The vertex Folkman numbers
Fy(ai,...,asm—1)=m+9,
if max{ay,...,as} =5

Aleksandar Bikov* Nedyalko Nenov

Faculty of Mathematics and Informatics
Sofia University "St. Kliment Ohridski"
5, James Bourchier Blvd.

1164 Sofia, Bulgaria

February 8, 2016

Abstract

For a graph G the expression G = (a1, ..., as) means that for any
s-coloring of the vertices of G there exists i € {1,...,s} such that
there is a monochromatic a;-clique of color i. The vertex Folkman
numbers

Fu(ai,...,as;m—1) = min{| V(G)| : G > (a1, ...,a,) and Km_1 Z G}.

are considered, where m =Y ;_,(a; — 1) + 1.
With the help of computer we show that F,,(2,2,5;6) = 16, and
then we prove
F.(a1,..,assm—1)=m+9,

if max{ai,...,as} = 5.
We also obtain the bounds

m+9< F,(a1,...,as;m =1) <m+ 10,
if max{a,,...,a,} =6.
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1 Introduction

In this paper only finite, non-oriented graphs without loops and multiple
edges are considered. The following notations are used:

V(G) - the vertex set of G;

E(G) - the edge set of G;

G - the complement of G;

w(G) - the clique number of G;

a(G) - the independence number of G;

N(v),Ng(v),v € V(G) - the set of all vertices of G adjacent to v;

d(v),v € V(G) - the degree of the vertex v, i.e. d(v) = |N(v)|;

G —wv,v € V(G) - subgraph of G obtained from G by deleting the vertex
v and all edges incident to v;

G — e, e € E(G) - subgraph of G obtained from G by deleting the edge
€;

G + e,e € E(G) - supergraph of G obtained by adding the edge e to
E(G).

K, - complete graph on n vertices;

C, - simple cycle on n vertices;

Let G; and G, be two graphs without common vertices. Denote by
Gy + G, the graph G for which V(G) = V(G;) U V(G;) and E(G) =
E(G1) VE(G2) U E', where E' = {[z,y] : £ € V(G}),y € V(G2)}, i.e. Gis
obtained by making every vertex of G; adjacent to every vertex of Ga.

All undefined terms can be found in [29].

Let ay,...,as be positive integers. The expression G = (ay,...,a;)
means that for any coloring of V(G) in s colors (s-coloring) there exists
i € {1, ..., s} such that there is a monochromatic a;-clique of color i. In par-
ticular, G = (a)) means that w(G) > a;. Further, for convenience instead
of G5 (2,...,2) we write G = (2,) and instead of G 3 (2,...,2, a1, ..., as)

N e’ N —
r r
we write G = (2;,a1, ..., as).

Define:

H(a1,...,as;q) = {G : G S (ay,...,as) and w(G) < q}.

H(ay,...,as;¢;n) = {G: G € H(ay,...,as;9) and |V(G)| = n}.

The vertex Folkman number F,(ay,...,as;q) is defined by the equality

Fv(al) ey Qg Q) = min {lV(G)l :Ge H(ali ey Qg Q)}

The graph G is called an extremal graph in H(ai,...,as;q) if G €
H(ay,...,as;q) and |V(G)| = F,(ay, ..., as;q). The set of all extremal graphs
in H(aq,...,as;q) is denoted by Hezer(a1, ..., a5;9) -

The graph G is called a maximal graph in H{ai,...,asq) if G €
H(ay, .-, as;q), but G + e € H(ay,...,as;q),Ve € E(G), i.e. w(G+e¢) >
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g,Ve € E(G). Also, G is called a minimal graph in H(a1,...,as;q) if

G € H(e1, - 059), but G — e & H(ar,..,a59), Ve € E(G), ie. G-

e » (@1,...,05),Ve € E(G). If G is both maximal and minimal graph in

H(ay, ..., as; q), then we say that G is a bicritical graph in H(ay, ...,as;q).
Folkman proves in [5] that

(1.1) Fy(ay,...,as; q) exists < ¢ > max{a1,...,as}.

Other proofs of (1.1) are given in [4] and [10].
Obviously Fy(ai, ..., as; q) is a symmetric function of ay, ...,a, and if a; = 1,
then

Fv(a’ly -y Qs; Q) = Fv(a'ls oy @i, Qig 1,y 00y Qg q)'

Therefore, it is enough to consider only such Folkman numbers Fy(a,...,
as; q) for which
(1.2) 2<a; <...<a,.

We call the numbers F,(ay,...,as;q) for which the inequalities (1.2) hold,
canonical vertex Folkman numbers.
In [11] for arbitrary positive integers ai, ...,a; are defined

(1.3) m(aj,...,as)=m= Z(a,- —1)+1 and p=max{a),...,as}.
i=1
Obviously K., = (a1, ...,as) and Kmn—1 - (aj, ..., as). Therefore,
Fu(a1,...,as;q) =m, QZm"rl
In accordance with (1.1),
Fy(ai,...,as;m) exists &m >p+1.

For these numbers the following theorem is true:

Theorem 1.1. Let a,,...,a, be positive integers and let m and p be defined
by (1.8). If m > p+ 1, then:

(a) Fu(ai,....,as;m)=m+p, [11],[10].

(b) Km+p — Capt1 = Km—p—1 + Cops1

is the only extremal graph in H(ay,...,as;m), [10].
Other proofs of Theorem 1.1 are given in [21] and [22].
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In accordance with (1.1),
(1.4) F,(ay,...,as;m — 1) exists & m > p+ 2.
Let m and p be defined by (1.3). Then

m+4, ifp=2andm>6, [18]
(1.5) Fy(a1,..,as,m—1)=(m+6, ifp=23andm >6, [23]
m+7, ifp=4andm>6, (23]

The remaining canonical numbers Fy(ay,...,as;m — 1), p < 4 are:
Fy(2,2,2;3) = 11, [16] and [1], F,(2,2,2,2;4) = 11, [19] (see also [20]),
F,(2,2,3;4) = 14, [21] and [2], F,(3,3;4) = 14, [17] and [24]. From these
facts it becomes clear that we know all Folkman numbers of the form
F,(ay,...,as;m — 1) when max{aj,...,as} < 4. The only known canon-
ical vertex Folkman number of the form Fy,(ai,..,a,,m — 1), p > 5 is
F,(3,5;6) = 16, [26]. Since we know all the numbers F,(ay,...,as;m — 1)
when p = 2, further we shall assume that p > 3. The following bounds for
these numbers are known:

(1.6) m+p+2< Fa,..,asm—1)<m+3p, p>3.

