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Abstract

The concept of the skew energy of a digraph was introduced by Adiga,
Balakrishnan and So in 2010. An oriented graph G° is a simple undirected
graph G with an orientation, which assigns to each edge a direction so that
G becomes a directed graph. Then G is called the underlying graph of G°.
Let S(G”) be the skew-atfjacency matrix of G° and Ay, A2 --- A, denote
all the eigenvalues of the S(G?). The skew energy of G is defined as the
sum of the absolute values of all eigenvalues of S(G”). Recently, Gong, Li
and Xu determined all oriented graphs with minimal skew energy among all
connected oriented graphs on n vertices with m (n < m < 2(n — 2)) arcs.
In this paper, we determine all oriented graphs with the second and the third
minimal skew energ among all connected oriented graphs with n vertices
andm(n<m < z’n - 2)% arcs. In particularly, when the oriented graphs
is unicyclic digraphs or bicyclic digraphs, the second and the third minimal
skew energy is determined.
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1 Introduction

An important quantum-chemical characteristic of a conjugated molecule is its
total m-electron energy. The energy of a graph has closed links to chemistry. Since
the concept of the energy of simple undirected graphs was introduced by Gutman
in [4], there have been lots of research papers on this topic. For the energy of
graphs, Li, Shi and Gutman published a paper on this subject; see [10].

Let G? be a digraph of order n with vertex set V(G?) = {v1,v2,...,},
and arc set ['(G?) C V(G?) x V(G?). The skew-adjacency matrix of G is the
n x n matrix S(G?) = [si;], where the (4, j) entry satisfies:

1, if (v.-, vj) € G°
Sij = -1, if (v,-,vi € G°
0, otherwise
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The skew energy of an oriented graph G, introduced by Adiga, Balakrishnan
and So in [1]. If we denote the skew energy of G? by £,(G?), then £,(G?) =

n

3" |Ail. For more detail on the skew energy of oriented graphs, we refer to the
i=1
survey paper by Li and Lian [11].

There have been lots of research papers on this topic of skew energy. Shen
and Hou {13] showed that bicyclic digraphs with extremal skew energy. More
results on the energy of the adjacency matrix of a grarh, such as skew energy,
Laplacian energy, Distance energy see e.g. {2,4,8,12, 14, 15,16, 17, 18].
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Figure 1: Graphs Of ., B} ., Hf ., LT .

Let O, be the oriented graph on n vertices which is obtained from the

oriented star SZ by adding m — n + 1 arcs such that all those arcs have a com-
mon vertex, where v, is the tail of each arc incident to it and vq is the head of

each arc incident to it, and B}, be the oriented graph obtained from O,’{,m 41
by deleting the arc (v1,v2). Let Hf,, be the graph obtained from O}_, . _, by
adding a new vertex u and a new arc (vz,u), and L}, be the graph obtained
from B}_; ,,_, by adding a new vertex u and a new arc (v, ) (see Figure 1).

A connected graph with n vertices and n edges is called a unicyclic graph; a con-
nected graph with n vertices and n + 1 edges is called a bicyclic graph. Clearly,

O} . B} ., Ht, Lt are all unicyclic graphs, and O}, B} .1, HY .1,

n,nr “nnrfinn
L,“;m 41 are all bicyclic graphs, see Figure 1.
In [6], Gong, Li and Xu determined all oriented graphs with minimal skew
energy among all connected oriented graphs on n vertices with m (n < m <
2(n — 2)) arcs.
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Theorem 1.1 [6] Let n > 5 and G° € G°(n,m) be an oriented graph with

maximum degree n — 1.Suppose thatn < m < 2(n — 2) and G° # O} .. Then
G’ - Of ..

Theorem 1.2 [6] Let n > 5 and G° € G°(n,m) be an oriented graph with
A(G?) < (n —2).Suppose that n < m < 2(n — 2) and G° # B}, .Then
G? - B} ..

