UPPER BOUNDS ON PAIRS OF DOT PRODUCTS
DANIEL BARKER AND STEVEN SENGER

ABSTRACT. Given a large finite point set, P C R?, we obtain
upper bounds on the number of triples of points that determine
a given pair of dot products. That is, for any pair of nonzero
real numbers, («, 8), we bound the size of the set

{pgyr)EPXPxP:p-q=a,p-T=p}.

1. INTRODUCTION

Many elementary problems in geometric combinatorics ask how often
a particular type of point configuration can occur in subsets of some
ambient space. One of the most famous is the Erdés single distance
problem, which asks how often any fixed distance can occur in a large
finite set of points in the plane. The conjecture is that for a set of n
points, no distance can occur more than Cn!*¢ times, for some constant
C, independent of n, and any ¢ > 0. The best known estimate of this
is due to Spencer, Szemerédi, and Trotter, in [13], who have shown
that Cni is an upper bound. A closely related problem, the Erdés
distinct distances problem, asks for a lower bound on the number of
distinct distances determined by point pairs from a large finite point
set. This was resolved in the plane by Guth and Katz, in [5]. Analogous
questions have been studied for dot products; see [¥], [11], and [].

Here, we consider triples of points which determine a pair of dot
products in large finite point sets. In the settings of vector spaces
over various finite rings, there has been activity on the special case
of zero dot products by the second listed author, and Iosevich [9], as
well as Pham and Vinh, in [16]. Information about the dot products
determined by a point set finds applications in varied areas such as
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coding theory, [1], graph theory, (2], and frame theory, [3]. In particular,
information about the dot products determined by subsets of points in
a larger set can tell us about how suitable such a point set would be
for generating a frame or code.

We now fix some notation. In what follows, if two quantities, X and
Y, vary with respect to some natural number parameter, n, then we
write X <Y if there exist constants, C and N, both independent of
n, such that foralln > N, we have X < CY. f X <Y and Y £ X,
we write X = Y. Given a set of points, P C [0,1]?, let II, 5(P) denote
the number of distinct triples of points, that determine a given pair of
dot products. That is, for real numbers o and S,

I, s(P)={(p,g,r) e PxPxP:p-gq=aand p-r = f}.

We will typically restrict a and 8 to be nonzero, because zero dot
products behave differently, as demonstrated by Proposition 2. Our
first main result applies to any point set in the plane.

Theorem 1. Given a set, P, of n points in R?, and fixed o, 8 # 0,
Ma,s(P)| S n?.

In general, for a set of n points, P C R?, one cannot expect to
get an upper bound better than Theorem I, as shown in an explicit
construction below in Proposition I. There are, however, times when
we have information about how the points are distributed, such as
applications with sensor placement or code construction. For example,
see [L1], or [12]. Also, in the case of quantized data, such as for use
in computing, we can have bounds on the distribution of data points.
In such cases, we have tighter bounds on Il g(P). Our second main
result is for point sets with a minimum separation between points.

Theorem 2. Let P C [0,1)? be a set of n points that obeys the following

separation condition

min“?“‘ﬂ:PyQGP, P#Q}Zf
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For12>e=e¢(n) >0, and fized o,  # 0, we have
Ma,s(P)] S nde (logs (7))

Notice that if € is chosen to be too small, Theorem 2 is outdone by
Theorem 1. Similarly, if € is close to 1, there cannot be many points in
the unit square. Keeping this in mind, the range in which Theorem 2
is most useful is n=3% < ¢ < n—%. This range lines up with other results
on a wide class of finite point sets called s-adaptable sets.

Remark 3. The separation condition can be relaxed to the condition
that no line contains more than ¢! points. However, we phrase Theo-
rem 2 the way it is to make some applications more clear. Our primary
motivating application is Corollary 1, which guarantees such separa-
tion.

We now introduce the notion of s-adaptability. This should be
viewed as a measure for how well-distributed the points are. This
property has been used to study many types of geometric point config-
uration problems. See [6], [7], and [10], for example. Families of point
sets which are s-adaptable can be used to transfer results between dis-
crete point sets and sets with positive Hausdorff dimension. A large,
finite point set P C [0,1)?, is said to be s-adaptable if the following two
conditions hold:

o) 3 pmalT S

p.gEP
P#q

(separation)  min{lp—gq|:p,q€P, p#q}2n

By setting ¢ = n~%, and appealing to the definition of s-adaptability
given here, we get the following estimate as a corollary.