The lower bound is obtained in [21] and the upper bound is obtained in
[8). It is easy to see that in the border case m = p + 2 when p > 3 there
are only two canonical numbers of the form F,(a,...,as;m — 1), namely
Fy(2,2,p;p+1) and F,(3,p;p + 1).

With the help of the numbers F,(2,2,p;p + 1), the lower bound in (1.6)
can be improved.

Theorem 1.2. [23] Let ay, ..., as be positive integers, let m and p be defined
by (1.8),p>3 andm >p+2. IfF,(2,2,p;p+1) >2p+5, then

Fy(a1,...,assm—=1)>2m+p+3.

Some graphs, with which upper bounds for F,(3,p; p+ 1) are obtained,
can be used for obtaining general upper bounds for Fy,(ay, ...,as; m—1). For
example, the graph I'; from [21], which witnesses the bound F,(3,p;p +
1) € 4p+ 2,p > 3, helps to obtain the upper bound in (1.6). Thus,
obtaining bounds for the numbers F,(ai, ...,as; m —1) and computing some
of them is related with computation and obtaining bounds for the numbers
F,(2,2,p;p + 1) and F,(3,p;p + 1). It is easy to see that G = (3,p) =
G = (2,2,p). Therefore, the following inequality holds:

(1.7) F.(2,2,p;p+1) < F,(3,pp+1), p>3.
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However, we do not know if these numbers are different. For now we do
know that they are equal if p=3orp=4.

Problem 1.3. [7] Does there ezist a positive integer p for which the in-
equality (1.7) is strict?

In this paper we prove F,,(2,2,5;6) = 16 and a new proof of the equality
F,(3,5;6) = 16, [26) is given. Hence for p = 5 there is an equality in (1.7).
We find all extremal graphs in H(2, 2, 5; 6) and in #(3,5;6). With the help
of these results, we compute the numbers F,(ay,...,as;m — 1) = m + 9,
when max {ay, ...,as} = 5. In the case max {a,,...,a,} = 6 we improve the
bounds (1.6) by proving m +9 < F,(ay,...,as;m —1) < m+10. The exact
formulations of the obtained results are as follows:

Theorem 1.4. |H(2,2,5;6;16)] = 147.

In the proof of Theorem 1.4 we find all graphs in #(2, 2, 5; 6; 16). Some
properties of these graphs are listed in Table 1. Among them there are 4
bicritical graphs, which are shown in Figure 1, and some of their properties
are listed in Table 2.

Theorem 1.5. F,(2,2,5;6) = 16 and the graphs from Theorem 1.4 are all
the graphs in Hezir(2,2,5;6).

Corollary 1.6. [26] F,(3,5;6) = 16.

Proof. From Theorem 1.5 and (1.7) we obtain F, (3, 5;6) > 16. Since among
the graphs from Theorem 1.4 there are such, which belong to #(3, 5;6) (see
Figure 2), it follows that F,(3,5;6) < 16. a
Theorem 1.7. |H(3,5;6;16)| = 4.

In the proof of Theorem 1.7 we find all graphs in #(3,5;6;16). These
graphs are shown in Figure 2 and some of their properties are listed in
Table 3.

S
Theorem 1.8. Let ay,...,a; be positive integers, m = > (a; — 1) + 1,
i=1
max {ay,...,as} =5 and m > 7. Then
Fy(ay,...,as;m—1)=m+09.

At the end of this paper as a consequence of these results and with the
help of one graph (see Figure 5) from [28] we prove that

S

Theorem 1.9. Let a,,...,a, be positive integers, m = >.(a; — 1) + 1,
i=1

max {ay,...,as} =6 and m > 8. Then

m+ 9 < Fy(ay,....,as;m—1) <m+10.
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Remark. Since F,(ai, ...,a5;m—1) ezists only if m > 2+ max {ay, ...,a,},
the conditions m > 7 in Theorem 1.8 and m > 8 in Theorem 1.9 are
necessary.

This paper has a previous version (arXiv:1503.08444v1). We decided
to forgo publishing this first version, because we managed to improve the
main result by proving the Theorem 1.8 above.

2 Proof of Theorem 1.4

We adapt Algorithm A1 from [24] to obtain all graphs in H(2,2, 5; 6; 16)
with the help of computer. Similar algorithms are used in [2], [30], [9] and
[26]. Also, with the help of computer, results for Folkman numbers are
obtained in [6], [28], [27] and [3].

The naive approach for finding all graphs in H(2,2,5;6;16) suggests to
check all graphs of order 16 for inclusion in #(2,2,5;6). However, this is
practically impossible because the number of graphs to check is too large.
The method that is described uses an algorithm for effective generation of
all maximal graphs in #(2,2,5;6;16). The other graphs in H(2,2, 5;6;16)
are their subgraphs. The algorithm is based on the following proposition:

Proposition 2.1. Let G be a mazimal graph in H(2,,p;q;n) and let
V1,Y2, ..., Uk be independent vertices. Let H = G — {vy,v2,...,vc}. Then:

(a) H € H(2-1,p;9;n — k).
(b) the addition of a new edge to H forms a new (g — 1)-clique.

(c) Ng(vi) is @ mazimal K,_;-free subset of V(H), i =1,...,k.

