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Abstract: A graphic sequence 7 = (d1,da,...,dn) is said to be poten-
tially Ka 4-graphic if there is a realization of m containing K3 4 as a
subgraph, where K3 4 is the 1 x 1 x 1 x 4 complete 4-partite graph.
In this paper, we characterize the graphic sequences potentially K3 4
and the result is simple. In addition, we apply this characterization to
compute the values of o(K)s 4,n).
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1. Introduction

The set of all sequences w7 = (d;, da, ..., d,) of non-negative, non-increasi-
ng integers with dy < n — 1 is denoted by NS,. A sequence # € NS, is
said to be graphic if it is the degree sequence of a simple graph G on n
vertices, and the graph G is called a realization of 7. If each term of a
graphic sequence 7 is nonzero, then 7 is said to be positive graphic. The
set of all positive graphic sequences in NS, is denoted by GS,. Given
a graph H, a graphic sequence 7 is said to be potentially H-graphic, if
there is a realization of « containing H as a subgraph. For # € NS,,
denote o(m) = d; +dy + ... + dn. In this paper, we consider a simple
characterization on potentially K;s 4-graphic sequence. In the following,
the symbol z¥ in a sequences means y consecutive terms, each equal to
z, and the symbol o(H,n) is the smallest even integer that every positive
sequence w € GS,, with o(n) > o(H,n) is potentially H-graphic.
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Theorem 1.1 is a sufficient condition about potentially K2 ,-graphic
sequences for s > 2.

Theorem 1.1 [1] Let s > 2,n > 3s+1 and 7 = (d;,ds, ...,dn) € GS,.
If d2 > s+ 1 and ds42 > 2, then 7 is potentially K2 ,-graphic.

Theorem 1.2 investigates the condition that yields potentially K3 ,-
graphic sequences for s = 1,2, 3.

Theorem 1.2 Let 7 = (d),do, ...,d,,) € GS,.

(1) [2] If n > 9,d4 > 3 and d7 > 2, then 7 is potentially K3 ;-graphic;

(2) 3] If n > 11,d3 > 4,ds > 3 and dg > 2, then 7 is potentially
K3 5-graphic sequence;

(3) 4 If n > 11,d3 > 5,ds > 3 and dg > 2, then 7 is potentially
K5 3-graphic sequence.

Theorem 1.3 is a sufficient condition about potentially Kjs s-graphic
sequences for s > 2.

Theorem 1.3 [5] Let s > 2,n > 7s -3 and 7w = (d},da, ...,dn) € GS,.
If d3 > s+ 2,d,43 > 3 and d3,42 > 2, then = is potentially K)s ,-graphic.

In this paper, we give a simple characterization on potentially K)s 4-
graphic sequence, that is Theorem 1.4.

Theorem 1.4 Let n > 7 and 7 = (d;,d2, ...,d,) € GS, be a positive
sequence. Then  is potentially K)s 4-graphic if and only if 7 satisfies the
following conditions:

(2)7 ¢ S, the set S consists of the following sequences:

(n—1,73,38 17=10)(n > 10), (n—1,62,5,34,1"~8)(n > 8),

(n-1,7,6%3%,1"%(n>9), (n—1,6%3%1""%(n>9),

(n - 1, 631 41 33, ln_s)(n 2 8)? (Tl - 17 62’ 359 1n—8)(n 2 8))

(Tl - 11 63a 34’ 27 ln-g)(n 2 9)’ (n - 2’ 63: 347 1n—8)(n 2 8)»

n=28 :(6°%5%),(6%43),(65%4,32%),(6%5%), (64 5,33), (6% 44), (64,42, 32),
(64,4,3%,2), (6%,5,4,3%), (63, 5,3%,2), (6% 4,3%), (6%, 34,2), (6%),

n=9 :(7%4,3%),(7%6,3%),(7% 62 34,2), (72 6,3°), (7,63, 3%),
(7,6%,3%,22),(7,62%,4,35),(7,62%, 3% 2), (68,4), (68,2), (6%,33,1),
(64,4%), (6%,4,31), (6%,4,3%,1),(6,3%,2), (6%,3,2,1), (63,5,3°),
(63, 5’ 341 1)’ (63? 46)’ (63’ 42, 34)! (63y 4, 34, 2): (63, 36): (63y 35, 1)1
(63, 34’ 22)’ (69),

n=10:(82,72,3%),(8,73,35,2),(74,3°),(74,3%,1), (74, 3%,22),(7,62,37),
(73 62‘ 36, 1), (64’ 35’ 1)’ (647 341 12)’ (637 47)7 (63’ 4? 36)1 (63’ 47 357 1)’
(631 36? 2)’ (63’ 351 27 1)!

n= 11 : (97 831 37)’ (84’ 36’ 2)5 (63’ 37’ 1)3 (63’ 367 12)’

n=12:(94,38%).