Corollary 1. Let P C [0,1)? be a set of n points that is s-adaptable.
For2>s> %, and fized o, 8 > 0,

IMas(P)| S n¥t+ (logn)?.

213



First, we construct examples of point sets that illustrate the sharp-
ness of Theorem 1 as well as an illustration of why we assume the
restriction of o, # 0. Next, we prove Theorem 1 and Theorem 2
in Section 3. Section 4 contains the proofs of two technical lemmas,
included for completeness.

2. EXPLICIT CONSTRUCTIONS

2.1. Sharpness of Theorem 1.

Proposition 1. Given a natural number n, and real numbers 0 <
a,B < 2, there is a set, P, of n points in [0,1)2 for which

Mo, 5(P)| = n2.

Proof. Let p be the point with coordinates (1,1). Now, staying within
the unit square, distribute | 25! | points along the line y = a — z, and
distribute the remaining [-’%‘-] points along the line y = 8 —z. Clearly,
there are > n? pairs of points (g,7), where ¢ is chosen from the first
line, and r is chosen from the second. Notice that p contributes a triple
to I, g(P) for each such pair, giving us

e g(P)| =~ n2.

2.2. The special case o= =0.

Proposition 2. There erists a set, P, of n points in [0,1)? for which
Mo,o(P)| = n®.

Proof. Arrange 3 points along the z-axis, and % points along the y-
axis. Now, for each of the 4 points on the z-axis, there are () (%)
ordered pairs of points on the y-axis. Notice that any point chosen
from the z-axis will have dot product zero with each point from the
pair chosen from the y-axis. Therefore, each of these %n"’ triples will

contribute to Ilp o(P). O
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3. PROOFs OF MAIN RESULTS

3.1. Proof of Theorem 1.

Proof. The basic idea is to estimate the number of triples, (p,q,7) €
I, g(P), by considering pairs of points, (¢,7) € P x P, and bound-
ing the number of possible points, p € P, which could contribute to
I 5(P).

Call any line through the origin a radial line. Let p € P have coor-
dinates (p;,py). We define the a-line for a point, p, to be the set of
points that have dot product o with the point p. Holding p fixed, this
set will be a line of points g, with coordinates (g.,qy) satisfying the

equation
(3'1) P q = Pzqz +Pydy = .

TN

oP
N
r
0]
\

FIGURE 1: Here, g lies on the a-line of p, and r lies on the S-line of p.

We can define a §-line similarly. By solving (3.1) for ¢,, we can see
that the slope of the a-line of a point, p, will be equal to the slope of
the B-line of the point p. Moreover, these lines will be perpendicular
to the radial line through p. We let £,(p) and Lg(p) denote the set of
all points of P incident to the a-line or 8-line for the given point p.
Draw a-lines and S-lines for any given pair of (¢,7) € P x P. We
will refer to the set of point pairs with distinct a-lines and B-lines as
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A and pairs with a shared line as B. To be precise:
A={(q,r)€ Px P:Lalq) # Ls(n)},

and B= (P x P)\ A.

We first consider triples in I1, g(P) of the form (p, g, ) where (g,7) €
A. Notice that the a-lines and f-lines of a pair of points, (q,7) € A,
can intersect at most once, by definition of the set A. So for every pair
of points in A, there is at most one possible location for a point in P
which would contribute a triple to II, g(P). As A C P x P, we see
that |A] < n2. From this, we see that pairs in A cannot add more than
n? triples to I, g(P).

We now turn our attention to the set B. Without loss of generality,
suppose that the a-line of a point, ¢ € P, coincides with the $-line of
a point, 7 € P, then we appeal to the following lemma.

Lemma 3.1. For any pair of points, (q,r) € B, as defined above, the
following hold:

(1) Both q and r must lie along the same radial line.
(2) The ratio of the distances from q and r to the origin must equal
the ratio between o and f3.