Theorem 1.3 (6] Let G be an oriented graph with minimal skew energy among

all oriented grg'phs with n vertices and m(n < m < 2(n — 2)) arcs. Then, up to
isomorphism, G° is

(1) Of , ifm < 3778
(2) either B}, or O} ifm = 3225 and
(3) B}, otherwise.

Energy sequencing problem is important. For example, the authors [3] inves-
tigated the unicyclic graphs with maximal energy. Later, Gutman et al. [5] studied
the unicyclic graphs with studied the unicyclic graphs with the second-maximal
and third-maximal energy.

In this paper, we are interested in studying the orientations of oriented graphs
with the second and third minimal skew energy, and obtain the following result.

Theorem 1.4 Among all oriented graphs with n verticesandm (n < m < 2(n—
2)) arcs, we have the following results.

e O . has the minimal skew energy;
. B,*;, m has the second minimal skew energy;

o H},  has the third skew energy form < 37;8;

B} . has the second minimal skew energy and H}Y . or L} . has the third
skew energy for m = 3% ;

O} . has the minimal skew energy, B . has the second minimal skew
energy and L;{”m has the third skew energy for 3"2‘ 6<m< 3"2" 8,

OF . or B} has the minimal skew energy, L has the second minimal
nm n,m n,m

skew energy and H,t m has the third skew energy for m = 3"{ 5

B}, has the minimal skew energy, O} .. has the second minimal skew
energy and L;‘;'m has the third skew energy for 3"2’ S<m< 5"510:

e B} ., has the minimal skew energy, O .. or L} . has the second minimal
skew energy and HY . has the third skew energy for m = ";10;
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o B}, has the minimal skew energy, LY = has the second minimal skew
energy and O . has the third skew energy for %712 < m < 2(n - 2).

From the above theorem, we derive the following results.

Corollary 1.5 Let G° be unicyclic digraphs. Then O}, < BY, < Hf, <
L}, forn >6,and O}, = BY, = LY, < H}, forn = 5. Namely, among
all unicyclic digraphs with n vertices and n arcs, we have the following results.

® O} ,, has the minimal skew energy;

. B;t n has the second minimal skew energy;

o HY . has the third skew energy for n > 6;

e O} . B, or L} . has the minimal skew energy;

e HY  has the second minimal skew energy for n = 5.

Corollary 1.6 Let G be bicyclic digraphs. Then O}, ., < BY ., < Hf ., <
LY g forn > 9,0} .\ < Bf ., < Hf ., =L, forn =8
Ofpp1 =Bl <Ly <HY . frn="7andB}, ., <L} ., <
O:"_ atl = H,t nt1Jor n = 6. Namely, among all bicyclic digraphs with n ver-
tices and n + 1 arcs, we have the following results.

. O,'f'ﬂ +1 has the minimal skew energy;

. B,'f_ n+1 has the second minimal skew energy and H :, n+1 has the third skew
energy forn > 8;

* O} 1 has the minimal skew energy, By, .| has the second minimal skew
energy, both HY . and L}, | have the third skew energy for n = 8;

®Both O} . and B ., has the minimal skew energy, and L} ..\ hasthe
second minimal skew energy forn = T7;

® B .1 has the minimal skew energy, L} . .| has the second minimal skew

energy, and O} . . | has the third skew energy for n = 6.

n,n+

2 Preliminary

A basic oriented graph is an oriented graph whose components are even cy-
cles and/or complete oriented graphs with exactly two vertices. If C be any undi-
rected even cycle of G?, we say C is evenly oriented relative to G? if it has an
even number of edges oriented in the direction of the routing. Otherwise C is
oddly oriented.

Lemma 2.1 [6] Let G° be an oriented graph on n vertices, and let the skew
characteristic polynomial of G° be

n
#(G°,N) = D (-1)fa A"t
i=0
= A A" a2 4 (D) e A+ (1) s

150



Thena; =0ifiis odd; and
a; = Z(—I)c+2° ifiis even,
i

where the summation is over all basic oriented subgraphs € of G° having 1
vertices and ¢t and c are respectively the number of evenly oriented even cycles
and even cycles contained in 5 .

