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Abstract

An adjacent vertex distinguishing total coloring of a graph G is a
proper total coloring of G such that no pair of adjacent vertices are
incident to the same set of colors. The minimum number of colors
required for an adjacent vertex distinguishing total coloring of G is
denoted by Xz (G). In this paper, we prove that if G is an outer 1-
planar graph with at least two vertices, then x, (G) < max{A+2,8}.
Moreover, we also prove that when A > 7, x4 (G) = A + 2 if and
only if G contains two adjacent vertices of maximum degree.

Keywords: Adjacent vertex distinguishing total coloring, Outer 1-
planar graph, Maximum degree

1 Introduction

Let G be a simple and finite graph. We use V(G), E(G), A(G) and 6(G) (or
simply V, E, A and ¢ ) to denote the vertex set, edge set, naximum degree
and minimum degree of G, respectively. For a vertex v € V(G), we use
N(v) to denote the set of neighbors of v in G. Let N[v] = N(v) U {v}. We
use d(v) = |[N(v)| to denote the degree of v in G. A k-, k~-and k*-vertex
is a vertex of degree k, at most k and at least k, respectively. A k-neighbor
(resp. k~-neighbor or k*-neighbor) of v is a k-vertex ( resp. k~-vertex or
k*-vertex) adjacent to v.

A proper total-k-coloring of a graph G is a mapping ¢ : V(G)UE(G) —
{1,2,...,k} such that any two adjacent or incident elements in V(G)UE(G)

receive different colors. Denote Cy(v) = {¢(v)} U {¢(wv)|luwv € E(G)}
the set of colors assigned to a vertex v and those edges incident to v.
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An adjacent vertex distinguishing total coloring (or total-k-avd-coloring
for short) ¢ of G is a proper total-k-coloring such that Cg(u) # Cy(v)
whenever uv € E(G). The adjacent vertex distinguishing total chromnatic
number x”(G) is the simallest integer k such that G admits a total-k-avd-
coloring. Note that x?(G) > A +1, and if G contains two adjacent vertices
of maximum degree, then x?”(G) > A + 2. Based on the results of soine
basic families of graphs, such as paths, cycles, fans, wheels, trees, complete
graphs, and complete bipartite graphs, Zhang et al. [14] put forward the
following conjecture.

/"

Conjecture 1.1. If G is a graph with at least two vertices, then x,,(G) <
A + 3.

Chen [1] and Wang [9], independently confirmed Conjecture 1.1 for
graphs with A = 3. Later, Hulgan [5] presented a inore concise proof
on this result. Recently Lu et al. [6] verified Conjecture 1.1 for all graphs
with maximum degree 4. Wang et al. characterized completely the adjacent
vertex distinguishing total chromatic number of outer planar graphs [12],
K s-minor free graphs [11] and planar graphs with A > 14 [10]. Huang and
Wang [4] proved the conjecture for planar graphs with A > 11. Conjecture
1.1 is also confirmed for planar graphs with maximum degree A = 10 [2]
and maximum degree A > 8 containing no adjacent 4-cycles [8]. A graph
G is called 2-degenerate if every subgraph of G contains a vertex of degree
at most 2. Miao et al. [7] showed that for all 2-degenerate graph G,
Xa(G) <max{A+2,6} holds, and when A > 5, x7/(G) = A+2 if and only
if G contains two adjacent A-vertices.

A graph is outer 1-planar if each block has an embedding in the plane
in such a way that the vertices lie on a fixed circle and the edges lie inside
the disk of this circle with each of them crossing at most one another.
The definition of outer 1-planarity implies that outer 1-planar graphs are
all planar and is a natural extension of the family of outer planar graphs.
The notion of outer 1-planar graphs were introduced by Eggleton [3], who
called them outerplanar graphs with edge crossing number one, and were
also investigated under the notion of pseudo-outerplanar graphs by Zhang
et al. [13].

