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Abstract. Given a distribution of pebbles on the vertices of a connected
graph G, a pebbling move on G consists of taking two pebbles off one ver-
tex and placing one on an adjacent vertex. The t-pebbling number m:(G)
is the smallest positive integer such that for every distribution of n¢(G)
pebbles and every vertex v, t pebbles can be moved to v. For t = 1,
Graham conjectured that m (GOH) < m1(G)m (H) for any connected
graphs G and H, where GOH denotes the Cartesian product of G and
H. Herscovici further conjectured that ms.(GOH) < w,(G)m(H) for any
positive integers s and t. Lourdusamy [A. Lourdusamy, t-pebbling the
product of graphs, Acta Ciencia Indica, XXXII(1)(2006), 171-176] also
conjectured that 7, (Cmn0C,) < 71(Cm )T (Cr) for cycles Cr and Cp,. In
this paper, we show that 7, (CmOCr) < ms(Cm)7e(Cr), which confirms
this conjecture due to Lourdusamy.

Keywords: pebbling number, Graham’s conjecture, Herscovici’s con-
jecture.
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1. Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). For
a graph G, let D be a distribution of pebbles on the vertices of G, or a
distribution on G. For any vertex v of G, D(v) denotes the number of
pebbles on v in D. For § C V(G), we denote D(S) = }_ .5 D(v) and
p= ZvEV(G) D(v). A pebbling move consists of removing two pebbles
from one vertex and then placing one pebble at an adjacent vertex. For
v € V(G), the pebbling number of v in G is the smallest number m such that
from every distribution of m pebbles on G, we can move a pebble to v by
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a sequence of pebbling moves. This m is denoted by 7(G,v). The pebbling
number of G, denoted by m(G), is the smallest number m such that from
every distribution of m pebbles on G, it is possible to move a pebble to any
vertex by a sequence of pebbling moves. Similarly, the t-pebbling number
of v in G is the smallest number m such that from every distribution of m
pebbles on G, we can move t pebbles to v by a sequence of pebbling moves.
This m is denoted by m:(G,v). The t-pebbling number of G, denoted by
7:(G), is the smallest number m such that from every distribution of m
pebbles on G, it is possible to move ¢ pebbles to any vertex by a sequence of
pebbling moves. Clearly, 7,(G) = max{m:(G,v)lv € V(G)}, n(G) = m(G),
and m(P,) = t2"~!, where P, is the path on n vertices.

We say that a graph G has the 2t-pebbling property if for any distribution
with more than 27,(G) — g pebbles, where g is the number of vertices with
at least one pebble, it is possible, using pebbling moves, to get 2¢ pebbles
to any vertex. Lourdusamy et al. [7-10] showed that the even cycle, the
star graph, the n-cube, the complete graph, the complete r-partite graph,
the fan graph and the wheel graph have the 2t-pebbling property. Gao and
Yin (2] showed that the tree graph and Cs have the 2t-pebbling property.

The Cartesian product of graphs G and H is denoted by GOH. The
following well-known conjecture first appeared in [1].

Conjecture 1.1 (Graham [1]). 7(GOH) < n(G)n(H) for any con-
nected graphs G and H.

Many articles (see, e.g., [1,5,11,12]) have given evidences supporting
Conjecture 1.1. Snevily and Foster [12] proved 7(C,,0Cy) < 7(Cp)7(Cr)
when m > 11 or n > 11 except for the cases C,0C;; and C¢OC,;. Her-
scovici {5] improved this result as follows:

Theorem 1.1 ([5]). @(CmOC,) < 7(Cm)7(C,) for cycles Cy, and
Cn.

Lourdusamy {7 extended Graham’s conjecture (Conjecture 1.1) as fol-
lows:

Conjecture 1.2 (Lourdusamy [7]). m,(GOH) < n(G)m(H) for any
connected graphs G and H.

Lourdusamy et al. [7-10] showed that Conjecture 1.2 holds when G is
a fan graph, or a wheel graph, or a complete graph, or a complete multi-
partite graph, or a path, or a star and H is a graph having the 2¢t-pebbling
property. Lourdusamy in (7] also further posed the following conjecture.

Conjecture 1.3 (Lourdusamy [7]). m(Crn0Cy) < 7(Cm)me(Cr) for
cycles Cp, and C,,.

Herscovici in [6] further extended Conjecture 1.2 as follows:

Conjecture 1.4 (Herscovici [6]). 75 (GOH) < 7,(G)m(H) for any
connected graphs G and H.

Conjecture 1.4 is a symmetric version of Conjecture 1.2. Gao and Yin
in [2] proved that if G is a tree and H has the 2¢-pebbling property, then
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Conjecture 1.4 holds. That is the following theorem:

Theorem 1.2 ([2])). Let T be a tree and H be a graph having the
2t-pebbling property. For all positive integers s and t, and all vertices
z € V(T) and y € V(H), we have 7,(TOH, (z,y)) < 7,(T,z)m(H). In
particular, if P, is the path on n vertices, then 7y, (P,0H) < s2"'m,(H).