As an application of Theorem 1.4, it can be used to find the values of
0(K3,4,1).
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2. Proof of Theorem 1.4

To prove Theorem 1.4, some known results are needed.
Suppose ® = (d1,d2,...,dr) € NS, , 1 <k <n, and
(di—1,..,dr—1 —1,dk41 — 1, ""ddk+1 ~1,d4, 42, o SR

= if dr > k,
k (dl - 19 ey ddk - 1)ddk+l) "-,dk—ltdk-f-la ""dﬂ)Y
if dp <k.

Let n, = (d},d5,....d,,_,),d} > ... > d,,_, is a rearrangement in non-
increasing order of the n — 1 terms of 7). 7}, is called the residual sequence
obtained by laying off di from #. Obviously, 7}, is obtained from 7 by
deleting dx and decreasing dy largest degrees from d,,dy, ...,dr—1,dk+1,
...,dn, each by one unity.

Theorem 2.1 (6] Let # = (d;,ds,...,dn) € NS, and 1 < k < n. Then
w is graphic if and only if 7}, is graphic.

Theorem 2.2 (7] If = (di,da,...,dn) € NS, has a realization G
containing H as a subgraph, then there is a realization G’ of 7 containing
H as a subgraph so that the vertices of H have the largest degrees of .

Let 7 = (dy,ds, ...,d,) € NS,, we construct

p1=(dp—1,ds —1,....,d7 — 1,d$", ..., d)

obtained from 7 by removing d;, decreasing the first d; remaining terms
each by one unity, and then reordering the last n — 7 terms to be non-
increasing. Suppose

p2 = (d3 — 2,dqg — 2,....,d7 — 2,d$>, ..., dP)

obtained from p; by removing ds — 1, decreasing the first dy — 1 remaining
terms each by one unity, and then reordering the last n — 7 terms to be
non-increasing. Similarly, removing d3 — 2 from p;, decreasing the first
ds — 2 remaining terms each by one unity, and then reordering the last
n — 7 terms to be non-increasing, define

ps = (ds —3,ds —3,....,d7 — 3,d>, ..., dD).

Let m = (di,da, ...,dn) € GSy. If  has a realization G with the vertex
set V(G) = {v1,v2,...,un} such that dg(v;) = d; for 1 <i < nand G
contains K-, such that

{vl}, {'Uz}, ceey {’Ur} and {’Ur+1, ...,‘Ur+3}

are the (r + 1)-partite sets of the vertex set of K- s, then 7 is said to be
potentially A;r ;-graphic.

Theorem 2.3 [8] Let # € NS,,w is potentially A;- s-graphic if and
only if p, is graphic.
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For r = 3 and s = 4, 7 is potentially A;s 4-graphic if and only if p3 is
graphic.

Theorem 2.4 [4] Let 7 = (3%,2¥,1%), where z +y+2 =n > 1
and o(w) is even. Then # € GS, if and only if # ¢ A, where A =
{(2),(2%),(3,1),(3%), (3,2,1),(3%,2),(3%,1), (3%,1%)}.

Theorem 2.5 [4] Let 7 = (4%,3Y,2%,1™), wherez +y+z+m=n2>
5,z 2 1 and o(n) is even. Then w € GS, if and only if 7 ¢ B, where B =
{(43 321 12)1 (4a 3’: 13); (427 27 12)1 (42, 3’ 2) 1): (437 12)9 (43, 22)’ (433 3’ 1)’ (44’ 2)‘
(42,3,13), (4%,14), (43, 2,1?), (44,1?), (43,14 }.

Theorem 2.6 (9] Let m = (5%,4%,3%,2™,1") € NS,,, where z + y +
z4+m+n>6,z > 1 and o(x) is even. Then « € GS,, if and only if 7 ¢ C,
C is the following sequences:

{(5%,3), (5%,2,1), (5%,1%), (5%, 1), (5%, 4,2), (5%, 4,12), (54, 3%), (5%, 3,2, 1),
(54,3,13),(5%,3,1), (54,2%), (5%, 2%,12), (54, 2?), (5%, 2,1%), (5%, 2, 12), (5%,
18), (54,1%), (5%,12), (53,42,1), (53,4, 3,2), (5%, 4, 3, 12), (53,4, 22, 1), (5%, 4,
2,1%),(5%,4,2,1),(5%,4,1%), (5%, 4,13),(5%,32,1), (5%, 3,2%), (5%, 3,2,1?),
(5%,3,14),(5%,3,12), (58,23, 1), (5%,2%,13), (5%, 22,1), (58, 2, 19), (63, 2, 1),
(53,17), (5%,15), (5%,13), (52,42, 3, 1), (52,42, 22), (52,42, 2, 12), (52, 42,1%),
(52,42,12),(5%,4,3,2,1), (5%, 4,3,1%), (5%, 4, 2%), (5%,4,2%,1?), (5%,4,2, 1%),
(5%,4,2,12),(52,4,1%), (5%,33%,1), (5%,3%,12), (5%, 3,22, 1), (5%, 3,2,13), (52,
3,1%),(5%,3,13), (5%,22,1%), (52,2, 1%), (52,1°), (5%, 1), (5, 43,2, 1), (5, 43,
13),(5,42,3,12%),(5,42,22,1), (5,4%,2,1%), (5,42%,1%), (5,4%,1%), (5,4, 3,2,
12),(5,4,3,1%),(5,4,2,13),(5,4,1%), (5,32%,13), (5,3,1%)}.

The proof of Theorem 1.4

The first step is to prove the necessary condition of Theorem 1.4. As-
sume that 7 is potentially K;s 4-graphic. (1) is obvious. The corresponding
p3 of Sis (3,2,1),(2%), (2), (3%, 1), (3%,2), (3%), (3, 1), (3%,1%), (4,3%,1%), (4,3,
13)3 (4a 2a 12)1 (42» 31 13)’ (42’ 14)’ (41 23): (43: 14)’ (Sa 33a 2)s (57 37 23)1 (5, 2: 13)1
(6,3%),(6%,3%), (6,4,3%),(6,3%,2) or (6,2,1%), none of them is graphic.

To prove the sufficient condition, we use induction on n. Suppose that
n =7 and 7 € GS, satisfies Theorem 1.4, then  is (67), (6%, 52), (64,52, 4),
(64,4%),(6%,5%),(6%,5° 3), (6%, 5%,4%), (63, 5,42, 3), (6%,4%), (63,4%,32) or
(6%,31). These sequences are all potentially Ks 4-graphic. Now assume
that the sufficient condition holds for n — 1(n > 8) and prove that 7 is
potentially Ks 4-graphic for n. We consider the following cases.

Case 1l. d, > 6

As 7 # (68),(6°), then the residual sequence =/, = (d},d5, ...,d’,_,) ob-
tained by laying off d,, from 7 satisfies d5 > 6 and d% > 3. If n}, ¢ S,
by the induction hypothesis 7, is potentially K;s 4-graphic and so is =.
If «, € S, then =/, is (68,52), (6%,5%),(68) or (6°). So the correspond-
ing 7w is (74,6°%),(7%,67),(75,63) or (7%,6%). It is easy to compute p3 is
(5,42,33%),(52,31), (5,44, 3) or (53,4%,3). So 7 is potentially K;s 4-graphic.

Case 2. d, =5
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If m}, = (d{,d3,...,d},_,) satisfies Theorem 1.4, then w}, is potentially
Ks 4-graphic, and so is 7.

If 7}, doesn’t satisfy (1), then d3 = 6 and dg = 5. Therefore, 7 must be
(d1,d2,6,d4,ds,dg,d7, 577 7).

If dy + dy < n+4, then p3 = (dg — 3,ds — 3,ds — 3,d7 — 3,5"+5-d1—d2,
4d1+d2-12)  According to Theorem 2.6, if p3 is not (5,3,23) or (5,33,2),
then p3 is graphic. So 7 is potentially K3 4-graphic. If p3 = (5, 3,2%), (5,33,
2), the corresponding 7 € {(64,5%), (6%,5%)} C S.

If dy + dy = n +5, then p3 = (4%,3Y,2%)(y + z > 4), which is graphic
by Theorem 2.5 and Theorem 2.4, so 7 is potentially K3 4-graphic.

Assume that 7/, doesn’t satisfy (2), then =/, is (6°,52), (64,5%), (6%) or
(6°). Hence the corresponding 7 is (7°,6,5%), (74, 63, 52), (73, 65, 5), (74, 6,
5%), (78,63, 5%), (72,65, 5%),(7,67,5), (7°,6%,5) or (7°,64,5). It is easy to
compute p3 is (43, 32,2), (42,24), (42, 3%), (4%,32%,2%), (4,34, 2), (5%, 3%), (44,
32) or (52,43, 32), all of them are graphic sequences.

Case 3. d, =4

If n, = (d},d5,...,d,_,) satisfies Theorem 1.4, then 7, is potentially
K3 4-graphic, and so is 7.

If 7] doesn’t satisfy (1), then d3 = 6 and 4 < d7 < 5. The general form
of m must be (d;,d2,6,ds,ds,ds, 4, 4"_7) or (dy,ds,6,d4,ds, ds, 5,57,
4" n—m—17>0).