Proof. The proposition (a) follows from the assumption that G €
H(2-,p;9;n), (b) and (c) follow from the maximality of G. a

The following algorithm, which is a modification of Algorithm A1 from
[24], generates all maximal graphs in H(2., p; ¢; n) with independence num-
ber at least k:

Algorithm 2.2. Generation of all mazimal graphs in H(2,,p;q;n) with
independence number at least k by adding k independent vertices to the
graphs from H(2,_1,p; ¢;n — k) in which the addition of a new edge forms
a new (g — 1)-cligue.
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1. Let A CH (2,-1,p;q;n — k) be the set of these graphs in which the
addition of a new edge forms a new (g — 1)-clique (see Proposition 2.1 (a)
and (b)). The mazimal graphs in H(2,,p;q;n) are output in B.

2. For each graph H € A:

2.1. Find the family M(H) = {M,,..., M} of all mazimal K,_,-free
subsets of V(H).

2.2. Consider all the k-tuples (M;,, M;,,...,M;,) of elements of M(H)
Jor which 1 < iy <... < i <t (in these k-tuples some subsets M; can coin-
cide). For every such k-tuple construct the graph G = G(M;,, M;,,...,M;,)
by adding to V(H) new independent vertices vy, va, ..., Vk, 80 that Ng(v;) =
M;,;,j =1,...,k (see Proposition 2.1 (c)). If w(G +¢) = q,Ve € E(G), then
add G to B.

3. Ezclude the isomorph copies of graphs from B.

4. Ezclude from B all graphs which are not in H(2.,p;q;n).

According to Proposition 2.1, at the end of step 4 B is the set of all
maximal graphs in H(2,,p; ¢;n) with independence number at least k.

Intermediate problems, that are solved, are finding all graphs in
H(2,5;6;13) and in H(5;6;10). For each of the sets H(2,2,5;6;16) and
H(2,5;6;13) we start by finding the maximal graphs in them. The re-
maining graphs are obtained by removing edges from the maximal graphs.
Using Algorithm 2.2, we can obtain the maximal graphs in H(2, 2, 5; 6; 16)
with independence number at least 3 by adding 3 independent vertices to
graphs in #(2,5;6;13). Similarly, we can obtain the maximal graphs in
H(2,5;6;13) with independence number at least 3 by adding 3 indepen-
dent vertices to graphs in H(5; 6;10). What remains is to find the maximal
graphs in these sets with independence number 2. Let

R(p,q) = {G: a(G) < p and w(G) < q}.

R(p,g;n) = {G: G € R(p,q) and |[V(G)| = n}.

The graphs R(3,6) are known (see [13] and [25]). The maximal graphs
in H(2,2,5;6;16) with independence number 2 are a subset of R(3, 6;16)
and the maximal graphs in H(2,5; 6;13) with independence number 2 are
a subset of R(3, 6;13)

The nauty programs [12] have an important role in this work. We use
them for fast generation of non-isomorphic graphs, isomorph rejection, and
to determine the automorphism groups of graphs.

2.1 Finding all graphs in H(5;6;10)

It is clear that H(5; 6; 10) is the set of 10 vertex graphs with clique number
5. The number of non-isomorphic graphs of order 10 is 12 005 168. Out of
those we can easily find the graphs with clique number 5. Thus, we obtain
all 1 724 440 graphs in H(5; 6; 10).
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2.2 Finding all graphs in H(2, 5;6;13)

Algorithm 2.3. Finding all graphs in H(2,5; 6;13).

1. Find all mazimal graphs G € H(2,5;6;13) for which a(G) > 3:

1.1. Determine which of the graphs in #(5; 6; 10) have the property that
the addition of a new edge forms a new 5-clique.

1.2. Using Algorithm 2.2, add three independent vertices to the graphs
from step 1.1. to obtain the graphs wanted in step 1.

2. Find all mazimal graphs G € H(2,5;6;13) for which o(G) = 2:

2.1. In order to do so, check which of the graphs in R(3,6;13) are
mazimal graphs in H(2,5;6;13).

3. The union of the graphs from steps 1. and 2. gives all mazimal
graphs in H(2, 5; 6;13). By removing edges from them, the remaining graphs
in H(2,5;6;13) are obtained.

Results of computations:

Step 1: Among all the graphs in H(5; 6; 10) exactly 3633 have the prop-
erty that the addition of a new edge forms a new 5-clique. By adding
three independent vertices to them, we obtain 326 maximal graphs in
H(2,5;6;13).

Step 2: The number of graphs in R(3,6;13) is 275 086 [14]. Among
them 61 are maximal graphs in H(2, 5; 6;13).

Step 3: The union of the graphs from steps 1. and 2. gives all 387
maximal graphs in #(2, 5;6;13). By removing edges from them, we obtain
all 20 013 726 graphs in H(2,5;6;13) .

2.3 Finding all graphs in #(2,2,5;6;16)

Algorithm 2.4. Finding all graphs in H(2,2,5;6; 16).

1. Find all mazximal graphs G € H(2,2,5;6; 16) for which a(G) > 3:

1.1. Determine which of the graphs in H(2,5;6;13) have the property
that the addition of a new edge forms a new 5-clique.

1.2. Using Algorithm 2.2, add three independent vertices to the graphs
from step 1.1. to obtain the graphs wanted in step 1.

2. Find all mazimal graphs G € H(2,2,5;6; 16) for which a(G) = 2:

2.1. In order to do so, check which of the graphs in R(3,6;16) are
mazimal graphs in H(2,2,5;6;16).

3. The union of the graphs from steps 1. and 2. gives all mazimal
graphs in H(2,2,5;6;16). By removing edges from them, the remaining
graphs in H(2,2,5;6;16) are obtained.
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Results of computations:

Step 1: Among all the graphs in #(2,5; 6;13) exactly 2 265 005 have
the property that the addition of a new edge forms a new 5-clique. By
adding three independent vertices to them, we obtain 32 maximal graphs
H(2,2,5;6;16).