Hao et al. (4] also proved that Conjecture 1.4 is true when G is a
thorn graph of a complete graph and H is a graph having the 2t-pebbling
property. Gao and Yin [3] proved that m,(Cs0Cs) = 16t + 7. Clearly,
11','_(05005) < W,(Cs)’il't(05) by ﬂg(Cs) =4t +1 ([5]) and 16st + 7 S
(4s + 1)(4t +1).

In this paper, we prove that Conjecture 1.4 is true for the cartesian
product of two cycles, which confirms Conjecture 1.3 completely, that is
the following theorem:

Theorem 1.3. 7,,(Cy,0C,) < 7(Cm)me(Chr) for cycles Cr, and Ci,.

2. Proof of Theorem 1.3

We now present some lemmas that will be used in the proof of Theorem
1.3.

Lemma 2.1. ([5]) m(Cak41) = gk—“ja_—llk- +2%(t — 1) and 7 (Cox) =
t2%. In particular, 7,(Cs) = 4t + 1.

Lemma 2.2. Ift > 2, then m(Cogyy) > 2F+1,

Proof. We have that

k+2 k
Te(Casr) = 24 = ISEAL 4 gk(p — 1) — gl
2k+2_(_1)k+3(2k_2k+1)
_ 2&_(_1213
- 3
0,

v

\%

then m¢(Cor+1) > 2F*. O

Lemma 2.3. A cycle has the 2t-pebbling property.

Proof. Lourdusamy [7] proved that Cy, has the 2t-pebbling property.
Now, we prove that Cs, .1 has the 2t-pebbling property. Let Con4y =
ZoT1T2 ... Tp-1ZnTn+l .- Lon—1Z2,Zg. We also let g(z;) be 1 if z; is occu-
pied, and 0 otherwise.

C; has the 2¢-pebbling property as Cjs is isomorphic to K3 and K3 has
the 2t-pebbling property. Gao and Yin [2] showed that Cs has the 2t-
pebbling property. We can assume that n > 3. Let D be a distribution on
Con+1 with 2m(Cany1) — g + 1 pebbles, where ¢ is the number of vertices
with at least one pebble. Without loss of generality, let o be the root
vertex and p(zg) = £ for 0 < £ < 2t — 1. Then we have that
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D(Can41 — Zo)
2 277t(g2n+l) —q+1-¢
> 2 p ot 1) +1-g—¢

=2x ZEoED L on(gr g 1)+ (£-1)2"+1-g—¢.

Note that &ng_—l): >2" 4+ 27241 forn > 3. We get

D(Cant1 — o) > +2M2A—0—1)4 2" +2" 242 g0

2n+2 - (_l)n
3
If£> 1, then £2" +2""242—q—€ > £(2" —1)+2""24+2—(2n+1) >0,
that is D(Cany) — 20) > ﬁla(';) +2™(2t — £ — 1), hence we can move
an additional 2¢ — £ pebbles to zo.
We may assume that ¢ = 0, that is ¢(z¢) = 0. Similarly, we have that

on+2 _ (_l)n

p> 3 +27(2t—1)+2""2+2—gq.

Ifg<2n—2,then 2*"242—¢q > 2*"24+4—2n > 0. Therefore we can
move 2t pebbles to zg. If n > 5, then 2"~24+2—¢ > 224221 > 0. We
also can move 2t pebbles to zp. Now assume that ¢ > 2n — 1 and n < 4.

If ¢ = 2n, then q(z;) = 1 for x; € {z,,z2,...,72,}. So we can move
one pebble to zo at a cost of at most n — 1 4+ 2 = n + 1 pebbles, and the
remaining

ﬁ%——lﬂ+2"(2t—1)+2"‘2+2—q—(n+1)

=L2—"5(‘—‘L"+2"(2t-2)+2"+2"—2+1—3n
A4 n

Z#L.an(zt_z)

pebbles on V(Cz,41) — o are sufficient to put an additional 2t — 1 pebbles
on zo.

If g = 2n — 1,n = 3, then we can move one pebble to zp at a cost of at
most 5 pebbles, and the remaining

ZoCD® 932t —2) +2

ZoCD® 932t —1)+ 2324255
5 3
2_-1;_11_4_23(2,5_2)

AV

pebbles on V(C7) — xo are sufficient to put an additional 2¢ — 1 pebbles on
Zg.
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If ¢ =2n — 1,n = 4, then we can move one pebble to zo at a cost of at
most 7 pebbles, and the remaining

2o 942t - 2) +8

ZoCD® 942t —1) + 2424277
8 4
2 —53—1) + 24(2t _ 2)

v

pebbles on V(Cy) — z¢ are sufficient to put an additional 2¢ — 1 pebbles on
9. Therefore, we can move 2t pebbles to any specified target vertex. O

Let C,, = zoz122. .. Tn—2Tn-1%0 and let Cy, = yoy1¥2 . - - Ym—2Ym—1%0.

Lemma 2.4. Suppose that D is a distribution of pebbles on C,,0OC,
with p = m5(Cpp )7 (Cr) pebbles. Let x € V(C,,) and y € V(Cprp).

