Oriented graphs with minimal skew energy *

Yaping Mao, Yubo Gao, Zhao Wang, Chengfu Ye

Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, China

E-mails: maoyaping@ymail.com; Gaoyubo2015@163.com; wangzhao380@yahoo.com; yechf@qhnu.edu.cn

Abstract

The concept of the skew energy of a digraph was introduced by Adiga, Balakrishnan and So in 2010. An oriented graph G^{σ} is a simple undirected graph G with an orientation, which assigns to each edge a direction so that G^{σ} becomes a directed graph. Then G is called the underlying graph of G^{σ} . Let $S(G^{\sigma})$ be the skew-adjacency matrix of G^{σ} and $\lambda_1, \lambda_2 \cdots \lambda_n$ denote all the eigenvalues of the $S(G^{\sigma})$. The skew energy of G^{σ} is determined all oriented graphs with minimal skew energy among all and Xu determined all oriented graphs with minimal skew energy among all connected oriented graphs on n vertices with m ($n \le m \le 2(n-2)$) arcs. In this paper, we determine all oriented graphs with the second and the third minimal skew energy among all connected oriented graphs with n vertices and m ($n \le m < 2(n-2)$) arcs. In particularly, when the oriented graphs is unicyclic digraphs or bicyclic digraphs, the second and the third minimal skew energy is determined.

Keywords: Oriented graph; skew energy; skew-adjacency matrix.

AMS subject classification 2010: 05C05; 05C50; 15A18.

Introduction 1

An important quantum-chemical characteristic of a conjugated molecule is its total π -electron energy. The energy of a graph has closed links to chemistry. Since the concept of the energy of simple undirected graphs was introduced by Gutman in [4], there have been lots of research papers on this topic. For the energy of graphs, Li, Shi and Gutman published a paper on this subject; see [10].

Let G^{σ} be a digraph of order n with vertex set $V(G^{\sigma}) = \{v_1, v_2, \ldots, v_n\}$, and arc set $\Gamma(G^{\sigma}) \subset V(G^{\sigma}) \times V(G^{\sigma})$. The skew-adjacency matrix of G^{σ} is the $n \times n$ matrix $S(G^{\sigma}) = [s_{ij}]$, where the (i, j) entry satisfies:

$$s_{ij} = \left\{ egin{array}{ll} 1, & ext{if } (v_i, v_j) \in G^{\sigma} \ -1, & ext{if } (v_j, v_i) \in G^{\sigma} \ 0, & ext{otherwise} \end{array}
ight.$$

^{*}Supported by the National Science Foundation of China (No. 11161037) and the Science Found of Qinghai Province (No. 2014-ZJ-907).

The skew energy of an oriented graph G^{σ} , introduced by Adiga, Balakrishnan and So in [1]. If we denote the skew energy of G^{σ} by $\varepsilon_s(G^{\sigma})$, then $\varepsilon_s(G^{\sigma}) = \sum_{i=1}^{n} |\lambda_i|$. For more detail on the skew energy of oriented graphs, we refer to the survey paper by Li and Lian [11].

There have been lots of research papers on this topic of skew energy. Shen and Hou [13] showed that bicyclic digraphs with extremal skew energy. More results on the energy of the adjacency matrix of a graph, such as skew energy, Laplacian energy, Distance energy see e.g. [2, 4, 8, 12, 14, 15, 16, 17, 18].

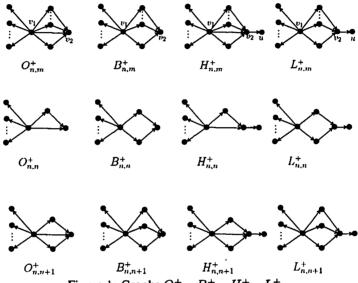


Figure 1: Graphs $O_{n,n}^+, B_{n,n}^+, H_{n,n}^+, L_{n,n}^+$.

