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Abstract

An explicit formula for the number of spanning trees of the lexi-
cographic product G[H) of two arbitrary graphs G and H is deduced
in terms of structure parameters of G and H. Some properties on
the number of spanning trees of G[H] are revealed. Sharp lower and
upper bounds for the number of spanning trees of lexicographic prod-
uct of graphs are established. In particular, simple formulae for the
number of spanning trees of the lexicographic product of some spe-
cial graphs are derived, which extend some previously known results
in the literature.
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1 Introduction

Let G be a connected graph with vertex set V(G) = {v;,vs,...,vn} and
edge set F(G). A spanning tree of G is a subgraph of G which is a tree and
which contains all the vertices of G. The number of spanning trees of G,
denoted by t(G), is the total number of distinct spanning subgraphs that
are trees. The number of spanning trees of graphs has been studied for a
long time, dating back to the celebrating work of Kirchhoff {1]. Evaluating
the number of spanning trees of graphs (as well as the number of rooted
spanning trees of digraphs, see e.g. [2]) is interesting not only because it is
an important graph invariant but also because it has been widely used to
analyze the reliability of networks, design electrical circuits, and analyze
energy of masers, etc.
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There are two elegant methods for counting spanning trees of graphs
One is the combinatorial method, which states that for any edge e € E(G),

t(G) =t(G — e) + t(G/e),

where G — e is the graph obtained by deleting e from G and G/e is the
graph obtained from G by contracting e. The other method is known as
Kirchhoff’s “Matrix-Tree Theorem”, which is one of the earliest and most
impressive contributions of spectral graph theory. The Matrix-Tree Theo-
rem relies on the eigenvalues of the Laplacian matrix of G. The Laplacian
matriz of G is the n x n matrix L(G) = D(G) — A(G), where D(G) is the
diagonal matrix of vertex degrees of G and A(G) is the (0, 1) adjacency ma-
trix of G. The spectrum of the Laplacian matrix of G is called the Laplacian
spectrum of G and denoted by S(G). We write S(G) = {A1,A2,..., Az}
with the understanding that A\; < A2 < ... € M., It is well known that
A1 =0, and Ap > 0 if and only if G is connected.

Theorem 1.1 (Matrix-Tree Theorem). [1] Let G be a connected graph on
n vertices with S(G) = {0 = Ay, A2,...,An}. Then

t(G) = %H,\,-. (1.1)

i=2

Since graph products form a basis for many network topologies, it is
natura] and interesting to study the number of spanning trees in various
graph products. In [3], Huang and Li formulated the number of spanning
trees in join and cartesian product of two arbitrary graphs. In (4], Azarija
gave sharp lower and upper bounds for the number of spanning trees in
cartesian product of graphs. In [5], Li and Shiu obtained formula for the
number of spanning trees of corona of graphs. In this paper, we study
the number of spanning trees of lexicographic product of graphs. The
lezicographic product (also known as composition) of two graphs G and H,
denoted by G[H], is defined as the graph such that the vertex set of G[H] is
the cartesian product V(G) x V(H), and any two vertices (u,v) and (z,y)
are adjacent in G[H] if and only if either u is adjacent withz € V(G) or u =
z and v is adjacent with y in H. By the definition, two simple facts can be
seen. First, the lexicographic product is in general noncommutative, that
is, G[H] # H[G)]. Second, G[H] is connected if and only if G is connected,
regardless of the connectivity of H. Till now, the number of spanning trees
of lexicographic product of some special graphs have been obtained. In (3],
Huang and Li gave formula for the number of spanning trees of Kn[G],
G[Km), Kp4[G), and G[K, 4], where K, is the complete graph of order m
and K, , denotes the complete bipartite graph such that two partite sets
have p and q vertices, repectively. In [6], Li, Peng and Zhao developed a
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formula for the number of spanning trees of a class of multi-lexicographic
product of graphs. In (7], Li et al. established a closed formulae for the
number of spanning trees of G[K, 1,,... 1,], where Kj, 1,.... 1, is complete
multipartite graph with s parts and for each ¢, the i-th part has l; vertices.
In (8], Li formulated the number of spanning trees of Kj, s;,5,[G]. Then
Liang, Li and Xu [9] extended the result of Li and obtained a closed formula
for the number of spanning trees of Kj, 1,,... 1, [G]. In [10], Li et al. obtained
a sharp lower bound for the maximum number of edge-disjoint spanning
trees in lexicographic product graphs. However, as proposed in [9], it still
remain unsolved to derive a formula for ¢{(G[G2]), in which G; and G»
are arbitrary graphs. In this paper, we solve this problem and give closed-
form formula for the number of spanning trees of lexicographic product of
two arbitrary graphs. Using this formula, some properties on the number
of spanning trees of G[H| are revealed. Sharp lower and upper bounds
for the number of spanning trees of lexicographic product of graphs are
established. In particular, simple formulae for the number of spanning
trees of the lexicographic product of some special graphs are derived, which
extend some previously known results in the literature.

