The Herscovici's conjecture for

 $C_m \square C_n$ *

Ze-Tu Gao[†]

Department of Mathematics, College of Information Science and Technology, Hainan University, Haikou 570228, P.R. China.

Abstract. Given a distribution of pebbles on the vertices of a connected graph G, a pebbling move on G consists of taking two pebbles off one vertex and placing one on an adjacent vertex. The t-pebbling number $\pi_t(G)$ is the smallest positive integer such that for every distribution of $\pi_t(G)$ pebbles and every vertex v, t pebbles can be moved to v. For t=1, Graham conjectured that $\pi_1(G \square H) \leq \pi_1(G)\pi_1(H)$ for any connected graphs G and H, where $G \square H$ denotes the Cartesian product of G and G. Herscovici further conjectured that $\pi_{st}(G \square H) \leq \pi_s(G)\pi_t(H)$ for any positive integers G and G. Lourdusamy [A. Lourdusamy, G-pebbling the product of graphs, Acta Ciencia Indica, XXXII(1)(2006), 171–176] also conjectured that $\pi_t(G_m \square G_n) \leq \pi_1(G_m)\pi_t(G_n)$ for cycles G_m and G_n . In this paper, we show that $\pi_{st}(G_m \square G_n) \leq \pi_s(G_m)\pi_t(G_n)$, which confirms this conjecture due to Lourdusamy.

Keywords: pebbling number, Graham's conjecture, Herscovici's conjecture.

Mathematics Subject Classification (2000): 05C35

1. Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). For a graph G, let D be a distribution of pebbles on the vertices of G, or a distribution on G. For any vertex v of G, D(v) denotes the number of pebbles on v in D. For $S \subseteq V(G)$, we denote $D(S) = \sum_{v \in S} D(v)$ and $p = \sum_{v \in V(G)} D(v)$. A pebbling move consists of removing two pebbles from one vertex and then placing one pebble at an adjacent vertex. For $v \in V(G)$, the pebbling number of v in G is the smallest number m such that from every distribution of m pebbles on G, we can move a pebble to v by

^{*}Supported by National Natural Science Foundation of China (Grant No. 11461017) and NSF of Hainan Province of China (Grant No. 20151004).

[†]Email: gaozetu@hainu.edu.cn

a sequence of pebbling moves. This m is denoted by $\pi(G,v)$. The pebbling number of G, denoted by $\pi(G)$, is the smallest number m such that from every distribution of m pebbles on G, it is possible to move a pebble to any vertex by a sequence of pebbling moves. Similarly, the t-pebbling number of v in G is the smallest number m such that from every distribution of m pebbles on G, we can move t pebbles to v by a sequence of pebbling moves. This m is denoted by $\pi_t(G,v)$. The t-pebbling number of G, denoted by $\pi_t(G)$, is the smallest number m such that from every distribution of m pebbles on G, it is possible to move t pebbles to any vertex by a sequence of pebbling moves. Clearly, $\pi_t(G) = \max\{\pi_t(G,v)|v\in V(G)\}, \pi(G) = \pi_1(G),$ and $\pi_t(P_n) = t2^{n-1}$, where P_n is the path on n vertices.

We say that a graph G has the 2t-pebbling property if for any distribution with more than $2\pi_t(G) - q$ pebbles, where q is the number of vertices with at least one pebble, it is possible, using pebbling moves, to get 2t pebbles to any vertex. Lourdusamy et al. [7-10] showed that the even cycle, the star graph, the n-cube, the complete graph, the complete r-partite graph, the fan graph and the wheel graph have the 2t-pebbling property. Gao and Yin [2] showed that the tree graph and C_5 have the 2t-pebbling property.

The Cartesian product of graphs G and H is denoted by $G \square H$. The following well-known conjecture first appeared in [1].

Conjecture 1.1 (Graham [1]). $\pi(G \square H) \leq \pi(G)\pi(H)$ for any connected graphs G and H.

Many articles (see, e.g., [1,5,11,12]) have given evidences supporting Conjecture 1.1. Snevily and Foster [12] proved $\pi(C_m \square C_n) \leq \pi(C_m)\pi(C_n)$ when $m \geq 11$ or $n \geq 11$ except for the cases $C_4 \square C_{11}$ and $C_6 \square C_{11}$. Herscovici [5] improved this result as follows:

Theorem 1.1 ([5]). $\pi(C_m \square C_n) \leq \pi(C_m)\pi(C_n)$ for cycles C_m and C_n .

