A note on the complexity of the total domatic
partition problem in graphs”

Chuan-Min Lee!, Sz-Lin Wu, Hsin-Lun Chen, Chia-Wei Chang, Tai Lee
Department of Computer and Communication Engineering
Ming Chuan University
5 De Ming Rd., Guishan District, Taoyuan County 333, Taiwan.

Abstract

In this paper, we study the total domatic partition problem for
bipartite graphs, split graphs, and graphs with balanced adjacency
matrices. We show that the total domatic partition problem is
NP-complete for bipartite graphs and split graphs, and show that
the total domatic partition problem is polynomial-time solvable for
graphs with balanced adjacency matrices. Furthermore, we show
that the total domatic partition problem is linear-time solvable for
any chordal bipartite graph G if a I-free form of the adjacency ma-
trix of G is given.
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1 Introduction

Let G = (V, E) be a finite, simple, undirected graph. Unless stated other-
wise, it is understood that |V| = n and |E| = m. We also use V(G) and
E(G) to denote vertex set and edge set of G, respectively. For any vertex
v € V, the open neighborhood of v in G is Ng(v) = {u € V|(u,v) € E} and
the closed neighborhood of v in G is Ng([v] = Ng(v) U {v}. The degree of a

*The paper is extended and modified from the following paper: C.-M. Lee, S.-L.
Wu, H.-L. Chen, C.-W. Chang, T. Lee, Remarks on the complexity of the total do-
matic partition problem in graphs, in Proceedings of the 32nd Workshop on Combinato-
rial Mathematics and Computation Theory, National Chung-Hsing University, Taichung
City, Taiwan, pp. 84-88, 2015.

tCorresponding author. Email: joneslee@mail.mcu.edu.tw, Tel: +886-3-350-7001
ext. 3432, Fax: +886-3-359-3876.

JCMCC 108 (2019), pp. 3-14



vertex v in G is degc(v) = |[Ng(v)|. The minimum degree of a vertex of G
is denoted by 6(G).

A vertex v of a graph G = (V, E) dominates a vertex w if v € Ng[w]. A
vertex v of G totally dominates a vertex w if v € Ng(w). A subset D C V
dominates (respectively, totally dominates) a vertex v if v is dominated
(respectively, totally dominated) by some vertex in D, i.e., |[DNNg[v]| > 1
(respectively, [DN Ng(v)| > 1). A dominating (respectively, total dominat-
ing) set of a graph G = (V, E) is a subset D of V such that D dominates
(respectively, totally dominates) every vertex v in V.

For a positive integer k, a k-total (respectively, k-tuple) dominating set
of a graph G = (V,E) is a subset D of V such that |D N Ng(v)| > k
(respectively, |D N Ng[v]| > k) for every v € V. Clearly, G does not have
any k-total (respectively, k-tuple) dominating set if k > §(G) (respectively,
k>6(G)+1).

Two sets A and B are disjoint if AN B = (. A collection P =
{51,82,...,8¢} forms a partition of a set S if S = S;US U --US,,
and S; N S; = P for any two distinct sets S; and S; in P.

A partition P = {V1,V5,...,V;} of V is a domatic (respectively, total
domatic) partition of a graph G = (V, E) if V; is a dominating (respectively,
total dominating) set of G for i = 1,2,...,£. The domatic (respectively,
total domatic) partition problem is to find a domatic (respectively, total
domatic) partition of G of maximum size. The domatic (respectively, total
domatic) number of G, denoted by d(G) (respectively, d;(G)), is the size of
a maximum domatic (respectively, total domatic) partition of G. For any
positive integer k, the k-domatic (respectively, total k-domatic) partition
problem is to find a domatic (respectively, total domatic) partition P of G
such that |P| = k.