Ifd; = 4 and dy +dy < n+ 4, then p3 = (dy — 3,ds — 3,ds —
3,d7 — 3,47+5-di—d2 3di+d2-12) " According to Theorem 2.5, if p3 is not
(4,32,12), (4, 3,13), (42,3,1%), (4%,1%) or (43,14), then p3 is graphic. So 7 is
potentially Ks 4-graphic. If p3 = (4, 32,12), (4, 3,13), (42,3, 13), (42,1%), (43,
14), the corresponding m € {(65, 4%), (64, 4%), (64, 4°), (63,4°%), (63,47)} C S.

Ifdy +dy > n+5, then p3 = (3%,2¥,1*)(y > 1,z +y + z > 5), which is
graphic by Theorem 2.4, so 7 is potentially K)s 4-graphic.

If d7 =5 and d1 +d2 <m+11, then pP3 = (d4 —3,d5 —3,d6—3,d7 bt
3,5mH12-di—dz gn-mtdi+d2-19) which is graphic by Theorem 2.6, so 7 is
potentially Ks 4-graphic. If d; + d2 > m + 12, then p3 = (4%,3Y,2%)(x +
y+ 2 25,z 2 1), which is graphic by Theorem 2.5 and Theorem 2.4.

Assume that 7/, doesn’t satisfy (2), then =/, is (6%), (6%,52), (6%, 43), (64,
54}, (64, 4%), (68, 4), (64, 4%), (63, 4°) or (6°). As 7 # (68, 4), the correspond-
ing mis (74,64, 4), (73,64, 5,4), (72, 68, 4), (74,62, 52, 4), (74, 6,4%), (74, 5%, 4),
(73,62,53,4), (7%,6%,52,4), (7, 6%, 5,4), (74,45), (74, 64,42), (74,49), (73,5,
48y or (74, 6%, 4). It is easy to compute p3 is (42, 34), (3%), (4, 64,2), (4,32,2,
12), (4, 3%,2%),(4,3,2,1%),(34,2%), (4,3%,2), (43, 3%), (4,3%,13),(3,2,13) or
(5,43, 3%), all of them are graphic sequences.

Case 4. d, =3

If n}, = (dy,d5,...,d,_,) satisfies Theorem 1.4, then =, is potentially
K3 4-graphie, and so is 7.
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If 7], doesn’t satisfy (1), then d3 = 6 and 3 < dg < 5. Therefore, 7
must be (dl,dz,ﬁ, ds, ds,ds, 3, 3"_7),(d],d2,6, d4,d5,d6,4,4m,3"_7—m) or
(dl, ds, 6,d,,ds, dg, 5,5™, 4%, 3"‘7'"‘_“)(71 -m-7>0n~-7—-m-a> 0).

Ifd; = 3 and d; + d2 < n + 4, then p3 = (dy — 3,ds — 3,ds —
3,dy — 3,3n+5—di—dz 9di+da—12y  According to Theorem 2.4, if ps is not
(3,1),(3%),(3,2,1),(32,2),(33%,1) or (32,12), then p3 is graphic. So 7 is po-
tentially Ks 4-graphic. If p3 = (3,1),(3%),(3,2,1),(3%,2),(3%,1),(32%,12%),
the corresponding 7 € {(72,6, 36), (63, 4, 3%), (63, 3%), (64, 3%), (6%, 5, 4, 3%),
(71 62, 4’ 35)a (71 621 37)? (63) 5$ 35)7 (64, 51 33)7 (71 63) 35); (63» 4, 36)1 (65, 41 32)1
(6%,4,3%),(63,42,3%),(6%,4%,3%2)} ¢ S. If dy +dy > n + 5, then p3 =
(dg — 3,ds — 3,dg — 3,d7 — 3,2%,1¥)(z +y > 1). According to Theo-
rem 2.4, if p3 is not (2),(22) or (3,2,1), then p3 is graphic. So 7 is
potentially Kjs 4-graphic. If ps = (2),(2%),(3,2,1), the corresponding
TE {(7) 627 35)9 (7y 62) 51 34)) (87 62» 36)a (7v 63’41 33)’ (8, 71 62) 35)} cS.

Ifd7 =4 and d; + dy < m + 11, then p3 = (d4 —3,ds —3,ds — 3,d7 —
3,4mH12-di—dz gn—m+di+d2-19) which is graphic by Theorem 2.5, so 7 is
potentially Ks 4-graphic. If dy + dy > m + 12, then p; = (3%,2Y,1%)(z >
1,z 4+ y + z > 5), which is graphic by Theorem 2.4. Therefore, 7 is poten-
tially Kys 4-graphic.