Let $O_{n,m}^+$ be the oriented graph on n vertices which is obtained from the oriented star S_n^σ by adding m-n+1 arcs such that all those arcs have a common vertex, where v_1 is the tail of each arc incident to it and v_2 is the head of each arc incident to it, and $B_{n,m}^+$ be the oriented graph obtained from $O_{n,m+1}^+$ by deleting the arc (v_1,v_2) . Let $H_{n,m}^+$ be the graph obtained from $O_{n-1,m-1}^+$ by adding a new vertex u and a new arc (v_2,u) , and $L_{n,m}^+$ be the graph obtained from $B_{n-1,m-1}^+$ by adding a new vertex u and a new arc (v_2,u) (see Figure 1). A connected graph with n vertices and n edges is called a unicyclic graph; a connected graph with n vertices and n+1 edges is called a bicyclic graph. Clearly, $O_{n,n}^+, B_{n,n}^+, H_{n,n}^+, L_{n,n}^+$ are all unicyclic graphs, and $O_{n,n+1}^+, B_{n,n+1}^+, H_{n,n+1}^+$, $L_{n,n+1}^+$ are all bicyclic graphs, see Figure 1.

In [6], Gong, Li and Xu determined all oriented graphs with minimal skew energy among all connected oriented graphs on n vertices with m ($n \le m \le 2(n-2)$) arcs.

Theorem 1.1 [6] Let $n \geq 5$ and $G^{\sigma} \in G^{\sigma}(n,m)$ be an oriented graph with maximum degree n-1. Suppose that $n \leq m < 2(n-2)$ and $G^{\sigma} \neq O_{n,m}^+$. Then $G^{\sigma} \succ O_{n,m}^+$.

Theorem 1.2 [6] Let $n \geq 5$ and $G^{\sigma} \in G^{\sigma}(n,m)$ be an oriented graph with $\Delta(G^{\sigma}) \leq (n-2)$. Suppose that $n \leq m < 2(n-2)$ and $G^{\sigma} \neq B_{n,m}^+$. Then $G^{\sigma} \succ B_{n,m}^+$.

Theorem 1.3 [6] Let G^{σ} be an oriented graph with minimal skew energy among all oriented graphs with n vertices and $m(n \le m < 2(n-2))$ arcs. Then, up to isomorphism, G^{σ} is

- (1) $O_{n,m}^+$ if $m < \frac{3n-5}{2}$
- (2) either $B_{n,m}^+$ or $O_{n,m}^+$ if $m=\frac{3n-5}{2}$ and
- (3) $B_{n,m}^+$ otherwise.

Energy sequencing problem is important. For example, the authors [3] investigated the unicyclic graphs with maximal energy. Later, Gutman et al. [5] studied the unicyclic graphs with studied the unicyclic graphs with the second-maximal and third-maximal energy.

In this paper, we are interested in studying the orientations of oriented graphs with the second and third minimal skew energy, and obtain the following result.

Theorem 1.4 Among all oriented graphs with n vertices and m ($n \le m < 2(n-2)$) arcs, we have the following results.

- $O_{n,m}^+$ has the minimal skew energy;
- $B_{n,m}^+$ has the second minimal skew energy;
- $H_{n,m}^+$ has the third skew energy for $m < \frac{3n-6}{2}$;
- $B_{n,m}^+$ has the second minimal skew energy and $H_{n,m}^+$ or $L_{n,m}^+$ has the third skew energy for $m = \frac{3n-6}{2}$;
- $O_{n,m}^+$ has the minimal skew energy, $B_{n,m}^+$ has the second minimal skew energy and $L_{n,m}^+$ has the third skew energy for $\frac{3n-6}{2} < m < \frac{3n-5}{2}$;
- $O_{n,m}^+$ or $B_{n,m}^+$ has the minimal skew energy, $L_{n,m}^+$ has the second minimal skew energy and $H_{n,m}^+$ has the third skew energy for $m = \frac{3n-5}{2}$;
- $B_{n,m}^+$ has the minimal skew energy, $O_{n,m}^+$ has the second minimal skew energy and $L_{n,m}^+$ has the third skew energy for $\frac{3n-5}{2} < m < \frac{5n-10}{3}$;
- $B_{n,m}^+$ has the minimal skew energy, $O_{n,m}^+$ or $L_{n,m}^+$ has the second minimal skew energy and $H_{n,m}^+$ has the third skew energy for $m = \frac{5n-10}{3}$;

• $B_{n,m}^+$ has the minimal skew energy, $L_{n,m}^+$ has the second minimal skew energy and $O_{n,m}^+$ has the third skew energy for $\frac{5n-10}{3} < m < 2(n-2)$.