The domatic number of a graph was introduced by Cockayne and Hedet-
niemi [9]. The concept of the total domatic number was introduced by
the same authors and Dawes (7]. They proved that d(G) < §(G) + 1
and dy(G) < §(G) for any graph G. The domatic partition probhlem has
been widely studied from the algorithmic point of view [4, 5, 8, 11, 14, 15,
18, 19, 21]. The total domatic number of a graph has been investigated
in [2, 3, 5, 7, 11, 22, 23, 24, 25]. However, few results exist in the literature
about the algorithmic complexity of the total domatic partition problem
in graphs. From the algorithmic point of view, the total k-domatic parti-
tion problem on the 2-section graph of the order-interval hypergraph of a
finite poset is NP-complete for any fixed positive integer k£ > 3 [5], and the
total 2-domatic partition problem on bipartite graphs is NP-complete [13].
The results motivate us to consider the algorithmic complexity of the total
domatic partition problem for other classes of graphs.

In this paper, we concentrate on bipartite graph, split graphs, and
graphs with balanced adjacency matrices. For any fixed integer k > 3



(respectively, k > 2), we show that the total k-domatic partition problem is
NP-complete, even when restricted to bipartite graphs (respectively, split
graphs). For any positive integer k < §(G), we show that the k-total
domatic partition problem is polynomial-time solvable for any graph G
with a balanced adjacency matrix. Furthermore, we show that the total k-
domatic partition problem is linear-time solvable for any chordal bipartite
graph G if a I'-free form of the adjacency matrix of G is given.

2 The NP-completeness results

An independent set of a graph G = (V, E) is a subset S of V' such that no
two vertices of S are adjacent. A clique of G is a subset of pairwise adjacent
vertices of V. A graph G = (V, E) is a split graph if V' can be partitioned
into an independent set I and a clique Q. Split graphs form a subclass of
chordal graphs [6]. A bipartite graph is a graph G whose vertices can be
divided into two disjoint sets A and B such that every edge in G connects
a vertex in A to one in B. A split (respectively, bipartite) graph is usually
written as G = (I, Q, E) (respectively, G = (4, B, F)).

In this section, we present NP-completeness results for bipartite graphs
and split graphs. Before presenting the NP-completeness results, we restate
the k-domatic partition problem and the total k-domatic partition problem
as decision problems.

(1) The k-domatic partition problem:
Instance: A graph G = (V, E) and a positive integer k£ < 6(G) + 1.
Question: Is d(G) > k?

(2) The total k-domatic partition problem:
Instance: A graph G = (V| E) and a positive k < §(G).
Question: Is d;(G) > k?

Theorem 1. For any fized integer k > 3, the total k-domatic partition
problem on bipartite graphs is NP-complete.

Proof. It is obvious that the total k-domatic partition problem is a member
of NP. The total 2-domatic partition problem on bipartite graphs is NP-
complete [13]. In the following, we show the NP-completeness of the total
k-domatic partition problem on bipartite graphs for any fixed positive in-
teger k > 3 by a polynomial-time reduction from the total (k — 1)-domatic
partition problem on bipartite graphs.

Let G = (A, B, E) be a bipartite graph. We create two new vertices =
and y. Let A’ = AU {z} and let B’ = BU {y}. We connect z to y and



all the vertices in B, and then connect y to all the vertices in A. Let g
be the resulting graph. Clearly, the graph H is a bipartite graph with two
disjoint sets of vertices A’ and B'.

Let d;(G) = fand let D = {D,, D,,..., D¢} be a total domatic partition
of G. Clearly, Dy, D,,..., D are also disjoint total dominating sets of H.
Let D¢sy = {z,y}. By the construction of H, the set D.; is a total
dominating set of H. Then, Dy, Da, ..., D¢s are disjoint total dominating
sets of H. We have d;(H) > d;(G) + 1.

Let d,(H) = k and let S = {5}, S2,...,Sx} be a total domatic partition
of H. We consider the following two cases.