2 The number of spanning trees in G[H|

Our formula for the number of spanning trees of G[H]| relies on the Lapla-
cian spectrum of G[H], which has been completely characterized by Barik,
Bapat and Pati [11].

Theorem 2.1. [11] Let G be a connected graph with vertez set {vy,...,vn}
and H be any graph of order m. Suppose that S(G) = (A1, A2, ..., An) and

S(H) = (p1, B2, o k). Then

(1) mA; € S(G[H)) fori=1,2,--- ,n,

(2) md; + p; € S(G[H]) fori=1,...,n and j = 2,...,m, where d; is
the degree of v; in G.

Then by Theorems 1.1 and 2.1, it is straightforward to obtain the for-
mula for the number of spanning trees of G[H|, which is given in terms of
structure parameters of G and H.

Theorem 2.2. Let G be a connected graph and let H be an arbitrary graph.
Then the number of spanning trees in G[H] can be computed as

t(G[H]) = m""2(G) f[ ﬁ(md,- +uy). (2.1)

i=1j=2

According to Eq, (2.1), it is interesting to observe that the ratio of
t(G[H]) over t(G) could be expressed in an explicit way.
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Proposition 2.3. Let G be a connected graph and let H be an arbitrary
graph. Then

tGH]) _ a2 TT T (ot 0.
TG)_—m 2£I”I=12(md.+u,). (2.2)

The degree sequence of a graph is the sequence of vertex degrees in non-
decreasing order. For a given graph H, from Eq. (2.1), it is interesting
to note that ¢(G[H]) depends only on ¢(G and the degree sequence of G,
which leads to the following proposition.

Proposition 2.4. Let G; and G be connected graphs of order n with the
same degree sequence. Then for any graph H, we have

t(Gi[H]) _ HGh)

HCo(H]) ~ UCa)" 23)

As an immediate consequence of Eq. (2.1), if G is regular, then the
expression for the number of spanning trees of G[H] can be further simpli-
fied.

Corollary 2.5. Let G be a connected r-regular graph and let H be an
arbitrary graph. Then

m
t(G[H]) = m"~2(G) [[ (mr + u;)™. (2.4)

j=2
We proceed to give two alternative expressions for ¢(G[H]) - one takes
the coefficients of the characteristic polynomial of the Laplacian matrix of
H into consideration, and the other takes the spanning forests of H into
consideration. Suppose that the characteristic polynomial of the Laplacian

matrix of H is

CA) =A"+cd™ 1+ e
Then by the relation between roots and coefficients, we have

ck = (—l)k Z Bty g+ - (2.5)

In addition, Kel’'mans [12, p. 38] has established the connection between
the coefficients of the Laplacian characteristic polynomial and the structure
of the respective graph,

a=(-1)% > F) (2.6)

FEFm_&
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where F is a spanning forest and the summation goes over the set Fp,_x
of all spanning forests of H with exactly m — k components, and v(F) is
the product of the number of vertices of the components of F' .

Now we are ready to give two alternative expressions for the number of
spanning tree of G[H].