From the above theorem, we derive the following results.

Corollary 1.5 Let G^{σ} be unicyclic digraphs. Then $O_{n,n}^+ \prec B_{n,n}^+ \prec H_{n,n}^+ \prec L_{n,n}^+$ for $n \geq 6$, and $O_{n,n}^+ = B_{n,n}^+ = L_{n,n}^+ \prec H_{n,n}^+$ for n = 5. Namely, among all unicyclic digraphs with n vertices and n arcs, we have the following results.

- $O_{n,n}^+$ has the minimal skew energy;
- $B_{n,n}^+$ has the second minimal skew energy;
- $H_{n,n}^+$ has the third skew energy for $n \ge 6$;
- $O_{n,n}^+$, $B_{n,n}^+$ or $L_{n,n}^+$ has the minimal skew energy;
- $H_{n,n}^+$ has the second minimal skew energy for n=5.

Corollary 1.6 Let G^{σ} be bicyclic digraphs. Then $O_{n,n+1}^+ \prec B_{n,n+1}^+ \prec H_{n,n+1}^+ \prec L_{n,n+1}^+$ for $n \geq 9$; $O_{n,n+1}^+ \prec B_{n,n+1}^+ \prec H_{n,n+1}^+ = L_{n,n+1}^+$ for n = 8; $O_{n,n+1}^+ = B_{n,n+1}^+ \prec L_{n,n+1}^+ \prec H_{n,n+1}^+$ for n = 7, and $B_{n,n+1}^+ \prec L_{n,n+1}^+ \prec O_{n,n+1}^+ \prec H_{n,n+1}^+$ for n = 6. Namely, among all bicyclic digraphs with n vertices and n + 1 arcs, we have the following results.

- $O_{n,n+1}^+$ has the minimal skew energy;
- $B_{n,n+1}^+$ has the second minimal skew energy and $H_{n,n+1}^+$ has the third skew energy for n > 8;
- $O_{n,n+1}^+$ has the minimal skew energy, $B_{n,n+1}^+$ has the second minimal skew energy, both $H_{n,n+1}^+$ and $L_{n,n+1}^+$ have the third skew energy for n=8;
- Both $O_{n,n+1}^+$ and $B_{n,n+1}^+$ has the minimal skew energy, and $L_{n,n+1}^+$ has the second minimal skew energy for n=7;
- $B_{n,n+1}^+$ has the minimal skew energy, $L_{n,n+1}^+$ has the second minimal skew energy, and $O_{n,n+1}^+$ has the third skew energy for n=6.

2 Preliminary

A basic oriented graph is an oriented graph whose components are even cycles and/or complete oriented graphs with exactly two vertices. If C be any undirected even cycle of G^{σ} , we say C is evenly oriented relative to G^{σ} if it has an even number of edges oriented in the direction of the routing. Otherwise C is oddly oriented.

Lemma 2.1 [6] Let G^{σ} be an oriented graph on n vertices, and let the skew characteristic polynomial of G^{σ} be

$$\phi(G^{\sigma}, \lambda) = \sum_{i=0}^{n} (-1)^{i} a_{i} \lambda^{n-i}
= \lambda^{n} - a_{1} \lambda^{n-1} + a_{2} \lambda^{n-2} + \dots + (-1)^{n-1} a_{n-1} \lambda + (-1)^{n} a_{n}$$

Then $a_i = 0$ if i is odd; and

$$a_i = \sum_{\mathscr{H}} (-1)^{c^+} 2^c \text{ if } i \text{ is even,}$$

where the summation is over all basic oriented subgraphs $\mathcal H$ of G^{σ} having i vertices and c^+ and c are respectively the number of evenly oriented even cycles and even cycles contained in $\mathcal H$.

Let G=(V,E) be a graph, directed or not, on n vertices. Then we denote by $\Delta(G)$ be the maximum degree of G and set $\Delta(G)=\Delta(G^{\sigma})$. An r-matching M in G is a subset with r edges such that every vertex of V(G) is incident with exactly one edge in M. Denote by M(G,r) be the number of all r-matchings in G and set M(G,0)=1.