Lemma 3.1 is proved in Section 4. With these conditions in tow, we
see that the pairs of points in B are quite rare. Fix any radial line, L.
Each point from P N L can have its o-line overlap with at most one
B-line. Similarly, each point from PN L can have its $-line overlap with
at most one a-line. So each point from P N L can be in at most two
pairs from B.
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FIGURE 2: Here, the pair (g,r) lies on a radial line. The points p and p’
lie on the a-line of g, which coincides with the §-line of r.

Any pair, (¢,7) € B, that lies on L will contribute as many triples of
points, (p, g, 7), to I, g(P) as there are points coincident to both the o-
line of ¢ and the S3-line of r. As these families of shared lines are parallel
for point pairs along L, each point, p, can be on at most one a-line,
regardless of a possible overlap with a B-line. This means that each
point p € P can be in at most one triple of the form (p, q,7) € Il g(P)
with a pair of points, ¢ and 7, from L. The total number of triples
contributed by pairs of points in L is therefore no more than n.

As there are no more than n points, there can be no more than n
distinct radial lines to consider. Since each radial line can contribute no
more than n triples to I, g(P), the maximum contribution to Il, g(P)
by pairs in B is no more than n?. O

3.2. Proof of Theorem 2.

Proof. First, we define a-lines and $-lines as in the proof of Theorem |.
Again, we let £,(p) and Lg(p) denote the set of all points incident to
the a-line or S-line for the given point p. Now, consider the a-lines and
B-lines for each p € P. Referring back to the definition of II, g(P), we
see that a triple of points, (p,g,7), will be in II, g(P) precisely when ¢q
lies on the a-line of p and r lies on the B-line of p. So the quantity we
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aim to estimate is
(3:2) IMe,s(P) = D |£a(P)lILs (D).
peEP
It follows that we want a bound on the number of times that a point,
p € P, is incident to an o-line or B-line. The following result will be
proved in Section 1.

Lemma 3.2. In the setting above, the number of point-line incidences,
I, is

I<nt.

Recalling the definitions of L, (p) and Lg(p), we write I as:

I=3 (ILa@) +1£5(P))

pEP
We now dyadically decompose P into two families of disjoint sets

defined by the number of incidences they contribute.

Py :={peP:2 <|L,(p)| < 27%!}
Where Pf is defined similarly. Now, if a point has roughly 27 points

from P on its o-line, and 2* points from P on its S-line, then it will be
in the intersection of P{* and Pf . Let us define these intersections as:

I)j’k = P]a n Pkﬂ °
The intersection of any a-line or S-line with [0,1)2 can be no longer
than v/2. All of our points are contained in [0, 1]?, so it will suffice to
estimate the maximum number of points of P on any line segment of
length < /2. Fix such a segment, £. Recall the separation condition,
min{|p—-q|:p,g€ P, p#q} 2 ¢

So each point on £ must have a vacant length of segment at least € long
in either direction. So if £ had points packed on it maximally, there
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would be no more than

—6‘/_—2-+1.

We can see that for every point p € P,
(3.3) ILa(p)l S €' and [Ls(p)| S,

so we can be assured that P; x is empty for j or k bigger than [log, (¢7!)].
This also tells us that for all relevant indices j and % in the sums to

follow, we have:
(3.4) 27, 9% <1
By combining the above:

nd 2 1= (ILa(®)| + |L6(P))

pEP
[togz (¢7*)] [toga(e™*)]
=~ Z Z ( z (2j +2k))
§=0 k=0 PEP; &

[toga(e~")] [1oma(~)] .
= > > (Pl +2Y).

Jj=0 k=0

So, for any pair of indices, j and k, we have the following bound
(3.5) |Pil (27 +2%) $nt.

We now dyadically decompose the sum in (3.2) as we did with the

sum estimating I.

IMas(P)| = D |Ca(@)l|La(P)]

pEP
[log, ()] [loga(e™*)] .
(3.6) ~ Y Y (Pl (@) @)

Let ! and m be a pair of indices that give the largest summand in
(3.6). Now we have:

219



[logz(e7?)] toga(e~?)] '
Mas(P)~ Y > (1Pl (29) (29)
=0 k=0
[loga(e™*)] [loga(e™1)]

Y Y (1BmI@YH ™)

j=0 k=0
(3.7) < [logy (¢71)] {log, (7)1 (1PmI1(2) (2™))
Burying the constants from the logarithms in (3.7), we get:
(3.8) IMas(P)] S (1Piml(2) (2™) (logz (€71))*.