Let x(G) and x/(G) denote the vertex chromatic number and the
edge chromatic index of a graph G, respectively. Then there is a rela-
tion x7(G) < x(G) + x'(G) for any graph G. It is known in Zhang et
al. [13] that every outer 1-planar graph with maximum degree A > 4 has
x'(G) = A(G). Combining this fact with the Four-color Theoremn, we get
the following upper bound: If G is an outer 1-planar graph with A > 4,
then x7(G) £ A + 4.

In this paper, we imnprove this upper bound for outer 1-planar graphs.
We also characterize the outer 1-planar graphs having x4 (G) < A + 2 for
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Fig. 1: Configurations in Theorem 1.3

AZT.
Theorem 1.1. Let G be an outer 1-planar graph. Then
(1) Xa(G) <8 if A6

(2) x2(G) < A+2 for A > 7, and x!(G) = A+2 if and only if G contains
two adjacent A-vertices.

For a graph G, let k(G) = max{A + 2,8} if G contains two adjacent
A-vertices and k(G) = max{A +1,8} otherwise. Then k(G) > 8. Thus,
Theorem 1.1 is equivalent to the following theorem.

Theorem 1.2. Let G be an outer 1-planar graph. Then xJ(G) < k(G).

To prove our main result, we heavily rely on the following structural
theoremn due to [13].

Theorem 1.3. If G is a pseudo-outerplanar diagram with § > 2, then G
contains one of the following configurations G1-G17. Here the solid vertices
have no edges of G incident with them other than those shown. Moreover,

(a) if G contains some configuration among Gg¢-G17, then the drawing of
this configuration in the figure is a part of the diagram of G with its
bending edges corresponding to the chords;

(b) if G contains the configuration G3 and ry ¢ E(G), where x and y are
the vertices of Gz as described in the figure, then we can properly add
an edge zy to G so that the resulting diagram is still outerplanar.
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2 Proof of Theorem 1.2

We define some configurations as follows:
(G1s) A vertex v of degree at most 3 is adjacent to a leaf.

(G19) A t-vertex v, t > 4, is adjacent to a leaf and at least t — 4 vertices of
degree < 2.

Lemma 2.1. Every connected outer 1-planar graph with at least two ver-
tices contains one of the configurations G1-Gig.

Proof. By Theoremn 1.3 we may assume that §(G) = 1. Suppose to the
contrary that G contains none of G1-Gj9. Let H be the graph obtained
by removing all leaves of G. Then H is a connected outer 1-planar graph.
Since G has no Gig, there is no vertex of degree at most three adjacent to
a leaf. In addition, since G has no Gig, every vertex v of degree at least 4
is adjacent to at most d(v) — 4 leaves; that is, it has at least four neighbors
that are not leaves. So for every v € V(G), dy(v) > 2 and dg(v) = dg(v) if
2 < dg(v) < 3. By Theorem 1.3, H contains one of G; -G17. If H contains
G or G3, then G; or G3 must be a configuration of G by the excluding of
G1s. If H contains one of G5 and G4-G17, by the excluding of G9, a solid
3*-vertex in the configuration cannot be adjacent to any leaf. So G also
contains this configuration. This contradicts the assumption on G. O

Proof of Theorem 1.2. Given an outer 1-planar graph G, assuine that
v € V(G) with d(v) < 2. Let C = {1,2,...,k}, where K > 8. Suppose
that ¢ is a total-k-avd-coloring of G with v uncolored. Since v has at most
two adjacent vertices and two incident edges, we always can color v in the
last stage when all its incident or adjacent elements have heen colored. In
other words, we may omit the coloring for such vertices in the following
discussion.

We shall prove Theorem 1.2 by contradiction. Let G be a counterex-
ample such that |E(G)| as small as possible. Clearly, G is connected. By
the result of [6], we may assume that A > 5. Denote k& = k(G) and
C ={1,2,...,k} the set of colors.

Claim 1. For every subgraph H of G with |E(H)| < |E(G)|, H has a
total-k-avd-coloring.