Step 2: The number of graphs in R(3, 6; 16) is 2576 [15]. Among them
5 are maximal graphs in H(2,2,5;6; 16).

Step 3: The union of the graphs from steps 1. and 2. gives all 37 max-
imal graphs in #(2,2,5;6;16). By removing edges from them, we obtain
all 147 graphs in H(2, 2, 5; 6; 16).

Thus, we finished the proof of Theorem 1.4.

We denote by Gy, ..., G147 the graphs in #(2,2,5;6;16). The indexes
correspond to the defined order in the nauty programs. In Table 1 are
listed some properties of the graphs in H(2,2, 5; 6;16). Among them there
are 37 maximal, 41 minimal and 4 bicritical graphs (see Figure 1). The
properties of the bicritical graphs are listed in Table 2.

All computations were done on a personal computer. The slowest part
was step 1.2 of Algorithm 2.4, which took several days to complete.

Note that to find all graphs in #(2, 2, 5; 6; 16) it is enough to find only
these graphs from the sets H(2,5;6;13) and #(5; 6;10) for which the ad-
dition of a new edge forms a new 5-clique. In this case that does not save
us much of the time needed for computer work, but later, in the proof of
Theorem 6.1, we use that possibility.

[E@G)| #]8(G) #]|AG) #|aG) #[x(G) #]||Aut(G)l #
83 77 2[11 242 21[7 651 84
84 25|18 36|12 123]3  126|8 822 44
85 4219 61 3 1
86 37(10 47 4 8
87 29(11 1 6 8
88 6 8 1
89 1 96 1

Table 1: Properties of the graphs in #(2,2, 5; 6; 16)

Graph | |[E(G)| | 6(G) | A(G) | «(G) | x(G) | [Aut(G)|
Gl 86 9 12 3 7 1
Grs 87 10 12 3 7 2
G134 85 9 12 3 7 2
G35 85 9 12 3 7 1

Table 2: Properties of the bicritical graphs in H(2, 2, 5; 6; 16)
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3 Proof of Theorem 1.5 and Theorem 1.7

Proof of Theorem 1.5

Since H(2,2,5;6;16) # @, it follows that F,(2,2,5;6) < 16. With a simple
algorithm, which removes a vertex from each graph in #(2, 2,5; 6;16) and
checks for inclusion in #(2,2,5;6), we obtain H(2,2,5;6;15) = @, which
proves F,(2,2,5;6) > 16. Thus, the theorem is proved.

Remark. The lower bound F,(2,2,5;6) > 16 can be proved simpler in
terms of time needed for computer work. The result H(2,2,5;6;15) = @
can be obtained with a method similar to the one used to find all graphs in
H(2,2,5;6;16), but in the slowest step we add 3 vertices to appropriately
chosen 12-vertex graphs instead of 13-vertex graphs. A similar approach is
used in the proof of the bound F,(3,5;6) > 16 in [26].

Proof of Theorem 1.7

Using that #(3,5;6;16) C #(2,2,5;6;18), by checking the graphs from
Theorem 1.4 with computer we obtain |H(3, 5; 6; 16)| = 4.

Thus, the theorem is proved.

The graphs from H(3, 5;6; 16) are shown in Figure 2. Some properties
of these graphs are listed in Table 3.

It is interesting to note that for all these graphs the inequality (4.4) is
strict. The graphs Gso and G146 are maximal and the other two graphs Gs;
and Gjg are their subgraphs and are obtained by removing one edge. In [28]
the inequality F, (3, 5;6) < 16 is proved with the help of the graph G146. We
shall note that |Aut(G146)| = 96 and among all graphs in (2,2, 5; 6; 16) it
has the most automorphisms.

Graph | [E(G)| | 4(G) | A(G) | &(G) | x(G) | [Aut(G)|:
Gso 87 10 12 3 8 6
Gs1 86 9 11 3 8 6
Gs 87 10 11 2 8 6
Gia6 88 11 11 2 8 96

Table 3: Properties of the graphs in H(3, 5; 6; 16)
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4 Bounds for the numbers F,(ay, ..., as; q)

First, we define a modification of the vertex Folkman numbers F,(ay,...,
as; q) with the help of which we obtain upper bound for these numbers.

Definition 4.1. Let G be a graph and let m and p be positive integers.
The expression
G5 m|,J

means that for every choice of positive integers ay,...,as (s is not fized),
S
such that m = Y (a; — 1) + 1 end max {ai,...,as} < p, we have
i=1
G5 (a1, ..., as).

Example 4.2. K,, > mlp, Vp (obviously).

Example 4.3. [10] Let us notice that Copr1 — (P + 1)|p. Indeed, let
S
b1,...,bs be positive integers, such that Y (b; — 1)+ 1 = p+ 1 and

i=1
max {by,...,bs} < p. Assume that there exists s-coloring V(G) = 1U...UV,
such that V; does not contain a b;-clique. Then |V;| < 2b; —2 and |V(G)| =

S 8
S Vil €2 35 (b; — 1) = 2p, which is a contradiction.
i=1 i=1

Define:
’H(mlp;q) = {G 1G5 m|P and w(G) < q}.

Fy(ml,;q) = min {|V(@)|: G € Hlml i) }.
Proposition 4.4. ’;Z(m|p;q) #0, ie F‘u(m[p; q) exists < ¢ > min {m, p}.

Proof. Let ﬁ(m|p;q) #0and G € ﬁ(m|p;q). If m < p, then G = (m),
and it follows w(G) > m. Since w(G) < g, we obtain ¢ > m. Let m > p.
Then there exist positive integers aj, ..., a5, such that m =Y _;_(a;—1)+1
and p = max {ay,...,a,}, for example @) = ... = am—p =2 and apm—p41 = p.
Since G = (a1, ..., as), it follows that w(G) > p and ¢ > p. Therefore, if
H(m;p;q) # 0, then ¢ > min {m, p}.