Finally, by (3.8), adding in a term of 2™, (3.5), and (3.1), we con-

clude

e s(P)| S (1Piml(2") (2™)) (logz (1))
S (1Puml (2 +2™) (2™) (logs (¢71))?
S n# (2™) (log, (¢71))”
Sndet (log, (7)),

as desired. a

4. PROOFSs OF LEMMAS

4.1. Proof of Lemma 3.1. To see (1), notice that any line that yields
the prescribed dot products for a given point is perpendicular to that
point’s radial line. For the a-line of ¢ and B-line of r to be coincidental,
they must both be perpendicular to the same radial line, and thus, be
generated from two points upon the same radial line.

For (2), assuming the a-line of g is coincidental to the S-line of r,
we get the following two equations of lines in the plane:

a o

=——-=
v q2 2
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T
y= —@- —_— _lx.
T2 T2

‘We know that ¢ and r are on the same radial line, so there must exist
a A > 0 such that,
q = )\1‘1, and go = )\7‘2.
We set the equations equal to one another and get:
o_a, B _n,
2 Q2 Ta T2
By substituting for the coordinates of g,
Aa Ay B 0m

T2 }\Tg T2 T2 )
After simplifying, we see that

Aa = B.

4.2. Proof of Lemma 3.2. There is a small technical obstruction
to a direct application of the celebrated Szemerédi-Trotter point-line
incidence theorem, which is that two types of line may be coincident.
This turns out to not be a problem in our case. The following proof
is a very simple modification to a standard proof due to Székely, from
[15], of the Szemerédi-Trotter point-line incidence theorem, which we
include to maintain a relatively self-contained exposition.

By appealing to the definitions of a-line and B-line, we can see that
no two points can determine the same a-line or 3-line. However, as we
have seen above, it is possible for the a-line of a point to overlap the
B-line of a point, (a different point, unless a = j).

Draw a graph (possibly a multigraph) with the n points as vertices,
and the segments of the a-lines and B-lines connecting adjacent points
as edges. Observe that no pair of points can have more than two edges
connecting them, and this can only happen if the a-line of a point is
coincident to the B-line of a point. If this does happen, we can replace
the line segments by two curves, whose endpoints are the adjacent
points in question, drawn in such a way so as not to cross any more or
fewer edges than the initial line segment crossed.
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Notice that the number of edges contributed by each line is equal
to the number of point-line incidences on that line minus one (For
example, if there are seven points on a given line, we would connect
consecutive points with six edges.). So the number of edges is equal
to the number of incidences minus the number of lines that contribute
incidences. There are exactly 2n lines (n of each type) that may con-
tribute incidences. Let I denote the number of point-line incidences,
and e denote the number of edges in the graph. We have that

(4.1) e>1-2n.

We let cr(G) denote the crossing number of G, which is the max-
imum number times that edges of G must cross one another at some
point which is not a vertex, for any redrawing of G. We appeal to the

crossing number lemma in [15].

Lemma 4.1. Given a topological multi-graph, G, with v vertices, e
edges, and a mazimum edge multiplicity of m, if e > 5mv, then
3
e
er(G) 2 —.
(©6)2 —;
For our setup, we have that m < 2, as there can be no more than
two edges between any given pair of points. Now, either e < 5mwv or
e > 5mv. In the first case, we recall (4.1) to see that

I<e+2n<5mv+2n <10n +2n = 12n.
In the case that e > 5mv, we appeal to Lemma 4.1 and get
— 9,3 3
(I —2n) <€ < e (G).

2n2 T me? ™

Notice that the crossing number of the graph can be no more than the

number of times that the a-lines and B-lines crossed one another. Since
there are 2n total lines, and each line could potentially cross almost all
of the others, the total number of crossing lines is bounded ahove by
(2n)2. As this would correspond to a drawing of the graph, G, we
are guaranteed that the crossing number of G is no more than (2n)2.
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Comparing upper and lower bounds on cr(G) yields

(I —2n)

2
2n2 Sn

?

which gives us that
I<nt,

In either case, the claimed estimate holds.
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