Theorem 2.6. Let G be a connected graph and let H be an arbitrary graph.
Then the number of spanning trees in G[H| can be computed as

n [m-1
YGH) = m"-zt(G)H[Z(—l)"(mdi)m-‘-*ck] @7
i=1 Lk=1
n -1
= "-%(G)H[Z[ dymivk 3 v(F)”(z.S)
k=1 FeFm_&

Proof. Eq. (2.7) can be deduced from Eq. (2.1) by noticing that

n m

I1 [Ttmds+u) = E[[Z [(md.-)m-l-k > m,o--mkH

i=1j=2 k=1 2<h << <m
n [m-1
= H [Z(mdi)m"l'k(—l)kck] .
i=1 Lk=1
Then substitute Eq. (2.6) into Eq. (2.7) to get Eq. (2.8). O

3 Sharp lower and upper bounds

In this section, we derive lower and upper bounds for the number of span-
ning tree in the lexicographic product G[H] of G and H.

Let §(G) and A(G) be the minimum degree and maximum degree of
G, respectively. Then by Eq. (2.1), it is straightforward to obtain the
following bounds.

Theorem 3.1. Let G be a connected graph and let H be an arbitrary graph.
Then

m"~2(G) [ ] (mé(G) +w)" < «G[H]) < m™~2(G) [ | ImA(G) + ni]",
j=2 i=2
’ (3.1)
with both equalities holding if and only if G is regular.

Next, we give a lower and upper bounds for ¢(G[H]) by the inequality
of arithmetic and geometric means. We first introduce a result that will be
used later.
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Lemma 3.2. [13] Let G be a connected graph with S(G) = {0,)2,..., Az}
Then Ao = A3 = ... = A if and only if G is the complete graph K,,.

Theorem 3.3. Let G be a connected graph and let H be an arbitrary graph.
Then

1

HGIH)) 2 2mDmm === ) ) ] P (3.2)

t

—

i=

where the equality holds if and only if G = K3 and H = K,,,.
Proof. Bearing in mind that

t(G(H]) = m™~2(G) [ ] [[(md: + )

i=1j=2

Then by the inequality of arithmetic and geometric means that md; + u; >
2\/md;p; for every i, 3, we have

t(G[H]) = m™2%(G) [] [[evmdin;)

i=15=2

= mr=2@)m- =5 [T [T (/i)

i=1j=2

m—

= glm-Dnpmagest, G)(m)"(l'ld =
e I (s

= 2D =Sy ) ) [[ 4
i=1

as desired.
Note that equality holds if and only

mdy=mdy = =mdy = pg =+ = . (3.3)

Obviously, it first requires G to be regular. Now suppose that G is r-regular
(r > 1). Then it follows that S(H) have eigenvalues mr of multiplicity
m — 1. Hence by Lemma 3.2, we conclude that either H = K,, or H
is disconnected and all the components of H are complete graphs of the
same order. But the later case can not happen since otherwise uo = 0,
contradicting the fact that us = mr > m. So Eq. (3.3) can hold only when
H = K,,. In this case, us = -+ = gy, = m. which further requires that G
is 1-regular, that is, G = Kj. O
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Theorem 3.4. Let G be a connected graph and let H be an arbitrary graph.
Then

» (3.4)

m(m — 1)|E(G)| +n|E(H):]‘"'“”‘

HG[H]) < 2m-Drmn=24(G) [ =T

where the equality holds if and only if G is regular and either H = K, or
H is disconnected with all of its components being complete graphs of the
same order.

Proof. By applying applying the inequality of geometric and arithmetic
means on the factors of Eq. (2.1), we have

H(GIH]) = m"~24(G) [ ] ] (mds + 5)
i=1j=2
pIH Z;'_‘__g(mdi + 1) (m—1)n
(m—1)n

< m""2(G) [

(m-1)n
(m—1) 3, mdi + "Z;"f_-z #1]

Observe that 37", di = 2|E(G)| and Y 71, p; = 2|E(H)|. It follows that

m(m ~ 1)| E(G)] + nIE(H)I] m=bm

t(G[H]) < 2m—Vrmr—2(q) [ =T

Note that equality holds if and only if
md; + p; = mdg +py, for i,k=1,2,...,n and 45,1=2,3,...,m.