(1) Ift > 2, then we can move s pebbles to (yo,zo) using 2L3m,(Cp,)
pebbles;

(2) If s > 2, then we can move t pebbles to (yo,xo) using 2L%1m,(Cp)
pebbles.

Proof. (1) We write A and B for the subgraphs induced by the ver-
tex sets {xo,xl,...,xlﬂ} and {mlqu,...,xn_g,mn_l,xo}, respectively.
Assume that n = 2k + 1. Then we have that D(C,,0A) > 2%7,(Crn)
or D(C,0B) > 2*n,(Cp,). Otherwise, if D(C,,0A4) < 2*m,(C,,) and
D(C,,0B) < 2*1,(Cy), then we have

p < D(CDA) + D(C,OB) < 2817, (Cp).

By Lemma 2.2, p < m¢(Cax41)7s(Cm), which contradicts p = m4(Cin )7 (Cok41)-
Let D(C,,0A4) > 2*m,(C,,) . By Theorem 1.2 and Lemma 2.3, we can move
s pebbles to (yo,zo) using 257,(Cy) pebbles.

Assume that n = 2k. If D(C,04) < 2*7,(C,,) and D(C,,0B) <
2%71,(Cm), then we have

p < D(CnOA) + D(CrnOB) < 2817, (Cpn) < t2Fm,(Cr),

which contradicts p = w4(Cp)m(Cak) = t28m,(Cp). If D(C,0A) >
2k, (Crn) or D(C,OB) > 257,(Cy.), then we can move s pebbles to
(Y0, To) using 2%7,(C,y) pebbles.

The argument of (2) is similar. O

We first prove the case s = 1 of Theorem 1.3. That is the following
Theorem 2.1.

Theorem 2.1. 7(Cp,0C,) < 7(Cp)7m:(Cy) for cycles Cp, and Cy,.

Proof. Suppose that D is a distribution of pebbles on the vertices of
Cn0C, and p = 7(Cr)me(Cr). We use induction on ¢. By Theorem 1.1,
the result is true for t = 1. Now, assume that the result is true for t < ¢
(£ > 1). We will prove that the result is true for ¢t = £ 4+ 1. Without loss of
generality, we assume that the target vertex is (yo, o).
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Assume that n = 2k + 1. Then by Lemma 2.4 (1), we can move one
pebble to (yo, o) using 2%7(C,,) pebbles, there are now

(Cm )7fe+1(02k+1) — 267(Crm)

= 7r(cm)(—“ii F2(0+1—1) = 2%)
= () (2250 4 k(e 1))

= m(Cm )"£(02k+1)

pebbles on C,,0C5¢+1 — (Yo, Zo). By the induction hypothesis, the remain-
ing m(Cr)we(Car41) pebbles on Cy,, OCsp41 — (Yo, 20) are sufficient to move
an additional ¢ pebbles to (yo, zo)-

Assume that n = 2k. Then we can move one pebble to (yo,zo) us-
ing 2%7(C,,) pebbles by Lemma 2.4 (1), By the induction hypothesis, the
remaining

T(C)e1(Cak) = 2471(Crm) = 7(Con) (£ + 1)2¢ = 2%) = m(Con)me(Ca)

pebbles on C,,,0C5; —(yo, To) are sufficient to move an additional £ pebbles
0 (Yo, o). The proof of Theorem 2.1 is completed. O

Proof of Theorem 1.3. Suppose that D is a distribution of pebbles
on C,0OC, with p = 7,(Cy)m(Crn) pebbles. We use induction on s. By
Theorem 2.1, the result is true for s = 1. Now, assume that the result is
true for s < ¢ (£ > 1). We will prove that the result is true for s = ¢ + 1.
Without loss of generality, we assume that the target vertex is (yo, To).

Assume that m = 2k + 1. Then we can move t pebbles to (yo,Zo)
using 2%7,(C,,) pebbles by Lemma 2.4 (2). By the induction hypothesis,
the remaining

7fe+1(02k+1)7ft(on) 2k 7t(Cn)

= (ZE5EDE 4 ok(0 41— 1) — 2%)my(Cn)
—(ﬁiwkw—mm( C)
= me(Cok+1)me(Cn)

pebbles on Cox410C, — (yo,z0) are sufficient to move an additional € - ¢
pebbles to (yo, o). Therefore, a total of t + £-t = (¢ + 1)t pebbles can be
moved to (yo, Zo).

Assume that m = 2k. Then we can move t pebbles to (yo, o) using
2km,(Cr) pebbles by Lemma 2.4 (2). By the induction hypothesis, the
remaining

((€ +1)2% — 25w, (Cy)
¢-2%m,(Cp)
Te(Cok ) (Cr)

Te4+1(Cak)m(Crn) — 2k7rt (Cn)
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pebbles on Co, OC),, — (yo, zo) are sufficient to move an additional £-t pebbles
to (yo,zo). Therefore, a total of ¢t 4+ ¢ -t = (£ + 1)t pebbles can be moved
to (yo, o). The proof of Theorem 1.3 is completed. O
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