Lemma 2.2 [6] Let G^{σ} be an oriented graph containing n vertices and m arcs. Suppose

$$\phi(G^{\sigma}, \lambda) = \sum_{i=0}^{n} (-1)^{i} a_{i}(G^{\sigma}) \lambda^{n-i}$$

Then $a_0(G^{\sigma})=1$, $a_2(G^{\sigma})=m$ and $a_4(G^{\sigma})\geq M(G^{\sigma},2)-2q(G^{\sigma})$ with equality if and only if all oriented quadrangles of G^{σ} are evenly oriented.

Let G^{σ_1} and G^{σ_2} be two oriented graphs of order n. If $a_{2i}(G^{\sigma_1}) \leq a_{2i}(G^{\sigma_2})$ for all i with $0 \leq i \leq \lfloor \frac{n}{2} \rfloor$, then we write that $G^{\sigma_1} \leq G^{\sigma_2}$. Furthermore, if $G^{\sigma_1} \leq G^{\sigma_2}$ and there exists at least one index i such that $a_{2i}(G^{\sigma_1}) < a_{2i}(G^{\sigma_2})$, then we write that $G^{\sigma_1} \prec G^{\sigma_2}$. If $a_{2i}(G^{\sigma_1}) = a_{2i}(G^{\sigma_2})$ for all i, we write $G^{\sigma_1} \sim G^{\sigma_2}$. According to the integral formula, we have, for two oriented graphs G^{σ_1} and G^{σ_2} of order n, that

$$G^{\sigma_1} \preceq G^{\sigma_2} \Rightarrow \varepsilon_s(G^{\sigma_1}) \leq \varepsilon_s(G^{\sigma_2}) \text{ and } G^{\sigma_1} \prec G^{\sigma_2} \Rightarrow \varepsilon_s(G^{\sigma_1}) < \varepsilon_s(G^{\sigma_2})$$

By a directly calculation, we have

$$a_{4}(O_{n,m}^{+}) = M(G,2) - 2q(G) = (m-n+1)(n-3) - 2\binom{m-n+1}{2}$$

$$= (m-n+1)(2n-m-3);$$

$$a_{4}(B_{n,m}^{+}) = M(G,2) - 2q(G) = (m-n+2)(n-3) - 2\binom{m-n+2}{2}$$

$$= (m-n+2)(2n-m-4);$$

$$a_{4}(H_{n,m}^{+}) = M(G^{\sigma},2) - 2q(G^{\sigma})$$

$$= (m-n+1)(n-4) + (n-3) - 2\binom{m-n+1}{2}$$

$$= (m-n+2)(2n-m-3) - 1;$$

$$a_{4}(L_{n,m}^{+}) = M(G^{\sigma},2) - 2q(G^{\sigma})$$

$$= (m-n+2)(n-4) + (n-3) - 2\binom{m-n+2}{2}$$

$$= (m-n+3)(2n-m-4) - 1.$$

Therefore, we have

$$\phi(O_{n,m}^+) = \lambda^n + m\lambda^{n-2} + (m-n+1)(2n-m-3)\lambda^{n-4}$$
 (2.1)

$$\phi(B_{n,m}^+) = \lambda^n + m\lambda^{n-2} + (m-n+2)(2n-m-4)\lambda^{n-4}$$
 (2.2)

$$\phi(H_{n,m}^+) = \lambda^n + m\lambda^{n-2} + [(m-n+2)(2n-m-3)-1]\lambda^{n-4}(2.3)$$

$$\phi(L_{n,m}^+) = \lambda^n + m\lambda^{n-2} + [(m-n+3)(2n-m-4)-1]\lambda^{n-4}(2.4)$$

Lemma 2.3 [6] Let $n \ge 5$ and $G \in G(n,m)$ be an arbitrary connected undirected graph containing n vertices and $m(n \le m \le 2(n-2))$ edges. Then $q(G) \le {m-n+2 \choose 2}$, where q(G) denotes the number of quadrangles contained in G.