Lourdusamy [7] extended Graham's conjecture (Conjecture 1.1) as follows:

Conjecture 1.2 (Lourdusamy [7]). $\pi_t(G \square H) \leq \pi(G)\pi_t(H)$ for any connected graphs G and H.

Lourdusamy et al. [7-10] showed that Conjecture 1.2 holds when G is a fan graph, or a wheel graph, or a complete graph, or a complete multipartite graph, or a path, or a star and H is a graph having the 2t-pebbling property. Lourdusamy in [7] also further posed the following conjecture.

Conjecture 1.3 (Lourdusamy [7]). $\pi_t(C_m \square C_n) \leq \pi(C_m) \pi_t(C_n)$ for cycles C_m and C_n .

Herscovici in [6] further extended Conjecture 1.2 as follows:

Conjecture 1.4 (Herscovici [6]). $\pi_{st}(G \square H) \leq \pi_s(G)\pi_t(H)$ for any connected graphs G and H.

Conjecture 1.4 is a symmetric version of Conjecture 1.2. Gao and Yin in [2] proved that if G is a tree and H has the 2t-pebbling property, then

Conjecture 1.4 holds. That is the following theorem:

Theorem 1.2 ([2]). Let T be a tree and H be a graph having the 2t-pebbling property. For all positive integers s and t, and all vertices $x \in V(T)$ and $y \in V(H)$, we have $\pi_{st}(T \square H, (x, y)) \leq \pi_s(T, x)\pi_t(H)$. In particular, if P_n is the path on n vertices, then $\pi_{st}(P_n \square H) \leq s2^{n-1}\pi_t(H)$.

Hao et al. [4] also proved that Conjecture 1.4 is true when G is a thorn graph of a complete graph and H is a graph having the 2t-pebbling property. Gao and Yin [3] proved that $\pi_t(C_5 \square C_5) = 16t + 7$. Clearly, $\pi_{st}(C_5 \square C_5) \leq \pi_s(C_5)\pi_t(C_5)$ by $\pi_t(C_5) = 4t + 1$ ([5]) and $16st + 7 \leq (4s+1)(4t+1)$.

In this paper, we prove that Conjecture 1.4 is true for the cartesian product of two cycles, which confirms Conjecture 1.3 completely, that is the following theorem:

Theorem 1.3. $\pi_{st}(C_m \square C_n) \leq \pi_s(C_m) \pi_t(C_n)$ for cycles C_m and C_n .

2. Proof of Theorem 1.3

We now present some lemmas that will be used in the proof of Theorem 1.3.

Lemma 2.1. ([5]) $\pi_t(C_{2k+1}) = \frac{2^{k+2}-(-1)^k}{3} + 2^k(t-1)$ and $\pi_t(C_{2k}) = t2^k$. In particular, $\pi_t(C_5) = 4t + 1$.

Lemma 2.2. If $t \geq 2$, then $\pi_t(C_{2k+1}) > 2^{k+1}$.

Proof. We have that

$$\pi_{t}(C_{2k+1}) - 2^{k+1} = \frac{2^{k+2} - (-1)^{k}}{3} + 2^{k}(t-1) - 2^{k+1}$$

$$\geq \frac{2^{k+2} - (-1)^{k} + 3(2^{k} - 2^{k+1})}{3}$$

$$= \frac{2^{k} - (-1)^{k}}{3}$$

$$> 0.$$

then $\pi_t(C_{2k+1}) > 2^{k+1}$. \square

Lemma 2.3. A cycle has the 2t-pebbling property.

Proof. Lourdusamy [7] proved that C_{2n} has the 2t-pebbling property. Now, we prove that C_{2n+1} has the 2t-pebbling property. Let $C_{2n+1} = x_0x_1x_2...x_{n-1}x_nx_{n+1}...x_{2n-1}x_{2n}x_0$. We also let $q(x_i)$ be 1 if x_i is occupied, and 0 otherwise.