Ifd; = 5 and dy + da < m + 11, then p3 = (d4 —3,ds — 3,dg —
3,d7 —3,5mF12-di—dz ydi+ds—13 gn-7-m-a} which is graphic by Theorem
2.6, so m is potentially Ks 4-graphic. If d;, +dy > m + 12, then p3 =
(4%,3v,2%,1%)(z > 2,z + y + 2z + w > 5), which is graphic by Theorem 2.5
and Theorem 2.4, so 7 is potentially K3 4-graphic.

Assume that 7, doesn’t satisfy (2), then =/, is (6%), (6%,52), (6%, 4, 32),
(64,5%), (6%,5,3%), (6%, 4%), (6%, 42, 32), (6, 5, 4, 3%), (6%, 4,3), (7,6%,4,3%),
(7a 62’ 5’34)’ (7’ 62’ 35)» (641 34)’ (74, 4, 34): (73: 6, 35)) (72» 6, 36), (71 637 35)7
(7,6%,4,3%), (6%,4), (6%,4%), (6%, 4,3Y), (6%, 5, 35), (6%, 4°), (6%, 42, 3¢), (6,
3%),(6°), (8,7,62,3%), (8, 62,35), (82,72,3%), (74, 3%),(7,62,37), (63, 47), (6%,
4,3), (62, 39,2), (9, 83%,37), (94,3%) or (9, 73, 3).

Since 7 # (74,4, 34), (82,72,3%), (74,36), (9, 73, 3%), (9, 83, 37), (94, 38),
(8,7,62,3%), the corresponding = is (72, 6%, 3), (73, 63, 52, 3), (72,65, 5, 3), (7,
67’ 3): (73’ 62, 4, 33)1 (737 61 54’ 3)’ (721 631 539 3)’ (7t 65»521 3)’ (677 5, 3)3 (73, 61
5v 34)’ (721 63, 34): (731 6’ 44) 3)! (73» 6: 42: 33)’ (73) 5, 41 34)) (721 621 4a 34)1 (733
4,3%),(8,7%,6,4,3%),(8,72,5,3%), (8, 72,3%), (83,7, 4, 35), (8, 6, 3%), (82, 7,
37)) (81 727 69 36)1 (87 721 4a 36)) (73y 657 4: 3)7 (73’ 67 457 3)7 (731 67 47 35)a (731 59
38), (72, 62,3%), (73,48, 3), (73,42, 3%), (73,37), (73, 6°, 3), (9,8, 7,6, 3%), (9,
72,37),(9%,8,7,37),(8%,7,37), (8,72, 3%), (73,47, 3), (73, 4,37), (10,92, 8,
38), (94, 3%), (10, 82,7,37) or (10%,9,3°). The corresponding ps is (3°), (34,
22),(5,3%), (32,2,12), (32,29), (4,34, 2), (3,22, 1), (32, 22), (3,23, 1), (3, 22,
13)’ (3’ 2, 13)) (22, 12): (2s 12)’ (3’ 13)! (12)1 (4’ 14)’ (41 36)’ (337 2, 13)’ (24)1 (32#
2,14),(23,12),(2%), (5,4, 3%), (4,22,1%),(3%,14),(5,1%) or (6, 1%), all of them
are graphic sequences.
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Case 5. d, =2

If m, = (dy,ds,...,d},_,) satisfies Theorem 1.4, then 7/, is potentially
K3 4-graphic, and so is .

If 7}, doesn’t satisfy (1), then d3 = d3 = 6 and 3 < ds < 5. The general
item of = must be (d, 62, d4, ds, dg, 3, 3™, 2"~ 7~™), (d,, 62, d4, ds, dg, 4,4™,
3a,2n=T-m=¢y or (d,,62,dy, ds, ds, 5,5™,4°%,3%, 2n~ 7m0y (n _m — 7 >
On-7T-m—-a>0n—-7—m—a-5b>0).

If d; = 3 and dy < 5+ m, then p3 = (dy — 3,ds — 3,dg — 3,d7 —
3,3m+6-di oditn-m—13)  According to Theorem 2.4, if p3 is not (2), (22), (3,
2,1) or (3,22), then p3 is graphic. So 7 is potentially Kjs 4-graphic. If p3 =
(2), (22),(3,2,1), (3,22), the corresponding 7 € {(6%,34,2), (64,4,32,2), (8,
63,34,2), (6%,4,34,2),(6%,5,3%,2),(7,62,35,2), (6%, 34,22), (64,34,2), (6%, 3°,
2)} ¢ S. If dy > m + 6, then p3 = (2%,1¥)(y > 1), which is graphic by
Theorem 2.4, so 7 is potentially K3 4-graphic.

Ifd; = 4 and dy < m+ 5, then p3 = (d4 - 3,ds — 3,dg — 3,d7 —
3,4m+6-d ga+d, =6 gn—m—a=7) which is graphic by Theorem 2.5, so 7 is
potentially Ka 4-graphic. If d; > m + 6, then p3 = (3%,2¥,1%)(y = 4),
which is graphic by Theorem 2.4, so 7 is potentially K3 4-graphic.