Case 1: The vertices r and y are in the same set of S. Let S; be
the set containing the vertices z and y. Note that V(H) = V U {z,y}.
Let S; € S\ {Si} and let S} = S; U S; \ {z,y}. Clearly, the collection
P = (S\ {Si,S;}) U{S;} is a total domatic partition of G. Therefore,
di(G) > du(H) — 1.

Case 2: The vertices = and y are in different sets of S. Let S; and §;
be distinct sets of S such that = € S; and y € S;. Then, every vertex in B
(respectively, A) is totally dominated by the vertex z (respectively, y), and
every vertex in A (respectively, B) is totally dominated by some vertex in
Si N B (respectively, S; N A). Let S! = (S:\ {z})U(S; \ {y}).- Then, §; is
a total dominating set of G and the collection P = (S \ {S;, S;}) U{S;} is
a total domatic partition of G. Therefore, d;(G) > d:(H) — 1.

Following the discussion above, we know that d;(H) < d;(G) + 1 and
di(H) > d¢(G)+1. Therefore, d;(H) = d¢(G)+1. It implies that d;(H) > k
for any fixed integer k& > 3 if and only if d;(G) > k — 1. 3

Theorem 2. For any fired integer k > 2, the total k-domatic partition
problem on split graphs is NP-complete.

Proof. The total k-domatic partition problem is clearly in NP. The k-
domatic partition problem on chordal graphs is NP-complete for any fixed
positive integer k > 3[14]. Notice that the problem of determining whether
a 2-tuple dominating set of a chordal graph can be partitioned into two dis-
joint dominating sets is NP-complete [11]. Since the set of all vertices of a
connected graph is a 2-tuple dominating set, the 2-domatic partition prob-
lem on chordal graphs is NP-complete. Therefore, the k-domatic partition
problem on chordal graphs is NP-complete for any fixed positive integer
k=2

In the following, we show the NP-completeness of the total k-domatic
partition problem on split graphs for any fixed positive integer & > 2
by a polynomial-time reduction from the k-domatic partition problem on

chordal graphs.
Let G = (V,E) be a chordal graph. We construct a graph H by the

following steps.



(1) For each vertex v € V, we create a new vertex v’ and connect the
vertex v’ to all vertices in Ng[v).

(2) We add edges to G to form a subgraph G” = (V" E”) such that
V" =V and V" is a clique of H.

Let V! = {v/ | v € V} and let E' = {(u,v) | v € V',v € V,u € Ng[v]}.
Since V" is a clique of H and V" =V, E” = {(u,v) | v # v and u,v € V}
Then, V(H) = VU V" and E(H) = E' UE". Clearly, the construction
of H can be done in polynomial time. By the construction of H, V' is an
independent set and V" is a clique. Therefore, H is a split graph.

Let d(G) = ¢ and let D = {Dy, Ds,...,D;} be a domatic partition of
G. Fori =1,2,...,¢, let D! = D; U{v' | v € D;}. Then, Dj is a total
dominating set of H and the set D’ = {D{, D3, ..., D;} is a total domatic
partition of V(H). We have d;(H) > d(G).

Let d;(H) = k and let S = {5}, S2, ..., Sk} be a total domatic partition
of H. Let S; be a set of S and let v be a vertex of G. By the construction
of H, the set V' is an independent set of H and Ny (v') = Ng[v]. There
exists a vertex x € S; such that x € Ng[v] and v’ is totally dominated hy
z. Therefore, S; \ V' is a dominating set of G. We have d;(H) < d(G).

Since di(H) > d(G) and di(H) < d(G), we have d,(H) = d(G). It
implies that d(G) > k for any fixed integer k > 2 if and only d,(H) > k.