Let G = (V, E) be a graph, directed or not, on n vertices. Then we denote
by A(G) be the maximum degree of G and set A(G) = A(G?). An r-matching
M in G is a subset with r edges such that every vertex of V(G) is incident with
exactly one edge in M. Denote by M (G, r) be the number of all r-matchings in
G and set M(G,0) = 1.

Lemma 22 (6] Let G° be an oriented graph containing n vertices and m arcs.
Suppose

n
$(G7,2) = D _(—1)ai(G°)A"
i=0
Then ag G") =1,a2(G?) = mand ag(G°) > M(G?,2) — 2q(G?) with equal-
ity if and only if all oriented quadrangles of G° are evenly oriented.

Let Gt and G2 be two oriented graphs of order n. If a5;(G°') < a2;(G°?)
for all i with 0 < i < | %], then we write that G°* <X G°2. Furthermore, if
G°' < G2 and there exists at least one index i such that a2;(G”') < a2;(G?),
then we write that G”' < G?2. If a3;(G°!) = a2(G°?) for all 7, we write
G° ~ G°2, According to the integral formula, we have, for two oriented graphs
G and G2 of order n, that

G X G7% = £,4,(G7') < £,(G°?) and G7* < G = £,(G7') < £,(G°?)
By a directly calculation, we have

(05 m) = M(G»2)~2Q(G)=(m—n+1)(n-3)-2(m‘;‘+1)
= (m-n+1)(2n-m-3)
a(Binm) = M(G,2)-2q(G)=(m—n+2)(n—3)—2(m‘2"+2)

= (m-n+2)(2n-m—4);
ay(Hin) = M(G?,2)—29(G")

= (m-n+1)(n—4)+(n—3)-2<m';‘+1)
= (m-n+2)(2n-m-3)-1;
ai(LT ) = M(G?,2)—2¢(G%)
m-—n+2
= (m—n+2)(n—4)+(n—3)—2( 9 )

= (m—-n+3)(2n-m—-4)-1.
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Therefore, we have

#O0%m) = N +mA Pt (mont)(2n-m-X @)
¢(Brr) = NM+mA" 2+ (m-n+2)(2n—m—4)A"* 22)
$(Him) = N+mA"4[(m—n+2)(2n—m=3)-1A""4(23)
(LY. = A +mA"2 4 [(m—n+3)(2n—m—4) — 1]A"4(2.4)

Lemma 2.3 [6] Let n > 5 and G € G(n,m) be an arbitrary connected undi-
rected graph containing n vertices and m(n < m < 2(n — 2)) edges. Then
9(G) < (™ 3+2), where q(G) denotes the number of quadrangles contained in

Lemma 2.4 [7] Let G be an oriented graph with an arc e = (u, v), suppose that
e is not contained in any even cycle. Then

H(G7,A) = $(G\e, A) + 2, 6(G7\uv, \). (2.5)
By equating the coefficients of polynomials in Eq (2.5), we have

Lemma 2.5 [6] Let G® be an oriented graph on n vertices and e = (u,v) a pen-
n 13 .
dant arc of G° with pendant vertex v. Suppose $(G%,X) = 3 (—1)*a;(G7)A™"*.
=0

Then
ai(G%,A) = a;(G° —v,A) + a;2(G° —u—v,A).

3 Proof of Theorem 1.4

We now in a position to give our main result.

Lemma 3.1 Let n > 5 and let G° € G?(n, m) be an oriented graph with max-
imal degree n — 2. Ifn < m < 2(n ~2) and G° ¢ {H},,,B} .}, then
G*»HY ..

Proof. To prove this theorem, it would be sufficient to prove that a;(G?) >
ai(H},,) fori (0 < ¢ < n). From Lemma 2.1, 0:(G°) = a;(H;},,) = 0foriis
odd. Observe that a;(G?) > a;(H;t,,) = 0fori > 6. By Lemma 2.1, we have
ao(G%) = ao(Hi ) = 1 and a2(G?) = ap(HJ,,) = m. Thus, it suffices to
prove that a4(G?) > aq(H},.).