Lemma 2.4 [7] Let G^{σ} be an oriented graph with an arc e = (u, v), suppose that e is not contained in any even cycle. Then

$$\phi(G^{\sigma}, \lambda) = \phi(G^{\sigma} \backslash e, \lambda) + s_{uv}^{2} \phi(G^{\sigma} \backslash uv, \lambda). \tag{2.5}$$

By equating the coefficients of polynomials in Eq (2.5), we have

Lemma 2.5 [6] Let G^{σ} be an oriented graph on n vertices and e = (u, v) a pendant arc of G^{σ} with pendant vertex v. Suppose $\phi(G^{\sigma}, \lambda) = \sum_{i=0}^{n} (-1)^{i} a_{i}(G^{\sigma}) \lambda^{n-i}$. Then

$$a_i(G^{\sigma}, \lambda) = a_i(G^{\sigma} - v, \lambda) + a_{i-2}(G^{\sigma} - u - v, \lambda).$$

3 Proof of Theorem 1.4

We now in a position to give our main result.

Lemma 3.1 Let $n \geq 5$ and let $G^{\sigma} \in G^{\sigma}(n,m)$ be an oriented graph with maximal degree n-2. If $n \leq m < 2(n-2)$ and $G^{\sigma} \notin \{H_{n,m}^+, B_{n,m}^+\}$, then $G^{\sigma} \succ H_{n,m}^+$.

Proof. To prove this theorem, it would be sufficient to prove that $a_i(G^{\sigma}) \geq a_i(H_{n,m}^+)$ for i $(0 \leq i \leq n)$. From Lemma 2.1, $a_i(G^{\sigma}) = a_i(H_{n,m}^+) = 0$ for i is odd. Observe that $a_i(G^{\sigma}) \geq a_i(H_{n,m}^+) = 0$ for $i \geq 6$. By Lemma 2.1, we have $a_0(G^{\sigma}) = a_0(H_{n,m}^+) = 1$ and $a_2(G^{\sigma}) = a_2(H_{n,m}^+) = m$. Thus, it suffices to prove that $a_4(G^{\sigma}) > a_4(H_{n,m}^+)$.

First, we show that $M(G^{\sigma},2) \geq M(H_{n,m}^+,2)$. Suppose that v_1 is the vertex with degree n-2 in $H_{n,m}^+$. For convenience, all arcs incident to v_1 are colored as white, the pendant arc (u,v_2) in $H_{n,m}^+$ with pendant vertex u is colored as red and all other arcs are colored as black. Then there are n-2 white arcs and m-n+1 black arcs. We estimate the cardinality of 2-matchings in $H_{n,m}^+$ as follows. Noticing that all white arcs are incident to v_1 , each pair of white arc

can not form a 2-matching. Since $d(v_1) = n-2$ and each black arc incident to exactly two white arcs, each black arc together with a white arcs except its neighbors forms a 2-matching, the red arc with a white arcs except arc (v_1, v_2) forms a 2-matching, that is, there are (m-n+1)(n-4)+(n-3) 2-matchings in $H_{n,m}^+$.

Note that there exists a vertex, say v_1 , such that $d_{G^{\sigma}}(v) = n-2$. Then there exists a vertex u such that $(u_1, u) \notin E(G)$. For convenience, all arcs in G^{σ} incident to v_1 are colored as white, a arc incident to the vertex u in G^{σ} is colored as red and all other arcs are colored as black. Observe that each pair of white arc can not form a 2-matching. Since $d(v_1) = n-2$ and each black arc incident to exactly two white arcs, each black arc together with a white arcs except its neighbors forms a 2-matching, the red arc with a white arcs except arc (v_1, v_2) forms a 2-matching, that is, there are (m-n+1)(n-4)+(n-3) 2-matchings in G^{σ} .

Moreover, noticing that $G^{\sigma} \neq H_{n,m}^+, G^{\sigma} - v_1$ does not contain the directed star S_{m-n+3} as its subgraph, and thus there is at least one 2-matching formed by a pair of disjoint black arcs and the red arc, or G^{σ} is an oriented graph of the following graph F.

If it is the first case, then the number of 2-matchings in G^{σ} satisfies

$$M(G^{\sigma}, 2) \ge (m - n + 1)(n - 4) + (n - 3).$$

When $G^{\sigma} \neq B_{n,m}^+$ and $G^{\sigma} \in G^{\sigma}(n,m)$ be an oriented graph with maximal degree n-2, we have $q(G^{\sigma}) \leq {m-n+1 \choose 2}$, and then by applying Lemma 2.2 again, we have

$$a_4(G^{\sigma}) \geq M(G^{\sigma}, 2) - 2q(G^{\sigma})$$

 $\geq (m - n + 1)(n - 4) + (n - 3) - (m - n + 1)(m - n)$
 $= a_4(H^+_{n,m}).$

Therefore, $a_i(G^{\sigma}) \ge a_i(H_{n,m}^+)$ for $i \ (0 \le i \le n)$. The proof is now complete.