3 Graphs with balanced adjacency matrices

Suppose that G = (V, E) is a graph with V = {v;,v3,...,v,} and E =
{e1,€2,...,em}. The adjacency matriz of G is the (0,1)-matrix whose
entry (i,7) is 1 if (v;,v;) € E and 0 otherwise. The edge-vertez incidence
matriz of G is the (0,1)-matrix whose entry (7,7) is 1 if v; is an endvertex
of e; and 0 otherwise. A (0,1)-matrix is balanced if it does not contain
the edge-vertex incidence matrix of an odd cycle as a submatrix. A (0,1)-
matrix is totally balanced if it does not contain the edge-vertex incidence
matrix of a cycle as a submatrix.

A hypergraph H is an ordered pair (V,€) where V' is a set of vertices and
£ is a set of subsets of V. Each member of € is called a hyperedge of H. Let
V = {v1,v2,...,v2} and € = {Ey, Eg,..., Em}. The hyperedge-verter inci-
dence matriz of H is the (0,1)-matrix whose entry (i, j) is 1 if E; contains
the vertex v; and 0 otherwise. A hypergraph H is a balanced (respectively,
totally balanced) hypergraph if the hyperedge-vertex incidence matrix of H
is balanced (respectively, totally balanced).

A transversal of a hypergraph H = (V,£) is a subset D of V such that
|D N E;| > 1 for every hyperedge E; € E. Let k be a positive integer.



A k-fold transversal of a hypergraph H = (V,€) is a subset S of V such
|S N E;| 2 k for every hyperedge E; € €.

Dahlhaus et al. [11] gave an algorithm to partition a k-fold transversal
of a balanced hypergraph into k pairwise disjoint transversals in polynomial
time. They obtained the following result.

Theorem 3 (Dahlhaus et al. [11]). A k-fold transversal of a balanced
hypergraph can be partitioned into k pairwise disjoint transversals in poly-
nomial time.

Lemma 1. Let G = (V, E) be a graph with V = {vy,v2,...,vn} and let k
be a positive integer no more than §(G). Let E; = Ng(vi) for1 <i<n
and let H = (V,€) be a hypergraph such that € = {E1, Ea, ..., En}. Then,
the following statements are true.

(1) A subset S of V is a k-total dominating set of G if and only if S is
a k-fold transversal of H.

(2) A (0,1)-matriz M is the adjacency matriz of G if and only if M is
the hyperedge-vertex incidence matriz of H.

Proof. (1) Let S be a k-total dominating set of G. Then, |SNNg(v;)| = |Sn
E;| > k for 1 <i < n. The set S is a k-fold transversal of H. Conversely,
let S be a k-fold transversal of H. Then, |[SN E;| = |S N Ng(vi)| > k
for 1 < i < n. The set S is a k-total dominating set of G. Following the
discussion above, the statement is true.

(2) Let M be the adjacency matrix of G. Let m;; be the entry (i, )
in the matrix M for 1 < 4,57 < n. If E; contains the vertex v;, then
v; € Ng(vi). We know that (v;,v;) € E and mi; = 1. If E; does not
contain the vertex v;, then v; € Ng(v;). The vertex v; is not adjacent to
v; and m;; = 0. Therefore, m;; is 1 if E; contains the vertex v; and 0
otherwise. The matrix M is also the hyperedge-vertex incidence matrix of
H.

Conversely, let M be the hyperedge-vertex incidence matrix of H. Also,
let m;; be the entry (i,7) in the matrix M for 1 <1i,j < n. If (vi,v;) € E,
then v; € Ng(vi). Since E; = Ng(v;), E; contains the vertex v; and thus
mi; = 1. If (vi,v;) € E, then v; € Ng(vi). We know that E; does not
contain the vertex v; and m;; = 0. Therefore, m;; is 1 if (vi,v;) € E and
0 otherwise. The matrix M is also the adjacency matrix of G. Following
the discussion above, the statement is true. J

Theorem 4. For any positive integer k < §(G), a k-total dominating set
of a graph G with a balanced adjacency matriz can be partitioned into k
pairwise disjoint total dominating sets in polynomial time.