If d? = 5and dy < m + 5, then pP3 = (d4 - 3,d5 - 3,d6 - 3,d7 -
3,5m+6-d1 ga+di—6 gb gn-T-m-a=b) which is graphic by Theorem 2.5, so
w is potentially Ks 4-graphic. If di > m +6, then p3 = (4%,3%,2%,1¥)(z 2
3), which is graphic by Theorem 2.5 and Theorem 2.4, so 7 is potentially
K3 4-graphic.

Assume that 7/, doesn’t satisfy (2), then =/, is (6°,52), (6°,4%), (65, 4, 32),
(6%,5%), (64,5,33%), (64,4%), (6%, 42, 3%), (6%, 4,32,2), (63, 5,4, 3%), (63,5, 3%,2),
(63,4,3%),(63,34,2), (6%), (74,4, 3%), (73, 6,3%), (72,62, 34, 2), (72, 6, 3°), (7,
63, 3%), (7, 63, 33,22), (7,62, 4, 3%), (7,62, 3%,2), (68, 4), (6%, 2), (6%, 4%), (6%, 4,
34)’ (64’ 34’ 2)s (631 5: 35)1 (63: 46): (63, 421 34)y (63’ 4a 34’2)1 (631 36)) (631 347
22)s (69)) (827 727 36)1 (81 73| 35, 2)1 (74, 36)! (74, 349 22)’ (71 62) 37)) (63, 47)7 (63)
4,38), (6%,36,2),(9,83,37), (8%, 38,2), (9%, 3%), (9, 7%, 35), (8, 7, 62, 35), (7, 62,
4,3%), (8,68,34,2),(7,62,5,3%), (8,62 3%),(7,62,3%) or (64,3%).

Since m # (7,63,3%,22),(72,62,3%,2),(68,2), the corresponding = is
(72,64,52%,2), (7,65,5,2), (72,68, 43,2), (72, 63, 4, 32, 2), (72, 62,54, 2), (7, 64,
53,2), (6°,52,2), (72,62,5,3%,2), (7,64, 33%,2),(72,62,4%,2), (72, 62,42, 32,2),
(72,62,4,32,2%),(72,6,5,4, 3%,2),(7,6%,4,3%,2),(7%,6,5,3%,22), (72,6, 4,
34) 2)7 (727 6) 34) 22)1 (72) 661 2)1 (821 72, 4v 347 2)1 (82, 7v 6: 35) 2)a (87 73, 35) 2)a
(82,62,34,22), (74,34, 22),(8,7%,6,34,22),(82%,6,35,2), (8,7%,3%,2), (8,7, 62,
35a 2)) (737 Ga 351 2)9 (8r 7: 621 333 23)7 (73, 61 337 23)a (81 7, 69 4a 351 2)*) (73) 47 35’
2),(8,7,6,3%,22), (73, 38%,22), (72,6, 4,2), (72,66,22), (72,62, 45, 2), (7%, 62,
4,34,2), (72,62, 34,22),(72,6,5,35,2), (7,63, 3%,2), (72, 6,45, 2), (72, 6,42, 34,
2),(7%,6,4,34,22),(7%,6,35,2), (72,6, 3%,23),(72,67,2), (92, 72,35, 2), (8%,
3,2),(9,82,7,3%,2), (9,8, 72, 3%, 22), (89,7, 35,22), (82,72, 36, 2), (82, 72, 34,
23),(8,7,6,37,2),(7%,37,2),(72,6,47,2),(72,6,4, 35, 2), (72, 6, 35, 22), (10,9,
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82,37,2),(9%,8,37,2),(92,82%,35,22), (102,92, 38, 2), (10,8, 72, 35, 2), (9, 8, 62,
35,2),(8,7,62%,4,33%,2),(7%,6,4,3%,2),(9,7,62,3,22), (8,7,6,5,34,2), (73,5,
34,2),(9,7,6,35,2),(8,7,6,3%2) or (73,35,2). It is easy to compute pj is
(34,22),(4,34,2),(32,22,12), (32,2,1%), (3%, 2%), (4, 3%,2%), (5, 3%,2%), (3,22,
1),(3%,2%),(3,2%,19),(3,2,1%),(3,1%), (22,1%), (12), (4, 1*), (4,2,1%), (42, 3¢,
2)’ (421 34’ 22): (33: 2, 13)1 (31 23» 1)’ (47 321 24)’ (24)’ (32’ 2, 14)’ (23, 12)a (23)’
(5%,34,2),(2,1%), (4, 22,1%), (4, 34, 22), (4, 3%,2,1%),(5,15) or (6,15), all of
them are graphic sequences.