 C_3 has the 2t-pebbling property as C_3 is isomorphic to K_3 and K_3 has the 2t-pebbling property. Gao and Yin [2] showed that C_5 has the 2t-pebbling property. We can assume that $n \geq 3$. Let D be a distribution on C_{2n+1} with $2\pi_t(C_{2n+1}) - q + 1$ pebbles, where q is the number of vertices with at least one pebble. Without loss of generality, let x_0 be the root vertex and $p(x_0) = \ell$ for $0 \leq \ell \leq 2t - 1$. Then we have that

$$\begin{split} &D(C_{2n+1} - x_0) \\ &\geq 2\pi_t(C_{2n+1}) - q + 1 - \ell \\ &\geq 2(\frac{2^{n+2} - (-1)^n}{3} + 2^n(t-1)) + 1 - q - \ell \\ &= 2 \times \frac{2^{n+2} - (-1)^n}{3} + 2^n(2t - \ell - 1) + (\ell - 1)2^n + 1 - q - \ell. \end{split}$$

Note that $\frac{2^{n+2}-(-1)^n}{3} \ge 2^n + 2^{n-2} + 1$ for $n \ge 3$. We get

$$D(C_{2n+1}-x_0)\geq \frac{2^{n+2}-(-1)^n}{3}+2^n(2t-\ell-1)+\ell 2^n+2^{n-2}+2-q-\ell.$$

If $\ell \geq 1$, then $\ell 2^n + 2^{n-2} + 2 - q - \ell \geq \ell (2^n - 1) + 2^{n-2} + 2 - (2n + 1) \geq 0$, that is $D(C_{2n+1} - x_0) \geq \frac{2^{n+2} - (-1)^n}{3} + 2^n (2t - \ell - 1)$, hence we can move an additional $2t - \ell$ pebbles to x_0 .

We may assume that $\ell = 0$, that is $q(x_0) = 0$. Similarly, we have that

$$p \ge \frac{2^{n+2} - (-1)^n}{3} + 2^n (2t - 1) + 2^{n-2} + 2 - q.$$

If $q \le 2n-2$, then $2^{n-2}+2-q \ge 2^{n-2}+4-2n \ge 0$. Therefore we can move 2t pebbles to x_0 . If $n \ge 5$, then $2^{n-2}+2-q \ge 2^{n-2}+2-2n \ge 0$. We also can move 2t pebbles to x_0 . Now assume that $q \ge 2n-1$ and $n \le 4$.

If q = 2n, then $q(x_i) = 1$ for $x_i \in \{x_1, x_2, \dots, x_{2n}\}$. So we can move one pebble to x_0 at a cost of at most n - 1 + 2 = n + 1 pebbles, and the remaining

$$\frac{2^{n+2}-(-1)^n}{3} + 2^n(2t-1) + 2^{n-2} + 2 - q - (n+1)$$

$$= \frac{2^{n+2}-(-1)^n}{3} + 2^n(2t-2) + 2^n + 2^{n-2} + 1 - 3n$$

$$\ge \frac{2^{n+2}-(-1)^n}{3} + 2^n(2t-2)$$

pebbles on $V(C_{2n+1}) - x_0$ are sufficient to put an additional 2t-1 pebbles on x_0 .

If q = 2n - 1, n = 3, then we can move one pebble to x_0 at a cost of at most 5 pebbles, and the remaining

$$\frac{2^{5}-(-1)^{3}}{3}+2^{3}(2t-1)+2^{3-2}+2-5-5 = \frac{2^{5}-(-1)^{3}}{3}+2^{3}(2t-2)+2$$

$$\geq \frac{2^{5}-(-1)^{3}}{3}+2^{3}(2t-2)$$

pebbles on $V(C_7) - x_0$ are sufficient to put an additional 2t - 1 pebbles on x_0 .

If q = 2n - 1, n = 4, then we can move one pebble to x_0 at a cost of at most 7 pebbles, and the remaining

$$\frac{2^{6}-(-1)^{4}}{3}+2^{4}(2t-1)+2^{4-2}+2-7-7 = \frac{2^{6}-(-1)^{4}}{3}+2^{4}(2t-2)+8 \ge \frac{2^{6}-(-1)^{4}}{3}+2^{4}(2t-2)$$

pebbles on $V(C_9) - x_0$ are sufficient to put an additional 2t - 1 pebbles on x_0 . Therefore, we can move 2t pebbles to any specified target vertex. \Box

Let $C_n = x_0x_1x_2...x_{n-2}x_{n-1}x_0$ and let $C_m = y_0y_1y_2...y_{m-2}y_{m-1}y_0$. Lemma 2.4. Suppose that D is a distribution of pebbles on $C_m \square C_n$ with $p = \pi_s(C_m)\pi_t(C_n)$ pebbles. Let $x \in V(C_n)$ and $y \in V(C_m)$.