Proof. Suppose that G = (V| E) is a graph with the balanced adjacency
matrix M and V' = {v),v3,...,vq}. Let k be a positive integer and let §
be a &-total dominating set of G. Clearly, k& < §(G). Otherwise, G does
not have any &-total dominating set.

Notice that the matrix \ contains n rows and n columns. We construct
the set E;, = Ng(vy) for 1 <1 < n. Let &€ = {E\,Ey,...,E,} and let
H = (1.&) be a hypergraph. By Statement (2) of Lemma 1, the matrix M
is also the hyvperedge-vertex incidence matrix of H. Since A is balanced,
H is balanced.

Dahlhaus et al. [11] gave an algorithm to partition a A-fold transversal of
a balanced hypergraph into A pairwise disjoint transversals. By Statement
(1) of Lemma 1, the set S is a k-fold transversal of H and any transversal
of H is a total dominating set of G. We can use their algorithm to partition
the set 8 into & pairwise disjoint transversals Sy, Sa,..., Sk of H and this
can be done in polynomial time by Theorem 3. Following the discussion
above, the theorem is true.

Theorem 5. The total domatic partition problem can be solved in poly-
nomial time for graphs with balanced adjacency matrices.

Proof. Let G = (V| E) be a graph with a balanced adjacency matrix. Since
§(G) is the minimum degree of G, |[Ng(v) N V]| > §(G) for every v € V.
The vertex set V' is a §(G)-total dominating set of G. By Theorem 4,
1" can be partitioned into §(G) pairwise disjoint total dominating sets
11.12,..., Vi) in polynomial time. Notice that di(H) < §(H) for any
graph H [7]. The partition P = {1},...,V5)} is a total domatic parti-
tion of G of maximum size. Hence, the total domatic partition problem is
polynomial-time solvable for graphs with balanced adjacency matrices. ]

4 Graphs with totally balanced adjacency ma-
trices

In this section, we consider the total k-domatic partition problem on graphs
with totally balanced adjacency matrices.
A (0,1)-matrix is a I'-free matrix if it does not contain the submatrix

13 4
el ( 2 d )
A I'-free ordering of a (0,1)-matrix is a permutation of the rows and columns
of the original matrix such that the resulting matrix is I'-free. If a (0, 1)-

matrix A can be permuted to be a I-free matrix M’ by a I'-free ordering
of M, then M’ is a I'-free form of M.



For any (0,1)-matrix M with p rows, n columns, and m nonzero entries,
Lubiw [16] gave an algorithm to find a I-free form of M in O(m log?(n +
p)) time if such a I-free form exists. The time bound was improved to
O(mlog(n +p)) by Paige and Tarjan [17) and O((n + p)?) by Spinrad [20].

Algorithm HM.

(1) Input a -free form A’ of the hyperedge-vertex incidence matrix A of
a totally balanced hypergraph H and a k-fold transversal S of H.

(2) Prune matrix A’ and call the resulting matrix A.

(3) Assign colors to the non-zero entries of A such that (a) the non-zero
entries of each column are assigned the same color and (b) all the &
colors appear in each row.

(4) Partition the columns according to the colors of the columns such
that S, is the set of columns with the color a, for 1 < a < k.

(5) Output transversal partition S, S2,...,S5k of S.

Theorem 6 (Anstee and Farber(l], Hoffman et al.[12], Lubiw(16]). A
(0,1)-matriz M is totally balanced if and only if there is a I'-free order-
ing of M.