First, we show that M (G?,2) > M(H} ., 2). Suppose that v; is the vertex
with degree n — 2 in H,;" m- For convenience, all arcs incident to v, are colored
as white, the pendant arc (u,vs) in H;f . with pendant vertex u is colored as

red and all other arcs are colored as black. Then there are n — 2 white arcs and
m — n + 1 black arcs. We estimate the cardinality of 2-matchings in H},,, as

follows. Noticing that all white arcs are incident to vy, each pair of white arc
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can not form a 2-matching. Since d(v1) = n — 2 and each black arc incident
to exactly two white arcs, each black arc together with a white arcs except its
neighbors forms a 2-matching, the red arc with a white arcs except arc (vy, v2)
forms a 2-matching, that is, there are (m — n + 1){n — 4) + (n — 3) 2-matchings
inHf, .

Note that there exists a vertex, say v, such that dg-(v) = n — 2. Then

there exists a vertex u such that (u;,u) ¢ E(G). For convenience, all arcs in G°
incident to v, are colored as white, a arc incident to the vertex w in G is colored
as red and all other arcs are colored as black. Observe that each pair of white arc
can not form a 2-matching. Since d(vi) = n — 2 and each black arc incident
to exactly two white arcs, each black arc together with a white arcs except its
neighbors forms a 2-matching, the red arc with a white arcs except arc (vq, v2)
fonGng a 2-matching, that is, there are (m — n + 1)(n — 4) + (n — 3) 2-matchings
inG°.

Moreover, noticing that G” # H} ..., G — v; does not contain the directed
star Sy,—n+3 as its subgraph, and thus there is at least one 2-matching formed
by a pair of disjoint black arcs and the red arc, or G is an oriented graph of the
following graph F'. :

If it is the first case, then the number of 2-matchings in G satisfies

M(G"’A,2) >(m—-n+1)(n-4)+(n-23).

When G # B}, and G? € G°(n, m) be an oriented graph with maximal
degree n — 2, we have ¢(G?) < (m';“), and then by applying Lemma 2.2
again, we have

aq(GY) M(G°,2) —2¢(G°)
(m-=n+1)n—-4)+(n-3)—(m—n+1)(m —n)

a4(H,tm .

2
2

It

Therefore, a:(G?) > a;(HZ ) fori (0 < i < n). The proof is now complete.

Lemma 3.2 Let n be an integer with n > 5 and let G° € G°(n,m) be an
oriented graph with A(G°) < n—3. Ifn <m < 2(n—2)and G° # L} .,
thenG° » L} ..

Proof. To prove this lemma, it would be sufficient to prove that a;(G?) >
ai(L} ,,,). We apply induction on n to prove it. By Lemma 2.2, we have ao(G°) =
ao(L ) = 1and a2(G?) = az(L{ ;) = m. It suffices to prove that a4(G°) >
as(L3 m)-

By a direct calculation, the result is true for n = 5. Since n = 5, it follows
that 5 < m < 2(5 — 2) = 6, and hence there exists exactly three graphs in
G (5, E:j), that is, the oriented cycle Cs together with two pendant arcs attached
to two different vertices of the Cs, the oddly oriented cycle C4 together with a
pendant arc, and the oriented cycle Cs. We now assume n > 6 and suppose the
result is true for smaller n.

Case 1. There is a pendant arc (u, v) in G° with pendant vertex v.
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By Lemma 2.5, we have
a4(G?%, ) = a4(G? —v, \)+a2(G° —u—v, A) = a4(G? —v, \)+e(G° —u—v, \)
Since A(G?) < n—3,itfollows thate(G° —u—v, A) > m—-A(G?) > m—n+3.
By induction hypothesis, a4(G? — v) > a4(L:,1'm_l) with equality if and
onlyif G —v=L}_; . Then

04(G7,X) 2 aa(Li_y o) + (m = 1+ 3) = ag(Lf_y moy) + €(Smonta)-

Since aa(L} ) = aq(L} 1) + €(Sm—n+4), it follows that as(G°) >

n—1,m-—
aq(L} ) with equality if and only if G° = L} .
Case 2. There is no pendant vertex in G.
We first claim that there exists an oriented graph L} . containing pedant

vertices such that
> (%) 2 (V)

veV(LEm) veV(G?

