be found in Bollobds [1]. Let A(G) be the (0,1)-adjacency
matrix of G. The characteristic polynomial ¢(G;z) of G is |zI — A(G)|,
where [ is the unit matrix. We call the eigenvalues A\, (G) > A2(G) > --- >
An(G) (for short Ay > Ay = «-- > A,;) of A(G) the spectrum of G. For
k > 0, let M(G) denote the k-th spectral moment of a graph G, namely

Mi(G) = tr(AG)) = 32,

t=1

where tr(-) is the trace of a matrix.
In [6], Estrada and Higham proposed an invariant of a graph G based
on Taylor series expansion of spectral moments

EE(G,c) = f: e Mi(G).

k=0

Obviously, for ¢; = 7:—!, EE(G,c) is the well-known graph invariant, Estrada
index, put forward by Estrada [5], which has attracted much attention of
mathematicians in the past few years. Various mathematical properties

This project is supported by the Foundation of State Ethnic Affairs (14ZNZ023).
E-mail address: zzxun73@mail.scuec.edu.cn

JCMCC 103 (2017), pp. 139-146



of the Estrada index have been investigated, see 7] for a comprehensive
survey. For ¢, = (n—_11)’=" EE(G,c) is the Resolvent Estrada index, denoted
by EE.(G), defined by Estrada and Higham in [6]. Note that

EE,(G) = EE(G, 7 )k) Z Mk(G) 2(1_

However, the resolvent Estrada index is defined for all graphs but com-
plete graph and this is the main pitfall of this index. In [10], I. Gutman et
al gave a novel topological invariant named as the Resolvent energy ER(G)
of a graph as following:

M(G) &1 1« Aiy_
ER(G) = Z (;(),c) Zn_,\i=;;(1—;)‘

k—-O i=1

This definition incorporates all graphs.

Recently, some mathematical properties of EE.(G) and ER(G) have
been studied(3, 4, 8, 9, 10]. In this paper, we will give a new lower bound
on EE.(G) and ER(G) by a unified approach.

2. Preliminaries

If A is symmetric, then it is possible to find an orthogonal Q such that
A = QTAQ, where A is a diagonal matrix consisting of the eigenvalues of
A which we order as A} < My < ... < Ap, that is, A = diag(Ay, A2, ..., An).
Let a = Ay, b = A,, areal function f(z) is strictly completely monotonic on
the interval [a,b] if 9 (z) > 0 and F7*+(z) < 0 for all integers j > 0,
where f(¥)(z) denotes the k-th derivative of f(x) and f©)(z) = f(z). For a
strictly completely monotonic function f(z) defined on [a, b], define matrix
function f(4) = QT f(A)Q, where f(A) = diag(f(M), f(Aa), -, F(An)).

For any u,v € R?, we have
uT f(Ay = wTQT F(M)Qu =pTf(N)g =Y f(A)pigs,
i=1

where p = Qu, ¢ = Qu. This sum can be interpreted as a Riemann-Stieltjes
integral

0 A<a=Ap,

b .
A =/ FdpR), - w) = { SyerPi€i NS A< i, (21)
: Zj:lqu_j b=A, <A
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The general Gauss-type quadrature rule gives in this case:

b k m
[ £ = 3wt + Yo s (a0) + RUA (22

i=1
where the nodes {t;}5_, and the weights {wj};?:l are unknown, whereas
the nodes {z;}2, are prescribed. We have

(i) m =0 for the Gauss rule;
(ii) m =1,z = a or z; = b for the Gauss-Radau rule;
(iii) m =1,z; = a and z; = b for the Gauss-Lobatto rule.

By (2], if f(z) is a strictly completely monotonic on an interval contain-
ing the spectrum of A, then quadrature rules applied to (2.1) give bounds
on uT f(A)v. More precisely, the Gauss rule gives a lower bound, the Gauss-
Lobatto rule gives an upper bound, whereas the Gauss-Radau rule can be
used to obtain both a lower and an upper bound.

Note that if u = v, the remainder in (2.2) can be written as

_ [l P -
R[f] = EnEmt /. ’:cl;[l(/\—zk)[j—[];()\-sj)]zdﬂ(/\),

for some 7 € (a,b). For the strictly completely monotonic function f(z) on
the interval [a, b], if m = 0, then

_ %) P
R[f] = W,/a [jl;[l()\—sj)]zd#()\) 20,
further by (2.1) and (2.2), we have

k k
uTf(A)u =Y "w;f(t;) + RIf] 2 Y w;f(t;).
j=1

i= j=1

Especially, we have

k
el f(A)e: = (f(A)is = D wif(ty). (2.3)

j=1
Let a tridiagonal matrix

Wi MmN
Y1 w2 Y2
Jk = )
Ye—-2 Wk—-1 Yk-1
Ye-1 Wk Yk
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where the entries of Ji is obtained by symmetric Lanczos algorithm. The
initial vectors are z_; = 0 and z¢ = e;, the iteration goes as follows:

YTy = ;= (A—ij):L'j_l —")'j_l:b‘j..z,j = 1,2,...
w; = :L'}'__lej_l
v o= lrl

From [11], we know that the eigenvalues of Jj are exactly the Gauss nodes
{t,-};;,, whereas the Gauss weights {wj};-;l are given by the squares of
the first entries of the normalized eigenvectors of Jx. It follows from (2.1)
that the quantity we seek to compute has the form Z;‘:l w; f(t;). By [2],
we have

k
Yowifty) = el f(Jer, (2.4)
j=1
where e; = (1,0,...,0)T. Therefore, in some cases where f(Ji) is easily
N’

k=1
computable, we do not need to compute the eigenvalues (that is, Gauss
nodes) and eigenvectors (that is, weights) of Ji. Then by (2.3) and (2.4),

we have

(F(A)u = el f(Jr)er (2.5)

3. Main results

Theorem 3.1. Let G = (V, E) be a non-complete graph and d; be the
degree of vertex v; of G, then
2t

n 1 —
EE.(G) > 21 (n-D)d;

- 2t d; ?

i=1 * = (n—-1)d; -1
where t is the number of triangles.

Proof. Let f(z) = =71, then f(z) is a strictly completely monotonic func-
tion. For the matrix M = I — Z45 = (my;), then EE.(G) = Y1, f(M)s.
By symmetric Lanczos algorithm, we have
Qii
w = e?Mei=1—m=1,

A

n—1

r1 = (M—-—wl)e=(- Je;
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ayi az; Qi—1,i 0 Qi1 Ani )T

n—-1"n-1""n-1"n-1"n-1""

n

- 21i o a2\, Qi—1,iyg , (Qitliyg
no= G G G Gy

Vd;

n—1"

-1 T
Ty = ﬁ(ali,aﬂiy---aai—l,ivoaai-{»l,i’---:ani) )
1

1
wp = T Mzi=— Y muaka
bkt

[ Y mumemen+ ), mMiakan]
Pkt gt k=l ki lAik#L

1 . 1
= (T[Z Qp; — (’n——l_) Z aklakiali]

b okAi ki ki skl
1 2t 2t

Z[di (n—- 1)] T (n-1)d;

1
d

The tridiagonal matrix is the 2 x 2 matrix

J (1 %
2= Nz
et 11— Zn_—:zi)d,-

Iyt = 2:1 4 (l—ﬁm —%)
=& ~ &7\ ~ac 1
By (2.5), we have
1.2

in—lsag

f(My; =M Yy > ,
1- w2 — tone

Further,
n 1 2t

EE.(G) =Y f(M) _G-D&
2 DD e

v

+(

Cni

_1)2

n_

O

Corollary 3.2. [3] Let G = (V, E) be a non-complete graph with n vertices

and m edges.
n?(n —1)2

EET (G) - m .
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Proof. Note that

1 2t

~ -1d; _ 1
2 d; d;
- Zn—:sd,v = =17 1- n—1)7

_ 2t >0,

(1 - &2he — mop?) (1 — wopr)(n—1°

then

n

1 - ot
SN - . (36)
gl‘tn_-ﬁd_. oy gl—r—“v Z(" i

Further by Cauchy-Schwarz inequality, we have

Z(\/ n—1)2 sz_j(———ﬁ)2 an,

i=1

then

_(n-1)¢ 1)2 n?(n —1)2 _ n%(n —1)2
Z =
n-1)2-4d; ~ E?___l((n -1)2-d;) nn-12-2m

Corollary 3.3. Let G = (V, E) be a bipartite graph, then

EE.(G) > Z ("1'),1

Proof. For a bipartite graph, the number of triangles is zero, then by (3.6),
we have our desired result. O

Corollary 3.4. Let G = (V, E) be a unicyclic graph, then
_(n-1)* 1)2
EE,(G) Z Cy o
Proof. (1) If there is not triangle in G, then

n 1 n

EE.(G) > E__=Z_£‘:_1£_
’ - t‘=11_(n_fii77 ;1(n—1)2_d‘.
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(2) If there is a triangle vv;vx in G, then ¢; = t; = t;, = 1. Note that

1— 2 1 1__ 2 1
in—lid; v S y , |n—153
1- e — oy 1- oy 1- g - o "
e S 1

7
l_fn_—zlm_ nil 1- m-1)%
Then
EE.(G)
- 1 1- zn—-'“’lv 1~ @=ng
d.
i=1,i#l, 5,k 1- (n- 5 1 - t ja in‘lj 1 - in—zliaj - iﬂ—li!
11— 2
+ n—1)di
1- n—21 " ~ n-1
n 2 1-— 2 1-— 2
= 3 (n—1) "=1)d; + =14,

-1)2 — 4. 2 d ry
iwtigtgr P md - -y - g —
2
1- &= k >i (n—-1)2

l—ﬁr%m: 2 —(n-1)2-d
Hence we obtain the desirable result. O

Now we consider the lower bound on ER(G). For this topological in-
variant, we only want to let M =1 — f. Similar to the proof of Theorem
3.1, we have the following results:

Theorem 3.5. Let G = (V, E) be a graph and d; be the degree of vertez v;
of G, then

4» ]
&IN
’»I—

ER(G) 2 %Zn:

where t is the number of triangles.

Corollary 3.6. Let G = (V,E) be a non-complete graph with n vertices
and m edges.

ER(G) >
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Corollary 3.7. Let G = (V, E) be a bipartite graph, then

n

n
ER(G) > Zm.

i=1
Corollary 3.8. Let G = (V, E) be a unicyclic graph, then

hd n
ER(G) > Zm.

i=1
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