Let ¢ > min {m,p}. If m > p, then ¢ > p. According to (1.1), for every
choice of positive integers a1, ...,as, such that m = Y~;_,(a: — 1) + 1 and
max {a1, ...,as} < p there exists a graph G(a,, ..., as) € H(ay, ..., as; q)- Let
G be the union of all graphs G(ai, ...,as). It is clear that G € ’H(mlp;q).

If m < p, then m < ¢, and therefore K, € ﬁ(ml?; q). O
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The following theorem gives bounds for the numbers F,(a, ..., as; q):

Theorem 4.5. Let a1, ..., as be positive integers and let m and p be defined
by (1.8), ¢ > p. Then

Fy(2m-p,7i9) < Fy(ay, -, a539) < Fo(m],9).
Proof. The right inequality follows from the inclusion
H(m|;9) S H(a1, .., a079).
In order to prove the left inequality, let us notice that if a; > 3, then
(4.1) G5 (ay,...,as) = G 3 (ay,..,ai-1,2,a; — 1,...,a5).

Since m(ay,...,as) = m(ay,...,ai-1, 2,a; — 1, ...,a,), by successively apply-
ing (4.1) we obtain

(4.2) G (a1,...,as) = G 3 (2m—-p, D),
(4.3) G5 (a1,..,a5) =2 G (2m—1)-
From (4.2) it follows
Fy(a1,..ya5:9) 2 Fo(2m—p,P;q)- o
Since G = (2m-1) © x(G) > m, from (4.3) it becomes clear that
(4.4) G 3 (a1, a5) = x(G) >m, [22]

This fact is used later in the proof of Theorem 5.2.

The bounds from Theorem 4.5 are useful because in general they are
easier to estimate and compute than the numbers F,(a,, ..., a,) themselves.
Later, we compute the exact valug of the numbers F,(2,,—5,5;m — 1) (see
Corollary 6.3) and the numbers Fv(m|5;m — 1) (see Theorem 7.4). This
way, with the help of Theorem 4.5, Theorem 1.8 is proved. Similarly, we
obtain the bounds of Theorem 1.9

Remark. It is easy to see that if g > m, then Fy(ai,...,a4;9) = F‘u(m|p; q)
= m. From Theorem 1.1 it follows Fy(ay,...,as;m) = F’v(m|p;m) =m+p.

Ifg=m~1 and p < 4, according to (1.5), we also have F,(a,,...,as;9) =
Fv(m|P; q). The first case in which the upper bound in Theorem 4.5 is not

reached ism = 7,p = 5,q = 6, since fv(7|5; 6) = 17 (see Theorem 7.4) and
the corresponding numbers F,(ay,...,as;q) < 16.
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5 Some necessary results for the numbers
F'u(zr’p,'r +p— 1): p > 2

In this section we prove that the computation of the lower bound in
Theorem 4.5 in the case ¢ = m — 1, i.e. computation of the numbers
Fy(2,,p,r + p — 1) where p is fixed, is reduced to the computation of a

finite number of these numbers (Theorem 5.2).
It is easy to prove that

G5 (ay,...,a,) = K1+ G 5 (2,01, ...,a,).
Therefore, it is true that
(5.1) G5 (a1,..,05) = Ky + G 3 (24,04, ..., a).
Lemma 5.1. Let2< s <r. Then
Fy(2r,pr+p-1) < F(2,ps+p—1)+r—s.

Proof. Let G be an extremal graph in H(2,,p;s + p — 1). Consider G; =

K,_s+G. According to (5.1), G; = (25, p). Since w(G,) =7 —s5+w(G) <

r+p—1, it follows that G; € H(2,,p;7 + p — 1). Therefore,
Fo(2npr+p—1) S [V(G1)| = Fy(25,p;5 +p—1) + 1 — 5. O

Theorem 5.2. Let ro(p) = ro be the smallest positive integer for which
gl>i121 {Fo(2rypsr+p—1) =7} = Fy(240,p;70 +p — 1) — 0.
Then:

(@) Fo(2r,psr+p—1)=F(2r,psr0+P—1)+7—109, T >0

(b) if ro =2, then
F,2,pr+p-1)=F,(2,2,p;p+1)+7-2, r>2.

(c) ifro > 2 and G is an extremal graph in H(2,,,p;70 +p — 1), then
G5 (2,70 +p—2).

(d) ro < Fy(2,2,p;p+ 1) — 2p.

In particular, for p =5 we have 79(5) < 5.
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Proof. (a) According to the definition of 7o = ro(p), if r > 2, then

Fv(2r1p;r +p- 1) -r2 Fv(2"‘o7p;"'0 +p- 1) — 7o,

i.e.

Fo2r,p5r+2—1) 2 F)(2rg,psr0+p— 1) +7 —10.

If r > rp, according to Lemma 5.1, the opposite inequality is also true.

(b) This equality is the special case ro = 2 of the equality (a).

(c) Suppose the opposite is true and let G be an extremal graph in
H(2r0,p;70 +p— 1) and V(G) = V1 UV, V1 NVo = @, where V] is an
independent set and V, does not contain an (r¢ + p — 2)-clique. We can
suppose that V; # 0. Let G; = G[V,). Then w(G;) <+ p — 2, and from
G = (24, p) it follows Gy = (27-1,p). Therefore, G1 € H(2r,—-1,P;70 +
p —2) and

|V(Gl)| 2 Fv(21‘o-—l,p; o + p— 2)'

Since |V(G)| = Fy(2ry,p;70 + p — 1) and |[V(G1)] <| V(G)| — 1, we obtain

Fy(2r0-1,05m0+ P —2) — (10 = 1) < Fy (24, P70 + p — 1) — 70,
which contradicts the definition of rg = 79(p).

(d) According to (1.6), F,,(2,2,p;p+ 1) > 2p + 4. Therefore, if rg = 2,
the inequality (d) is obvious.