Lemma 3.2 Let n be an integer with $n \geq 5$ and let $G^{\sigma} \in G^{\sigma}(n,m)$ be an oriented graph with $\Delta(G^{\sigma}) \leq n-3$. If $n \leq m < 2(n-2)$ and $G^{\sigma} \neq L_{n,m}^+$, then $G^{\sigma} \succ L_{n,m}^+$.

Proof. To prove this lemma, it would be sufficient to prove that $a_i(G^{\sigma}) > a_i(L_{n,m}^+)$. We apply induction on n to prove it. By Lemma 2.2, we have $a_0(G^{\sigma}) = a_0(L_{n,m}^+) = 1$ and $a_2(G^{\sigma}) = a_2(L_{n,m}^+) = m$. It suffices to prove that $a_4(G^{\sigma}) > a_4(L_{n,m}^+)$.

By a direct calculation, the result is true for n=5. Since n=5, it follows that $5 \le m < 2(5-2) = 6$, and hence there exists exactly three graphs in $G^{\sigma}(5,5)$, that is, the oriented cycle C_3 together with two pendant arcs attached to two different vertices of the C_3 , the oddly oriented cycle C_4 together with a pendant arc, and the oriented cycle C_5 . We now assume $n \ge 6$ and suppose the result is true for smaller n.

Case 1. There is a pendant arc (u, v) in G^{σ} with pendant vertex v.

By Lemma 2.5, we have

$$a_4(G^{\sigma},\lambda) = a_4(G^{\sigma}-v,\lambda) + a_2(G^{\sigma}-u-v,\lambda) = a_4(G^{\sigma}-v,\lambda) + e(G^{\sigma}-u-v,\lambda)$$

Since $\Delta(G^{\sigma}) \leq n-3$, it follows that $e(G^{\sigma}-u-v,\lambda) \geq m-\Delta(G^{\sigma}) \geq m-n+3$.

By induction hypothesis, $a_4(G^{\sigma}-v)>a_4(L_{n-1,m-1}^+)$ with equality if and only if $G^{\sigma}-v=L_{n-1,m-1}^+$. Then

$$a_4(G^{\sigma}, \lambda) \ge a_4(L_{n-1,m-1}^+) + (m-n+3) = a_4(L_{n-1,m-1}^+) + e(S_{m-n+4}).$$

Since $a_4(L_{n,m}^+)=a_4(L_{n-1,m-1}^+)+e(S_{m-n+4})$, it follows that $a_4(G^\sigma)\geq a_4(L_{n,m}^+)$ with equality if and only if $G^\sigma\cong L_{n,m}^+$.

Case 2. There is no pendant vertex in G^{σ} .

We first claim that there exists an oriented graph $L_{n,m}^+$ containing pedant vertices such that

$$\sum_{v \in V(L_n^+, r_v)} \binom{d(v)}{2} > \sum_{v \in V(G^\sigma)} \binom{d(v)}{2}.$$

Let $(d)_{G^{\sigma}} = (d_1, d_2, \dots, d_i, d_{i+1}, \dots, d_n)$ be the non-increasing degree sequence of G^{σ} . We label the vertices of G^{σ} corresponding to the degree sequence $(d)_{G^{\sigma}}$ as v_1, v_2, \dots, v_i ,

 $(d)_{G^{\sigma}}$ as v_1, v_2, \cdots, v_i , \cdots, v_n such that $d_{G^{\sigma}}(v_i) = d_i$ for each i. Assume $d_1 < n-3$. Then there exists a vertex v_k that is not adjacent to v_1 , but is adjacent to one neighbor, say v_i of v_1 . Thus $(d_1+1, d_2, \cdots, d_i-1, d_{i+1}, \cdots, d_n)$ is the degree sequence of the oriented graph G^{σ_1} obtained from G^{σ} by deleting the arc (v_k, v_1) , regardless the orientation of the arc (v_k, v_1) . Rewriting the sequence above such that

$$(d)_{G^{\sigma_1}} = (d'_1, d'_2, \cdots, d'_i, d'_{i+1}, \cdots, d'_n)$$

is also a non-increasing sequence. Thus we have

$$\sum_{i=1}^{n} \binom{d'(v)}{2} > \sum_{i=1}^{n} \binom{d(v)}{2}$$

since
$$\sum_{i=1}^{n} {d'(v) \choose 2} - \sum_{i=1}^{n} {d(v) \choose 2} = {d_1+1 \choose 2} + {d_i-1 \choose 2} - {d_1 \choose 2} - {d_i \choose 2} = d_1 - d_i + 1 > 0$$