Since any subgraph of G is also an outer 1-planar graph, then by the
choice of G, for any subgraph H of G with |[E(H)| < |E(G)|, H has a total-
k(H)-avd-coloring. Since k(H) < k(G) = k, H is total-k-avd-colorable. O
Claim 2. No 2-vertex is adjacent to a 2~ -vertex.

Suppose to the contrary that G contains a 2-vertex v adjacent to a
2~ -vertex u. Since G is connected and A > 5, we may assuine that theé
other neighbor v; of v is a 3*-vertex.
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First, we assume that u is a leaf. Let H = G —u. Then by assumption,
H has a total-k-avd-coloring ¢. Since [C\{¢(v), ¢(vv;)}| > 6 and d(vy) > 3,
we simply pick a color & € C\ {#(v), #(vv;)}, and then extend ¢ to a total-
k-avd-coloring to G.

Now we assume that u is a 2-vertex. Denote N(u) = {v,u;}. Then
G — uv has a total-k-avd-coloring ¢ with u uncolored. Since [{d(v), d(vv)),
¢(uuy)}| < 3 and k > 8, we can color uv with a color a € C\{¢(v), p(vv)),
¢(uu1)}. Thus, ¢ can be extended to a total-k-avd-coloring of G, a contra-
diction. ]
Claim 3. No 3-vertex is adjacent to a 2~-vertex.

Suppose to the contrary that G has a 3-vertex v adjacent to a 2~ -vertex
u. Let v;, vy he the other two neighbors of v.

When u is a leaf, the proof is similar to that in Claimn 2. So we assume
that u is a 2-vertex. Let w be the other neighbor of u. By Claim 2 we have
d(w) > 3. Then G — uv has a total-k-avd-coloring ¢ with u uncolored.

Since |C\{¢(v), p(vv1), d(vv2), d(uw)}| > 4, we may choose a color o €
C\{¢(v), #(vv1), d(vvz), d(uw)} such that {a} U Cy(v) # Cylvi), i =1,2.
By the choice of a, one can extend ¢ to a total-k-avd-coloring of G hy
coloring uv with @, a contradiction. O
Claim 4. Each 4-vertex is adjacent to at most one 2-vertex.

Suppose to the contrary that G has a 4-vertex v adjacent to at least two
92-vertices u; and uy. Let w be the other neighbor of u;. Then G —u;v has
a total-k-avd-coloring ¢ with u; uncolored. The following proof is sinilar

to that of Claim 3. O

Claim 5. No 4-vertex v is adjacent to a 2-vertex u with N[u] C N[v].

Suppose to the contrary that G contains such a pair of adjacent vertices
u,v. Let v1,v5 and vz be the other three neighbors of v. Without loss of
generality, we assume N(u) = {v,v3}. Then G — uv has a total-k-avd-
coloring ¢ with u uncolored. Note that |C\(Cy(v) U {#(uvs)})| = 3.

If |C\(Cs(v) U {#(uvs)})| > 4, then there must be one color a €
C\(Cy(v) U {¢(uv3)}) such that {a} U Cy(v) # Cy(v;), i = 1,2,3.

If |C\(Cys(v)U{d(uv3)})| = 3, then #(uvz) ¢ Cy(v). So in any extension
of ¢ to G, the color sets of v and v3 are always distinct. Therefore, we can
choose one color a € C\(Cy(v)U{d(uvs)}) such that {a}UCy(v) # Cy(v;),
=124

By the choose of a, we color uv with o to extend ¢ a total-k-avd-
coloring of G, a contradiction. O
Claim 6. G contains no configuration Gig.

Suppose G contains a vertex v with neighbors vy, vg, ..., v, t > 4, such
that d(v) =1 and d(v;) <2 foralli=2,3,...,t —=3. For2<i<t-3,
if v; is a 2-vertex, we denote by u; # v the other neighbor of v;. It follows
from Claim 2 that d(u;) > 3. By the induction assumption, G — v; has
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a total-k-avd-coloring ¢. We may assume that ¢(v) = 1, ¢(vvi) = i for
$ = 2,30 iuds

If Kk =t+1, since A(G) > t, then k = A+ 1 and t = A. By the
definition of k, G does not contain two adjacent A-vertices. Since v is a
A-vertex, we can color vv; by t 4+ 1. So assume that k > ¢t + 2.