Let 7o > 3 and G be an extremal graph in H(2,,,p;70 +p — 1). Ac-
cording to (c) and Theorem 1.1, |V(G)| > 2ro + 2p — 3. Let us notice that
X(Carot+2p-3) =70 +p — 1 and x(G) > ro + p = m by (4.4). Therefore,
G # C2ry+2p-3 and from Theorem 1.1 we obtain

IV(G)| = Fu(2re, im0 +P—1) 2 210+ 2p — 2.

Since rg > 3, from the definition of 7o we have

Fy(2rg,pimo+p—1) < Fy(2,2,p;p+ 1) +70 — 2.
Thus, we proved that

2ro+2p—2< Fo(2,2,p;p+ 1) + 19— 2, ie.

To < Fy(2,2,pp+1) - 2p.

O

Remark. Since we suppose that r > 2, according to (1.1) all Folkman
numbers in the proof of Theorem 5.2 exist.

Example 5.3. From (1.5) and F,(2,2,2;3) = F,(2,2,2,2;4) = 11 it fol-
lows ro(2) = 4, and from (1.5) and F,(2,2,3;4) = 14 it follows ro(3) = 3.
Also, from (1.5) we see that ro(4) = 2.

We suppose that the following is true:
Conjecture 5.4. If p > 4, then

min {Fo(2r,pir+p—1) -7} = Fy(2,2,p;p+1) - 2,
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and therefore
Fu(2rvp;r+p_1)=Fv(2,2ap;p+1)+r_2y TZ2

In this paper we prove this conjecture in the case p = 5 (see Theorem
6.1 and Corollary 6.3).

Corollary 5.5. Let ay,...,as be positive integers, let m and p be defined
by (1.3), m 2 p+2 andr =m —p > ro(p). Then

Fy(ay,...a5;m —1) > Fy(2rq,p;70 +p— 1) + 7 —70.
In particular, if ro = 2, then
Fv(ala wnlgm—1) > Fy(2,2,p;p + )+r-2

Proof. According to Theorem 4.5,
Fy(ai,..,as;m—1) > Fy(2;,p;r+p—1).
From this inequality and Theorem 5.2(a) we obtain the desired inequality.
O

6 Computation of ry(5)

In this section we prove the following
Theorem 6.1. r(5) = 2

Proof. From Theorem 5.2(d) we have r9(5) < 5. Therefore, we have to
prove that 7o(5) # 3, ro(5) # 4 and ro(5) # 5, i.e. we have to prove the in-
equalities F,(2,2,2,5;7) > 16, F,(2,2,2,2,5;8) > 17, F(2,2,2,2,2,5;9) >
18.

The proof of each of these three inequalities consists of several steps,
similarly to the proof of Theorem 1.4. Since not all graphs in R(3,7) are
known to us, this time in the process of extending graphs to maximal ones
we are adding two independent vertices instead of three.

Algorithm 6.2. Finding all mazimal graphs in H(2,,5;q; n) starting from
all mazimal graphs in H(2,-,,5;¢;n — 2).

1. By removing edges from the mazimal graphs in H(2,-1,5;q;n — 2),
find all graphs in this set which have the property that the addition of a new
edge forms a new (q — 1)-clique.

2. Using Algorithm 2.2, add two independent vertices to the graphs from
step 1. to obtain all mazimal graphs in H(2,,5;q;n).
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6.1 Proof of F,(2,2,2,5;7) > 16

By checking all 10-vertex graphs, we find the maximal graphs in H(5; 7; 10).
Starting from them, by successively applying Algorithm 6.2(n = 12,14, 16;
g = 7;7 = 1,2,3) we obtain the maximal graphs in the sets #(2, 5;7;12),
H(2,2,5;7;14) and H(2,2,2,5; 7; 16). The results are described in Table 4.
There we can see that #(2,2,2,5;7;16) = 0 and therefore F,(2,2,2,5;7) >
16.

6.2 Proof of F,(2,2,2,2,5;8) > 17

By checking all 9-vertex graphs, we find the maximal graphs in H(5;8;9).
Starting from them, by successively applying Algorithm 6.2(n = 11,13, 15,
17,9 = 8r = 1,2,3,4) we obtain the maximal graphs in the sets
H(2,5;8;11), H(2,2,5;8;13), H(2,2,2,5;8;15) and H(2,2,2,2,5;8;17).
The results are described in Table 5. There we can see that #(2,2,2,2,5;
8;17) = 0 and therefore F,(2,2,2,2,5;8) > 17.

6.3 Proof of F,(2,2,2,2,2,5;9) > 18

By checking all 10-vertex graphs, we find the maximal graphs in H(2,5;
9;10). Starting from them, by successively applying Algorithm 6.2(n =
12,14,16,18;9 = 9;r = 2, 3,4, 5) we obtain the maximal graphs in the sets
H(2,2,5;9;12), H(2,2,2,5;9; 14), H(2,2,2,2,5;9;16) and H(2,2,2,2,2,5;
9;18). The results are described in Table 6. There we can see that
H(2,2,2,2,2,5;9;18) = @ and therefore F,(2,2,2,2,2,5;9) > 18.

Thus, the proof of Theorem 6.1 is finished. O

All computations were done on a personal computer. The slowest part
was the proof of F,(2,2,2,2,2,5;9) > 18, which took several days to com-
plete.

From Theorem 6.1 and Theorem 5.2(b) we obtain
Corollary 6.3. F,(2,,5;r+4)=r+14, r>2.
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set maximal ( graphs in which the addition of
graphs an edge forms a new 6-clique

H(5;7;10) 8 324

H(2,5;7;12) 56 104 283

H(2,2,5;7;14) 420 2 614 547

H(2,2,2,5;7;16) 0 0

Table 4: Steps in the proof of F,(2,2,2,5;7) > 16

set maximal | graphs in which the addition of
graphs an edge forms a new 7-clique

H(5;8;9) 2 13

H(2,5;8;11) 8 326

H(2,2,5;8;13) 56 105 138

H(2,2,2,5;8;15) 423 2 616 723

H(2,2,2,2,5;8;17) 0 0

Table 5: Steps in the proof of F,(2,2,2,2,5;8) > 17

set maximal | graphs in which the addition of
graphs an edge forms a new 8-clique

H(2,5;9;10) 2 13

H(2,2,5;9;12) 8 327

H(2,2,2,5;9; 14) 56 105 294

H(2,2,2,2,5;9;16) 423 2 616 741

#(2,2,2,2,2,5,9;18) | 0 0

Table 6: Steps in the proof of F,,(2,2,2,2,2,5;9) > 18

7 Computation of the numbers ﬁv(m| 5 M — 1)
and proof of Theorem 1.8

Let us remind that ’ﬁ(mlp; q) and F‘v(m|p; g) are defined in Section 4.