Let (d)ge = (d1,d2, -+ ,di,dit1, - - ,dn) be the non-increasing degree se-

quence of G°. We label the vertices of G corresponding to the degree sequence
(d)ge as vy, vz, , v,
-++ ,Up such that dgo (v;) = d; for each i. Assume d; < n — 3. Then there
exists a vertex vy that is not adjacent to v, but is adjacent to one neighbor, say v;
of v;. Thus (dy + 1,da,--- ,d; — 1,di31,- -+ ,dn) is the degree sequence of the
oriented graph G obtained from G by deleting the arc (vx, v1), regardless the
orientation of the arc (vg, v1). Rewriting the sequence above such that

(d)G"l = (d’l’ tp e ’dgidé-f-l?' o rd:;)
is also a non-increasing sequence. Thus we have
. (d'(v) = (d(v)
2(2)>Z(2
t=1 t=1
n ’ n L .
since 3 (“4) = 35 (%) = () + (459 - () - (4) =da —di 41 >0
= 1=
n
Noticethatdy >dy > --- >d; > --- > d, > 2and 3 d; = 2m.
=
Repeating this procession, we can obtain the sequenc::
(d)Cv"’2 = ( ’1” ’2,’ T ’d;,’ :',+1’ Tt ’d::)
such that A(G°?) =d{ =n — 3 and

2:(%ﬂ> > @¥§>“>§:(@§

veV(G?2) veV(G1) veV(G?)
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Similarly, we can assume that there exists a vertex v that is not adjacent
to v;, but is adjacent to one neighbor, say v; of v;. Thus (dy,d2, - ,d; +
1,diyy,---,d; — 1,--- ,dy) is the degree sequence of the oriented graph G*
obtained from G2 by deleting the arc (vk,v;) and adding the arc (vk,v;), re-
gardless the orientation of the arc (vk, v;). By a similar proof, we can get

ueVE(-(:?") (dmz(v)) - veV(ZG"z) (d”év))

Then by applying the above procedure repeatedly, we eventually obtain the degree
sequence (d) + ,

(d)L:‘m =(n—3am_n+312,2y"' ,2,1,1,--4,1)

where the number of vertices of degree 2 is m — n — 2, and the number of vertices
of degree 1 is 2n — m 4 4. Finally, we get

Z (d”;(u)) > E (d';(v)) S Z (d’év))

veEV(G?3) veV(G92) veV(Go1)

> > 3 (d(zv))

veV(G7)

For a simple graph G, we have M (G, 2) = (7) — X,ev(c) (460,
By Lemma 2.2 we know that

0(@) 2 M(@2)-2@) = (3)- ;«;)(dg”))—zqta")
vE o

> (5)- X (7)) -ue) = et

veV(Ge3)
The result thus follows. |

Proof of Theorem 1.4: Combining with Theorem 1.3, Lemma 3.1 and Lemma
3.2, the oriented graph with minimal skew energy among all oriented graphs of
G° € G°(n,m) is OF , or B} .. Furthermore, from Eq (2.2), (2.3), (2.4) and

Eq (2.5), we have
as(OF ) = (m—n+1)(2n —m —3);a4(Bf ) = (m—n+2)(2n —m —4)

as(H} ) = (m—n+2)(2n-m—3)—1L;a4(L ) = (m—n+3)(2n—m—4)-1
Then, by a direct calculation, we have

1. Of . < B, < H} <L, ifm< 388,
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2. O,'*;_m ~< B,tm < H:’m = L;lt-,m ifm = %ﬁ;
3. Of m < B <L} < H}_ if 388 <m < 3255,

4. Of =B, < L, < Hi,ifm= 328

5.Bf,,<0OF <L}, < H, if 388 < m < 5010,

6. Bf n <O,y = L} < H} , if m = 32510,

7. B}, <Lt <Of < HI if8z10 < m<2(n-2).

The result follows. ]
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