Notice that $d_1 \ge d_2 \ge \cdots \ge d_i \ge \cdots \ge d_n \ge 2$ and $\sum_{i=1}^n d_i = 2m$.

Repeating this procession, we can obtain the sequence

$$(d)_{G^{\sigma_2}} = (d''_1, d''_2, \cdots, d''_i, d''_{i+1}, \cdots, d''_n)$$

such that $\Delta(G^{\sigma_2}) = d_1'' = n - 3$ and

$$\sum_{v \in V(G^{\sigma_2})} \binom{d''^{(v)}}{2} > \sum_{v \in V(G^{\sigma_1})} \binom{d'(v)}{2} > \dots > \sum_{v \in V(G^{\sigma})} \binom{d(v)}{2}.$$

Similarly, we can assume that there exists a vertex v_k that is not adjacent to v_i , but is adjacent to one neighbor, say v_j of v_i . Thus $(d_1, d_2, \dots, d_i + 1, d_{i+1}, \dots, d_j - 1, \dots, d_n)$ is the degree sequence of the oriented graph G^{σ_3} obtained from G^{σ_2} by deleting the arc (v_k, v_j) and adding the arc (v_k, v_i) , regardless the orientation of the arc (v_k, v_i) . By a similar proof, we can get

$$\sum_{v \in V(G^{\sigma_3})} \binom{d^{\prime\prime\prime}(v)}{2} > \sum_{v \in V(G^{\sigma_2})} \binom{d^{\prime\prime}(v)}{2}$$

Then by applying the above procedure repeatedly, we eventually obtain the degree sequence $(d)_{L_{n,m}^+}$,

$$(d)_{L_{n,m}^+} = (n-3, m-n+3, 2, 2, \cdots, 2, 1, 1, \cdots, 1)$$

where the number of vertices of degree 2 is m-n-2, and the number of vertices of degree 1 is 2n-m+4. Finally, we get

$$\sum_{v \in V(G^{\sigma_3})} \binom{d'''(v)}{2} > \sum_{v \in V(G^{\sigma_2})} \binom{d''(v)}{2} > \sum_{v \in V(G^{\sigma_1})} \binom{d'(v)}{2}$$

$$> \cdots > \sum_{v \in V(G^{\sigma})} \binom{d(v)}{2}$$

For a simple graph G, we have $M(G,2)=\binom{m}{2}-\sum_{v\in V(G)}\binom{d(v)}{2}$. By Lemma 2.2 we know that

$$\begin{array}{lcl} a_4(G^{\sigma}) & \geq & M(G^{\sigma},2) - 2q(G^{\sigma}) = \binom{m}{2} - \sum_{v \in V(G^{\sigma})} \binom{d(v)}{2} - 2q(G^{\sigma}) \\ \\ & > & \binom{m}{2} - \sum_{v \in V(G^{\sigma_3})} \binom{d'''(v)}{2} - 2q(G^{\sigma}) = a_4(L_{n,m}^+) \end{array}$$

The result thus follows.

Proof of Theorem 1.4: Combining with Theorem 1.3, Lemma 3.1 and Lemma 3.2, the oriented graph with minimal skew energy among all oriented graphs of $G^{\sigma} \in G^{\sigma}(n,m)$ is $O_{n,m}^{+}$ or $B_{n,m}^{+}$. Furthermore, from Eq (2.2), (2.3), (2.4) and Eq (2.5), we have

$$a_4(O_{n,m}^+) = (m-n+1)(2n-m-3); a_4(B_{n,m}^+) = (m-n+2)(2n-m-4)$$

$$a_4(H_{n,m}^+) = (m-n+2)(2n-m-3)-1; a_4(L_{n,m}^+) = (m-n+3)(2n-m-4)-1$$

Then, by a direct calculation, we have

1.
$$O_{n,m}^+ \prec B_{n,m}^+ \prec H_{n,m}^+ \prec L_{n,m}^+$$
 if $m < \frac{3n-6}{2}$;