We need the following

Lemma 7.1. [23] Let mg and p be positive integers and G — molp. Then

for every positive integer m > my it is true that Kp_mo + G = m|p.

This lemma is formulated in an obviously equivalent way and is proved
by induction with respect to m > mg in [23] as Lemma 3.
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Theorem 7.2. Let m, mg, p and q be positive integers, m > mo and
g > min {mg,p}. Then

Fy(m| ;m —mo +q) < Fu(mo ;q) +m — mo.

Proof. Let Go € ﬁ(mo|p; 7), [V(Go)| = f‘,,(mo|p;q) and G = Kpemp, +
Go. According to Lemma 7.1, G 3 m]p. Since w(G) = m — mp +
w(Go) < m — mg + g, it follows that G € '»q(m|p;m —mo +q). There-
fore, ﬁv(m|p; m—mp+q) < |V(G)| = F’v(mo|p;q) +m — mo. ]

The following obvious proposition will be used in the proof of Theorem
7.4:

Proposition 7.3. Let ai,...,a, be positive integers, a; > k and G =
(a1, ..yas). Then

v
G- (al, vy @i, k05 — k + 1,841, ...,as).

According to proposition 4.4, we have

(7.1) Fy(m|g;m —1) exists & m >7.

We prove the following

Theorem 7.4. The following equalities are true:

17, ifm=7
m+9, ifm>8.

f’v(mls;m -1 = {

Proof. Case 1. m = 7. According to Theorem 4.5 and Theorem 1.5,
Fy(7),;6) > F,(2,2,5;6) = 16. With the help of the computer we check
that none of the 4 graphs in #{(3,5;6;16) (see Figure 2) belongs to
‘H(4,4;6;16). Therefore, fv(7|5;6) >17.

By adding one vertex to the graphs from #(2,2,5;6;16), and then re-
moving edges from the obtained 17 vertex graphs, we find 353 graphs which
belong to both H(3, 5;6;17) and H(4, 4; 6; 17). The graph I';, given on Fig-
ure 3, is one of these graphs (it is the only one with independence number
4). We will prove that T'; € ﬁ(7|5;6). Since w(I'y) = 5, it remains to
be proved that if 2 < b; £ ... € by < 5 are positive integers, such that
Si_i(b1 —1)+1 = 7, then T 5 (by,...,bs). The following cases are
possible:
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s=2,b; =3,bp =5.

S=2,b1 =b2=4.

S=3,b1 =b2=2,b3 = 5.

8§ = 3,b1 = 2,b2 = 3,b3 =4.

s=3,b1 =b2=b3=3.

S=4,bl =b2=bs =2,b4 =4,

S=4,b1 =b2=2,b3=b4=3.

S=5,bl =b2=b3=b4=2,b5=3.

3=6,b] =b2=b3=b4=b5=b6=2.

By construction, I'; = (3,5) and 'y = (4,4). From Proposition 7.3
and ), 3 (3,5) it follows T'; = (2,2,5), 'y = (2,3,4) and T'; = (3,3,3).
Consequently, we have

r; 3(3,3,3)=T13(2,233),

I 3(2,2,5 =T 5(2,224),

I 3(2,224)=>T13(222,2,3),

32,2223 =T 3(2,2,22,22).

We proved that T'y € #(7|;;6). Therefore, F,(7],;6) < [V(['1)] = 17.

Case 2. m = 8. According to Theorem 4.5 and Corollary 6.3, f’,,(8| s 7)
> F,(2,2,2,5;7) = 17. To prove the upper bound, consider the 17-vertex
graph I's € #(4,5;7;17), which is shown on Figure 4. Appendix A de-
scribes the method to obtain this graph. By construction, w(I'2) = 6 and
T2 5 (4,5). Asin Case 1., we prove that from [y = (4,5) it follows
T2 = 8|,. Therefore, ['; € H(8],; 7) and F,(8|;7) < [V(T2)| = 17.

_ Case 3. m > 8. From Theorem 4.5 and Corollary 6.3 it follows
Fv(mls;m —1) > m+9. From Theorem 7.2(mo = 8,p = 5,¢ = 7) and

ﬁ,(S,s; 7) = 17 it follows f‘v(mls;m -1)<m+9. O

Proof of Theorem 1.8

Since m > 7, only the following two cases are possible:

Case 1. m = 7. In this case F,(2,2,5;6) and F,(3,5;6) are the only
canonical vertex Folkman numbers of the form F,(a;,...,as;m —1). The
equality Fy,(2,2,5;6) = 16 is proved in this work as Theorem 1.5, and the
equality F,(3,5;6) = 16 is proved in [26] (see also Corollary 1.6).