(1) If $t \geq 2$, then we can move s pebbles to (y_0, x_0) using $2^{\lfloor \frac{n}{2} \rfloor} \pi_s(C_m)$ pebbles:

(2) If $s \geq 2$, then we can move t pebbles to (y_0, x_0) using $2^{\lfloor \frac{m}{2} \rfloor} \pi_t(C_n)$ pebbles.

Proof. (1) We write A and B for the subgraphs induced by the vertex sets $\{x_0, x_1, \ldots, x_{\lfloor \frac{n}{2} \rfloor}\}$ and $\{x_{\lfloor \frac{n+1}{2} \rfloor}, \ldots, x_{n-2}, x_{n-1}, x_0\}$, respectively. Assume that n = 2k + 1. Then we have that $D(C_m \square A) \geq 2^k \pi_s(C_m)$ or $D(C_m \square B) \geq 2^k \pi_s(C_m)$. Otherwise, if $D(C_m \square A) < 2^k \pi_s(C_m)$ and $D(C_m \square B) < 2^k \pi_s(C_m)$, then we have

$$p \le D(C_m \square A) + D(C_m \square B) < 2^{k+1} \pi_s(C_m).$$

By Lemma 2.2, $p < \pi_t(C_{2k+1})\pi_s(C_m)$, which contradicts $p = \pi_s(C_m)\pi_t(C_{2k+1})$. Let $D(C_m \Box A) \ge 2^k \pi_s(C_m)$. By Theorem 1.2 and Lemma 2.3, we can move s pebbles to (y_0, x_0) using $2^k \pi_s(C_m)$ pebbles.

Assume that n=2k. If $D(C_m \Box A) < 2^k \pi_s(C_m)$ and $D(C_m \Box B) < 2^k \pi_s(C_m)$, then we have

$$p \le D(C_m \Box A) + D(C_m \Box B) < 2^{k+1} \pi_s(C_m) \le t 2^k \pi_s(C_m),$$

which contradicts $p = \pi_s(C_m)\pi_t(C_{2k}) = t2^k\pi_s(C_m)$. If $D(C_m\Box A) \ge 2^k\pi_s(C_m)$ or $D(C_m\Box B) \ge 2^k\pi_s(C_m)$, then we can move s pebbles to (y_0, x_0) using $2^k\pi_s(C_m)$ pebbles.

The argument of (2) is similar. \square

We first prove the case s=1 of Theorem 1.3. That is the following Theorem 2.1.

Theorem 2.1. $\pi_t(C_m \square C_n) \leq \pi(C_m) \pi_t(C_n)$ for cycles C_m and C_n .

Proof. Suppose that D is a distribution of pebbles on the vertices of $C_m \square C_n$ and $p = \pi(C_m)\pi_t(C_n)$. We use induction on t. By Theorem 1.1, the result is true for t = 1. Now, assume that the result is true for $t \le \ell$ ($\ell \ge 1$). We will prove that the result is true for $t = \ell + 1$. Without loss of generality, we assume that the target vertex is (y_0, x_0) .

Assume that n = 2k + 1. Then by Lemma 2.4 (1), we can move one pebble to (y_0, x_0) using $2^k \pi(C_m)$ pebbles, there are now

$$\begin{split} &\pi(C_m)\pi_{\ell+1}(C_{2k+1}) - 2^k\pi(C_m) \\ &= \pi(C_m)(\frac{2^{k+2} - (-1)^k}{3} + 2^k(\ell+1-1) - 2^k) \\ &= \pi(C_m)(\frac{2^{k+2} - (-1)^k}{3} + 2^k(\ell-1)) \\ &= \pi(C_m)\pi_{\ell}(C_{2k+1}) \end{split}$$

pebbles on $C_m \square C_{2k+1} - (y_0, x_0)$. By the induction hypothesis, the remaining $\pi(C_m)\pi_{\ell}(C_{2k+1})$ pebbles on $C_m \square C_{2k+1} - (y_0, x_0)$ are sufficient to move an additional ℓ pebbles to (y_0, x_0) .