Case 6. d, =1

If n!, = (di,d5,...,d},_,) satisfies Theorem 1.4, then =/, is potentially
K s 4-graphic, and so is 7.

If 7] doesn’t satisfy (1), then dy = d3 = 6 and 3 < dy < 5. There-
fore, m must be (63,d4,ds,ds,3,3™,2P,1%),(6%,dy, ds,ds, 4,4™,37,29,1%)
or (6%,dy4,ds,ds, 5,5™,4P,39,27,1%)(a > 0).

If d7 = 3, then p3 = (dy—3,ds—3,ds~3,d7—3,3™, 27, 1%). According to
Theorem 2.4, if p3 is not (3,1), (3,2,1), (3%, 1) or (32, 12), then p; is graphic.
So w is potentially Ks 4-graphic. If p3 = (3,1), (3,2,1),(33,1),(3%,12), the
corresponding 7 € {(6%, 3%,1), (6%, 3%,2,1), (6%,5,34,1), (6%,37,1), (6%,33,1),
(64,3%,1),(6%,4,35,1),(63,35,12),(64,3%,1%)} C S.

Ifd7 = 4, then p3 = (ds—3,ds —3,ds — 3,d7 — 3,4™, 3P, 29,1¢), which is
graphic by Theorem 2.5 and Theorem 2.4, so 7 is potentially K3 4-graphic.

If d7 = 5, then P33 = (d4 bt 3,d5 - 3,d5 - 3,d7 - 3, 5m,4p’ 3q,2r, ].a),
which is graphic by Theorem 2.6, Theorem 2.5 and Theorem 2.4, so « is
potentially Ks 4-graphic.

Assume that #, doesn’t satisfy (2), then #/, is (65, 52), (6%, 43), (65, 4, 3%),
(64,5%), (64,5,3%), (64,4%), (64, 42,32), (64, 4, 32%,2), (63, 5,4, 3%), (63,5, 3%,2),
(63,4, 3%),(6%,34,2),(6%), (74,4, 3%), (73,6, 3%), (72,62, 34, 2), (72, 6, 3%), (7, 62,
3%),(7,63,33,22),(7,62,4,3%), (7,62, 35,2), (68, 4), (6%, 2), (6%,3%,1), (6%, 4%),
(6%,4,3%), (6%,4,3% 1), (6%, 3, 2), (6%,3%,2, 1), (6°,5,3%), (63, 5,34, 1), (6%, 4°),
(63,42,3%), (63,4, 34,2), (6%,3°), (63, 3%,1), (6%, 34, 22), (6°), (82, 72, 39), (8, 73,
35,2), (74,35), (74,35,1), (74, 34, 22), (7,62, 37), (7, 62, 3%, 1), (64, 3°, 1), (6¢, 3¢,
12),(63,47), (6%, 4, 3%), (63, 4,35,1), (63, 35,2), (6%, 3%,2,1), (9, 8%, 37), (8%, 3¢,
2), (63,37,1),(6%,35,1) or (94, 3%).

Since 7 # (64,4, 33,1), (64,33,2,1),(74,3%,1), (7,62, 3%,1), (64,3%,12), (n
-1,73,38%,17-10) (n—1,7,62,35%,179),(n—1,6%,4,3%,1"°8), (n—1,63, 34,2,
1"-%),(n - 1,62,5,3%,1"8), (n — 1,62,35,1""9), (n — 1,62,3%,1"78) (n —
2,6%,34%,1"8), the corresponding = is (7, 6%, 52, 1), (67, 5,1), (7,64,4%,1), (7,
6%,4,32,1),(7,63,54,1), (65, 5%,1), (7, 63,5, 33, 1), (65,33, 1), (7, 63, 4, 1), (7,
63,42,32,1),(7,63,4,32,2,1),(7,62,5,4,3%,1),(7,62,5,33,2,1),(7,6%,4, 3%,
1),(7,6%,34,2,1),(7,67,1),(8,73,4,34,1),(8,7%,6,3%,1),(74,3%1),(8,7,62,
31,2,1),(7%,6,34,2,1),(8,7,6,35,1),(7%,35,1), (8, 6%,35,1),(72,62,35,1), (8,
637 33, 227 1)) (72) 62a 33) 221 1)1 (8)62a 41 35’ l)a (72) Ga 4, 353 1)1 (81 62: 35’ 2’ 1),
(7,67,4,1),(7,67,2,1), (7,64 33%,1%),(7,6%,45,1),(7,6%,4,3%,1),(7,68%,4, 3%,
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12),(7,63,34,2,1),(7,63,33%,2,12),(7,62,5,35,1), (64, 35,1), (7, 62,5, 34, 12),
(7,6%,4%,1),(7,6%,42,3%,1),(7,6%,4,3%,2,1), (7,62,3%,12), (7,62, 34,22, 1),
(7,68,1),(9,8,72,3%,1),(8%7,35,1),(9,7%,35%2,1),(82,72,35,2,1), (8, 73,
3%,1),(8,7%,35%,12),(8,7%,34,22,1), (8,62,37,1),(7%,6,37, 1), (8, 62, 3%, 12),
(72,6,35,12),(7,6%,3%,12),(7,6°%,34,13),(7,62,47,1), (7,62, 4,35,1), (7, 62,
4,3%,1%),(7,62,3%,2,1),(7,62,3%,2,12),(10,8%,37, 1), (92,82,37, 1), (9, 83,
3%,2,1),(7,62%,37,12),(7, 62,35,12%), (10,93, 3%,1) or (72,6,3%,2,1). Itis easy
to compute the corresponding p3 is (34, 22), (4, 34,2), (6, 3%, 2), (32,22,1?),
(3%,2,1%),(3%,2%), (4,32,2%),(2,1%), (3,2%,1),(32,22), (3,22,1°), (3,2,13), (3,
13),(22,1%),(12), (4,1%), (4, 2, 1), (42,34, 2), (42, 34, 22), (33,2, 1%), (3, 23,1),
(4,32,24), (24), (32,2, 19), (2%), (23, 12), (52,34, 2), (4, 22,12), (4, 32,2,1%), (5,
15), (6, 1) or (4, 34,22), all of them are graphic sequences.