Let H = (V,€) bea totally balanced hypergraph with V = {v;,v2,...,v,}
and £ = {Ey, Ey,..., E,} and let A be the hyperedge-vertex incidence ma-
trix'of H. Let > %, IE' | = m. Then, A has m nonzero entries. Following
Theorem 6, we know that any totally balanced matrix has a I'-free form.
The hyperedge-vertex incidence matrix A of H is totally balanced, so A
has a I'-free form. For example, consider the following two matrices

1110000 {19 0 800
Cefile 00170 24 4270 pe s T o
A=10:-0.001 1.0 1|*™M4 =100 00101 1
0001111 00 0oili 1! 171

The matrix A’ is a [-free form of the hyperedge-vertex incidence matrix A
of the totally balanced hypergraph H = (V, &), where V = {v;,v2,...,v7}
and £ = {E) = {v1,v2,v3}, By = {v1,vs,vs,06}, E3 = {v4,vs5,07}, B4 =
{Um’Us,UG:W}}-

Dahlhaus et al. [11] gave a parallel algorithm, called Algorithm HM, to
partition a k-fold transversal S of a totally balanced hypergraph H into
k pairwise disjoint transversals in O(logn) time with O(n?) processors.
Furthermore, their parallel algorithm can be improved to partition a k-fold

10



transversal S of H into k pairwise disjoint transversals in O(logn) time
with O((n 4+ m)/logn) processors if a [-free form A’ of the hyperedge-
vertex incidence matrix A of H is given and implemented by the linked
list data structure and the list ranking approach of Cole and Vishkin [10]
is applied to the parallel algorithm. For k = 2, the following matrix A is
a pruned matrix obtained by performing Step (2) of Algorithm HM on a
I-free form A’ as we mentioned earlier in this section.

0313 :070.0.,0

Y. 07 -8 sl o120

0 000 O0T11

0 00 0O0T11
Theorem 7. Let H = (V,£) be a totally balanced hypergraph with the
hyperedge-vertex incidence matriz A. Assume that V = {v1,v2,...,Vn},
& = {E1, Ey,...,Ep}, and the matriz A contains m nonzero entries. Given

a I'-free form A’ of the hyperedge-vertez incidence matriz A of H, a k-fold
transversal S of H can be partitioned into k pairwise disjoint transversals
S1,82,...,8k in O(n + p+ m) time.

Proof. The theorem can be proved by showing that Algorithm HM can be
implemented in O(n + p 4+ m) sequential time. It is not difficult to see
that steps (1), (2), (4), and (5) of Algorithm HM can be implemented in
O(n + p+ m) time. Step (3) of Algorithm HM can also be implemented in
O(n+p+m) time. This can be verified using the notations defined in [11].
We leave the details to interested readers. Following the discussion above,
the theorem is true. a

Corollary 1. For any positive integer k < 6(G), the total k-domatic
partition problem can be solved in linear time for any graph G with the
totally balanced adjacency matriz A if a I'-free form of A is given.

Proof. Suppose that G = (V, E) with |V| = n and |E| = m. Then, the
matrix A contains n rows, n columns, and 2m nonzero entries. Let V =
{vi,v2,...,v,} and let S be a k-total dominating set of G. Clearly, k <
0(G). Otherwise, G does not have any k-total dominating set.

We construct the set E; = Ng(v;) for 1 <i<n. Let £ = {Ey,...,E,}
and let H = (V,&) be a hypergraph. By Statement (2) of Lemma 1, the
matrix A is also the hyperedge-vertex incidence matrix of H. Since A is
totally balanced, H is totally balanced. By Statement (1) of Lemma 1,
the set S is a k-fold transversal of H and any transversal of H is a total
dominating set of G. By Theorem 7, we can partition the set S into k
pairwise disjoint dominating sets Sy, Sa, ..., Sk in O(n+m) time. Following
the discussion ahove, we know that the total k-domatic partition problem

11



is linear-time solvable for any graph G with a totally balanced adjacency
matrix A if a I'-free form of A is given. B

Corollary 2. The total domatic partition problem is linear-time solvable
for any chordal bipartite graph G if a I'-free form of the adjacency matriz
of G 1is given.

Proof. For any chordal bipartite graph G, the adjacency matrix of G is
totally balanced [6]. By Corollary 1 and using the arguments similar to
those for proving Theorem 5, the corollary holds. O
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