Assume that n=2k. Then we can move one pebble to (y_0,x_0) using $2^k\pi(C_m)$ pebbles by Lemma 2.4 (1), By the induction hypothesis, the remaining

$$\pi(C_m)\pi_{\ell+1}(C_{2k}) - 2^k\pi(C_m) = \pi(C_m)((\ell+1)2^k - 2^k) = \pi(C_m)\pi_{\ell}(C_{2k})$$

pebbles on $C_m \square C_{2k} - (y_0, x_0)$ are sufficient to move an additional ℓ pebbles to (y_0, x_0) . The proof of Theorem 2.1 is completed. \square

Proof of Theorem 1.3. Suppose that D is a distribution of pebbles on $C_m \square C_n$ with $p = \pi_s(C_m)\pi_t(C_n)$ pebbles. We use induction on s. By Theorem 2.1, the result is true for s = 1. Now, assume that the result is true for $s \leq \ell$ ($\ell \geq 1$). We will prove that the result is true for $s = \ell + 1$. Without loss of generality, we assume that the target vertex is (y_0, x_0) .

Assume that m=2k+1. Then we can move t pebbles to (y_0,x_0) using $2^k\pi_t(C_n)$ pebbles by Lemma 2.4 (2). By the induction hypothesis, the remaining

$$\begin{aligned} & \pi_{\ell+1}(C_{2k+1})\pi_t(C_n) - 2^k \pi_t(C_n) \\ &= (\frac{2^{k+2} - (-1)^k}{3} + 2^k (\ell+1-1) - 2^k)\pi_t(C_n) \\ &= (\frac{2^{k+2} - (-1)^k}{3} + 2^k (\ell-1))\pi_t(C_n) \\ &= \pi_{\ell}(C_{2k+1})\pi_t(C_n) \end{aligned}$$

pebbles on $C_{2k+1}\square C_n - (y_0, x_0)$ are sufficient to move an additional $\ell \cdot t$ pebbles to (y_0, x_0) . Therefore, a total of $t + \ell \cdot t = (\ell + 1)t$ pebbles can be moved to (y_0, x_0) .

Assume that m=2k. Then we can move t pebbles to (y_0,x_0) using $2^k\pi_t(C_n)$ pebbles by Lemma 2.4 (2). By the induction hypothesis, the remaining

$$\pi_{\ell+1}(C_{2k})\pi_t(C_n) - 2^k \pi_t(C_n) = ((\ell+1)2^k - 2^k)\pi_t(C_n)$$

$$= \ell \cdot 2^k \pi_t(C_n)$$

$$= \pi_{\ell}(C_{2k})\pi_t(C_n)$$

pebbles on $C_{2k} \square C_n - (y_0, x_0)$ are sufficient to move an additional $\ell \cdot t$ pebbles to (y_0, x_0) . Therefore, a total of $t + \ell \cdot t = (\ell + 1)t$ pebbles can be moved to (y_0, x_0) . The proof of Theorem 1.3 is completed. \square

References

- [1] F.R.K. Chung, Pebbling in hypercubes, SIAM J. Discrete Math., 2 (1989), 461-472.
- [2] Z.T. Gao and J.H. Yin, On the t-pebbling number and the 2t-pebbling property of graphs, Discrete Appl. Math., 161 (2013), 999-1005.
- [3] Z.T. Gao and J.H. Yin, The t-pebbling number of $C_5 \square C_5$, Discrete Math., 313 (2013), 2778-2791.
- [4] D.L. Hao, Z.T. Gao and J.H. Yin, Herscovici's conjecture on the product of the thorn graphs of the complete graphs, J. Oper. Res. Soc. China, 2 (2014), 263-269.
- [5] D.S. Herscovici, Graham's pebbling conjecture on products of cycles, J. Graph Theory, 42 (2003), 141-154.
- [6] D.S. Herscovici, Graham's pebbling conjecture on products of many cycles, *Discrete Math.*, **308** (2008), 6501-6512.
- [7] A. Lourdusamy, t-pebbling the product of graphs, Acta Cienc. Indica, XXXII(1) (2006), 171-176.
- [8] A. Lourdusamy, S.S. Jeyaseelan and A.P.Tharani, t-pebbling the product of fan graphs and the product of wheel graphs, *International Mathematical Forum*, **32** (2009), 1573-1585.
- [9] A. Lourdusamy and A.P. Tharani, On t-pebbling graphs, Utilitas Math., 87 (2012), 331-342.
- [10] A. Lourdusamy and A.P. Tharani, The t-pebbling conjecture on products of complete r-partite graphs, Ars Combin., 102 (2011), 201-212.
- [11] D. Moews, Pebbling graphs, J. Combin. Theory Ser.B, 55 (1992), 244-252.
- [12] H.S. Snevily and J.A. Foster, The 2-pebbling property and a conjecture of Graham's, *Graphs and Combinatorics*, **16** (2000), 231–244.