3. Application of Theorem 1.4

Yin and Lai computed the values of o(Ks 4,n) independently when
n > 50 in [10] and n > 48 in [11].

We now give an application of Theorem 1.4. It is simple to use Theorem
1.4 to compute the values of o(Ks 4, 7).

Theorem 3.1 o(K34,7) = 38,0(K;34,8) = 50,0(K13 4,9) = 56,
0(K13,4,10) = 50,0(Ks 4,11) = 56,0(K3 4,12) = 62 and for n > 13,

7n — 10, n is even,

0(Ki34,n) = { n—11, n is odd .

Proof. For 7 < n < 12, (62,5%,4), (6%), (6°), (9, 73, 36), (9,8%,37) and
(94,3%) are not potentially Kjs 4 by Theorem 1.4.

Since o(7) is even, 0(K)3,4,7) 26 x2+5x4+4+42=38,0(K3,4,8)
> 6x8+2 =150,0(K)3,4,9) > 6x9+2 = 56,0(K)3,4,10) > 9+7x3+3x6+
2= 50,0(K13'4, 11) > 94+8x3+3x7+2= 56, 0(K13'4, 12) >9x443x8+
2 = 62. By Theorem 14, 0(K13’4,7) = 38,0(K13‘4,8) = 50,0’(K13,4,9) =
56,0’(K13'4, 10) = 50, U(K13,4, 11) = 56 and U(K13l4, 12) = 62.

For n > 13, let

= (n~1)2,5""2),  n is even,
Tl ((n=-1)%5""2%4), nisodd.
By Theorem 1.4, 7 is not potentially Ks 4-graphic, which has degree
sum

(r) = ™ — 12, n is even,
olm) = n — 13, n is odd .
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Thus, o(K3 4,n) > o(m) + 2, which establishes the lower bound.

Let n > 13, and m = (di,d2,...,dn) € GS, be a positive sequence
satisfy Theorem 3.1. Then the following will prove that « is potentially
K3 4-graphic.

(1)If n > 13 and

_J ™ —10, n is even,
o(Kjs,4,n) = { Tn—11, n is odd ,

then 7 is not the following sequences:

(n—1,73,35,17"10)(n > 10), (n-1,625,34,1"8)(n > 8),

(n—1,7,62,35,1"%(n>9), (n—1,6235 1% (n >9),

(n—1,6%,4,3%,1""8)(n > 8), (n—1,62%,3%,1""8)(n > 8),

(n—1,63,3421"%(n>9), (n—263%3%1"8)(n > 8).

(2)Now we check the condition that d3 > 6. To the contrary, assume
that d3 < 5. Then
2(n—-1)4+5(n—-2)=Tn—12 < Tn — 10,

n is even,
2n—1)+5n—-3)+4="Tn—13 < Tn —11,
n is odd .

(3)Assume that d7 < 2. Then o(m) = 30 di + 37, d; <6(6 —1) +
Yieymin(6,di) + Y 1, di =30+23 7 .di <5n<Tn—13 < Tn - 12, so
there is the condition that d; > 3.

So 7 is potentially K 4-graphic by Theorem 1.4.

o(m) =dy+do+...4+dp <
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