It means that d; = d; = --- = dn and pg = pz = --- = pn,, which,
by Lemma 3.2, means that G is regular and either H = K,, or H is
disconnected with all of its components being complete graphs of the same
order. a

We end this section by giving another upper bound for t(G[H]).
Theorem 3.5. Let G be a connected graph and let H be an arbitrary graph.
Then

m—1
25 |H1'] (3.5)

i=1
where the equality holds if and only if H = K,,, or H is disconnected with
ell of its components being complete graphs of the same order.
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Proof. By Eq. (2.1),

t(G[H]) = m™2(G) f[ ﬁ(md.- + u;).

i=1j=2

Then by the inequality of geometric and arithmetic means, we have

T o(md; + m)} ™

(md; + po)(md; + p3) - - - (mdi + pm) < [ ——

’

m-—1
— [+ 2222
m-—1

with equality if and only if ys = u3 = --- = pm. Hence the desired bound
is obtain by substituting this result into Eq. (2.1). As observed before,
equality holds if and only if H = K,, or H is disconnected with all of its
components being complete graphs of the same order. a

4 Special cases

In this section, we choose G and H be some special graphs, so that some
simple formulae are obtained, with some previously known results being
reestablished.

4.1 The lexicographic product of a graph with com-
plete multipartite graph

Now we consider the case that G or H is the complete multipartite graph
Ki 15,1, Suppose that iy >3 >--->l,and [ +la+--- + 1, = p. Then
the Laplacian spectrum of K, i,,... 1, is [14]:

0, (p - ll)h_lt (P ls)l'—laps—l)a

where the power on each eigenvalue denotes the multiplicity of the eigen-
value. Then by Theorem 2.1, we have

Theorem 4.1. The number of spanning trees in G[Ky, 1,.... 1,] and
Ki, 1y, 1,[H] can be computed as

HGIK, by, ) = 2" 2(G) [J(di + 1) T] ] (pdi +p— ). (4.2)

i=1 k=1i=1
(K, by, 1, [H]) = mP 202 T] (0 — 1) T] [] [m(p — &) + ms)" -
i=1 j=2i=1

(4.2)
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Remark 1. Eq. (4.1) coincides with the result in (7). Eq. (4.2) verifies
the result of [9], which generalizes the result in [8].

4.2 The generalized double graphs

The composite graphs G{K,,| are also known as the generalized double
graphs of G, because these graphs turn out to be a generalization of the
double graph [15] D(G) obtained by taking two copies of G (including the
initial edge set of each) and joining each vertex in one copy with the neigh-
bours of the corresponding vertex in the other copy. Clearly D(G) = G[Kz).
Noticing that S(K,,) = (0,0, ,0), by Theorem 2.1, we have

Theorem 4.2. The number of spanning tress in the generalized double
graph can be computed as

HGIR) = mm=24(G) [ d (43)

i=1

In particular, if m = 2 (i.e. G[K] is the double graph D(G) of G), then

t(D(G)) = 4"~ 1t(G) ﬁ d;. (4.4)

i=1

Remark 2. From Theorem 4.2, one may find that ¢(G[K.,)) is divisible
by t(G), which seems to be interesting.

4.3 The graphs P,[H] and C,[H]

Let P, and C, be the path graph and cycle graph of order n, respectively.
The graph P,[H] can be viewed as the graph obtained in the following
ways: first take n copies of H, then connect all the vertices in the i-th copy
with those in the (¢ + 1)-th copy for 1 < ¢ < n — 1. Similarly, the graph
Cr[H] can be obtained by first taking n copies of H, and then connecting
all the vertices in the i-th copy with those in the (i + 1)-th (mod n) copy
for all 1 < i < n. By Theorem 2.1, we readily have

Theorem 4.3. The number of spanning tress in P,[H| and C,[H| can be
computed as

m

t(Pa[H]) = m* 2 [] [(m + 15)%@2m + p5)"72]. (4.5)
j=2
t(Cn[H]) = m"?n ﬁ(2m + pi)". (4.6)

=9
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