Case 2. m > 8. In this case Theorem 1.8 follows easily from Theorem
7.4, Theorem 4.5(¢ = m — 1) and Corollary 6.3.
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8 Proof of Theorem 1.9

According to Corollary 6.3, F,(2,2,2,5;7) = 17. From Proposition 7.3 it
follows F,(2,2,6;7) > F,(2,2,2,5;7). Therefore, F,(2,2,6;7) > 17. Now,
from Theorem 1.2 (p = 6) we obtain the lower bound
F,(a1,..,agsm—-1)>2m+9, m>8.
To prove the upper bound consider the 18 vertex graph I's (Figure 5) with
the help of which in [28] they prove the inequality F,(3,6;7) < 18. In
addition to the property I's = (3,6), the graph I's also has the property
T's = (4,5). By repeating the arguments in the proof of Theorem 7.4
Case 1, we see that from I's = (3,6) and T's 5 (4,5) it follows T's > 8|.
Since w(T's) = 6, we obtain I's € H(8|;7) and F,(8|;7) < |[V(I's)| = 18,
From this inequality and Theorem 7.2 (mo = 8,p = 6;q = 7) it follows
Fv,,(m|6; m—1) <m+ 10, m > 8. At last, according to Theorem 4.5
Fy(ay,...,as5m—1) < F‘u(m|6;m -1)<m+10, m>8,
which finishes the proof of Theorem 1.9

9 Concluding remarks

In this paper we presented a method to compute and bound the Folkman
numbers of the form F,(ay,...,as; m — 1) with the help of the border num-
bers Fy,(2,2,p;p+1) and F,(3,p;p+ 1). With this method new results for
other Folkman numbers can be obtained. For example, we will show how,
in some special situations, one can strengthen the inequality: ‘

(9.1) F.(p,;ip+1)24p—1, [31].

Let G € H(2,,p;p+ 1) and A C V(G) be an independent set. Then,
obviously, G — A € H(2,_1,p;p+ 1), and therefore

(9.2) Fy(2:,pp+1) 2 Fy(2-—1,pp + 1) +a(np), 722,

where a(r,p) = max {a(G) : G € Hezer (2., p5p + 1)}

From (9.2) it follows easily

(9.3) Fy(2r,pp+1) 2 F,(2,2,5p+1)+ ) _a(i,p), r > 3.
=3

Since a(i,p) > 2, from (9.3) we obtain

(9.4) Fy(2r,pp+1) 2 Fo(2,2,p5p+ 1)+ 2(r —2), r 2 3.
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From (9.4) and Theorem 4.5 we see that
(9.5) Fu(p,psp+1) > Fy(2p-1,pp+1) 2 F,(2,2,p;p+1)+2p—6, p > 3.

According to (1.6), F\,(2,2,p;p+1) > 2p+4. If F,(2,2,p;p+1) =2p+4,
then the inequality (9.1) gives a better bound for F,(p,p;p + 1) than the
inequality (9.5). It is interesting to note that it is not known whether the
equality Fy, (2,2, p; p+1) = 2p+4 holds for any p. If F,(2,2, p; p+1) = 2p+5,
then the bounds for F,(p,p;p + 1) from (9.1) and (9.5) coincide, and if
Fy(2,2,p;p + 1) > 2p + 5, then the inequality (9.5) gives a better bound
for Fy(p,p;p+ 1).

In the case p = 5, by using the graphs from Theorem 1.4, one can
obtain an even better bound for F,(5,5;6). From F,(2,2,5;6) = 16 and
(9.4) it follows that F,(2,,5;6) > 18, r > 3. Since the Ramsey number
R(3,6) = 18, we have «a(r,5) > 3, r > 3. Now, from (9.3) we obtain

Fy(2,,5;6) > F\(2,2,5;6) + 3(r — 2) = 10 + 3r.

From this inequality we see that F,,(2,2,2,5;6) > 19. By adding 3 inde-
pendent vertices to the graphs from #(2,2,5; 6;16) with the help of Algo-
rithm 2.2, we find all maximal graphs in #(2,2,2,5;6;19) with indepen-
dence number at least 3, and since a(3,5) > 3, that would be all maximal
graphs in H(2,2,2,5;6;19). We obtain #(2,2,2,5;6;19) = 0, and there-
fore F,,(2,2,2,5;6) > 20. Since a(4,5) > 3, from (9.2) (r = 4,p = 5) and
Theorem 4.5 it follows that

F,(5,5;6) > F,(2,2,2,2,5;6) > 23.

Obviously, F,(2,2;3) = 5. As mentioned in the introduction of this
paper, F,(3,3;4) = 14, and in [30] it is proved that 17 < F,(4,4;5) < 23.
For now, there is no good upper bound for F,(5,5;6). We suppose that
by successively extending graphs from H(2,2, 5; 16), one can obtain a good
bound for F(5,5; 6).
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Appendix A Obtaining the graph I'; €
H(4,5;7;17)

Consider the 18-vertex graph I'; (Figure 5). As mentioned, this is the graph
with the help of which in [28] they prove the inequality F,(3,6;7) < 18.
With the help of the computer we check that I'; is maximal in H(4, 5; 7; 18).
We use the following procedure to obtain other maximal graphs in
H(4,5;7;18):

Procedure A.1. Extending a set of mazimal graphs in H(ay, ..., as; q; ).

1. Let A be a set of mazimal graphs in H(a,,...,as; q;n).

2. By removing edges from the graphs in A, find all their subgraphs
which are in H(a,,...,as;q;n). This way a set of non-mazimal graphs in
H(ay, ..., as;q; 1) is obtained.

3. Add edges to the non-mazimal graphs to find all their supergraphs
which are mazimal in H(ay,...,as;q;n). Extend the set A by adding the
new mazimal graphs.

Starting from a set containing a single element the graph I'; and execut-
ing Procedure A.1, we find 12 new maximal graphs #(4, 5; 7;18). Again,
we execute Procedure A.1 on the new set to find 110 more maximal graphs
in #(4,5;7;18). By removing one vertex from these graphs, we obtain
17-vertex graphs, one of which is I’y € H(4, 5;7; 17) shown on Figure 4.
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Appendix B Graphs
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Figure 1: All 4 bicritical graphs in H(2,2, 5; 6;16)
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Figure 2: All 4 graphs in H(3,5;6;16)
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T

Iy

Figure 4:
Ty € H(4,5;7;17)

Figure 3:
Ty € H(3,5;6;17) NH(4,4;6;17)
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OriHrHrrArrr o000
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Figure 5:
I's € H(3,6;7;18) N H(4,5;7;18)
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