- 2. $O_{n,m}^+ \prec B_{n,m}^+ \prec H_{n,m}^+ = L_{n,m}^+$ if $m = \frac{3n-6}{2}$;
- 3. $O_{n,m}^+ \prec B_{n,m}^+ \prec L_{n,m}^+ \prec H_{n,m}^+$ if $\frac{3n-6}{2} < m < \frac{3n-5}{2}$;
- 4. $O_{n,m}^+ = B_{n,m}^+ \prec L_{n,m}^+ \prec H_{n,m}^+$ if $m = \frac{3n-5}{2}$;
- 5. $B_{n,m}^+ \prec O_{n,m}^+ \prec L_{n,m}^+ \prec H_{n,m}^+$ if $\frac{3n-5}{2} < m < \frac{5n-10}{3}$;
- 6. $B_{n,m}^+ \prec O_{n,m}^+ = L_{n,m}^+ \prec H_{n,m}^+$ if $m = \frac{5n-10}{3}$;
- 7. $B_{n,m}^+ \prec L_{n,m}^+ \prec O_{n,m}^+ \prec H_{n,m}^+$ if $\frac{5n-10}{3} < m \le 2(n-2)$.

The result follows.

References

- [1] C. Adiga, R. Balakrishnan, and W. So, The skew energy of a digraph, Linear Algebra Appl. 432(2010), 1825-1835.
- [2] C. Adiga and M. Smitha, On the skew Laplacian energy of a digraph, Int. Math. Forum 4(3)(2009), 1907-1914.
- [3] A. Chen, A. Chang, W. Shiu, *Energy ordering of unicycle graphs*, MATCH Commun. Math. Comput. Chem. 55(2006), 95-102.
- [4] I. Gutman, *The energy of a graph*, Ber. Math. Stat. Sekt. Forschungszentrum Graz 103(1978), 1-22.
- [5] I. Gutman, B. Furtula, H. Hua, Bipartite unicyclic graphs with maximal, second-maximal and third-maximal energy, MATCH Commun. Math. Comput. Chem. 58(2007), 75-82.
- [6] S. Gong, X. Li, and G. Xu, On oriented graphs with minimal skew energy, Electronic J. of Linear Algebra 27(2014), 692-704.
- [7] S. Gong and G. Xu, The characteristic polynomial and the matchings polynomial of a weighted oriented graph, Linear Algebra Appl. 436(2012), 3597-3607.
- [8] S. Gong, G. Xu, 3-Regular digraphs with optimum skew energy, Linear Algbra Appl. 436(2012), 465-471.
- [9] Y. Hou and T. Lei. Characteristic polynomials of skew-adjacency matrices of oriented graphs, Electron. J. Combin. 18(1):R156, 2011.
- [10] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
- [11] X. Li, H. Lian, A survey on the skew energy of oriented graphs, arXiv:1304.5707 [math.CO]v5 2014.
- [12] J. Li, X. Li, H. Lian, Extremal skew energy of digraphs with no even cycles, Trans. Combin. 3(2014), 37-49.

- [13] X. Shen, Y. Hou and C. Zhang, Bicyclic digraphs with extremal skew energy, Electron. J. Linear Algbra. 23(2012), 340-355.
- [14] G. Tian, On the skew energy of orientations of hypercubes, Linear Algbra Appl.435(2011), 2140-2149.
- [15] J. Zhu, Oriented unicyclic graphs with the first $\lfloor \frac{n-9}{2} \rfloor$ largest skew energies, Linear Algebra Appl. 437(2012), 2630-2649.
- [16] I. Pena, J. Rada, *Energy of digraphs*, Linear and Multilinear Algebra. 56(2008), 565-579.
- [17] Z. Wang, T. Ma, Y. Mao and C. Ye, On the skew energy of oriented unicyclic digraphs, accepted by J. Combin. Math. Combin. Comput.
- [18] J. Zhang and B. Zhou, On bicyclic graphs with minimal energies, J. Math. Chem. 37(4)(2005), 423-431.