(a) For t = 4, since k > 8, there is at least one o € {5,6,7,8} such that
aUCy(v) # Cy(v), t = 2,3,4.

(b) For t = 5, if for any 8 € {6,7,8}, there is an ¢ € {3,4,5} such that
BU Cy(v) = Cy(vi), then we color vu; as follows: If d(vz) = 1, we
first recolor vvy with 6, then color vv; with 7; if d(ve) = 2, we first
recolor vvy with a color a € {6,7} \ {v2uz2}, color vv; with a color in

{6, 7} \ {a}.

(c) For t > 6, suppose for any 8 € {t + 1,t + 2}, there is an @ € {¢,t -
1,t — 2} such that B U Cy(v) = Cy(vs). If for each i € {t,t —1,t — 2},
|Cy(vi) N {t + 1,t + 2}| < 1 holds, then we color vv; and vvz with
t+1andt+2asin (b). If there is an 7 € {t,t — 1, — 2} such that
{t +1,t+ 2} C Cy(v;), since there are at least two other 27 -neighbors
of v, if one of {1,t,t — 1} ¢ Cy(v;), then color vv; and vvy with ¢ + 1
and t + 2 as in (b), otherwise there is a j € {2,3,...,t — 3}, such that
j & Cg(v;). Choose an I € {2,3,...,t — 3} \ {j} and recolor vy; and
vv; with t +1 and t 4 2 as in (b). O

Claim 7. No 5-vertex v is adjacent to two 2-vertices ui, uz such that
N[u;) € N[v], i = 1,2 and N[u;] # Nuz].

Suppose G contains such a 5-vertex v. Let v1,v2 and vz be the other
three neighbors of v. Without loss of generality, we assumne that N(u;) =
{v,vi}, 1 = 1,2. Let G’ = G — {vuj,vuz}. Then G’ has a total-k-avd-
coloring ¢ with u; and uo uncolored.

If (urvy) # Plugua) or d(uiv1) = @(ugve) € Cy(v), then let A =
C\Cy(v). Since k > 8, then |A| > 4. Let A, denote the set of all 2-
element subsets of A. Then |As| > 6. Thus there is at least one element
{a1,a2} € Aj such that {a;,a2} U Cy(v) # Cy(vi), ¢ = 1,2,3. Since
d(u1v1) # d(ugua) or Pp(uivi) = ¢(ugvz) € Cy(v), we may assume that
a; # ¢(uiv;), 1 = 1,2. We color the edge u;v; with oy, 1 =1, 2.

If p(u1v1) = d(ugvy) = B ¢ Cy(v), then let A = C\(Cy(v) U {B})
and A, be the set of all 2-element subsets of A. Since |A| > 3, then
|A2] > 3. Thus, there exists at least one element {a;,a2} € A; such
that {a;, a2} U Cg(v) # Cy(vs). Moreover, since 8 ¢ Cy(v), we have
{o1,02} UCy(v) # Cy(vs), i = 1,2 in any extension of ¢ to G. Again we
can obtain a total-k-avd-coloring of G by coloring the edge u;v; with a;,
i=19 O
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Claims 1-7 iinplies that G does not contain configurations ¢/;, &y, G4,
G5, G7-G1g9. Next, we prove that G does not contain Gy as a configuration
either.

Suppose to the contrary that G has two adjacent 3-vertices v, and vy.
Moreover, v, and v3 have two common neighbors vy and v4. By Claimn 3,

hoth v; and vy are 3*-vertices. See Fig.1.
Let G' = G — vov3. Then G’ has a total-k-avd-coloring ¢ with v;

uncolored. We consider the most complex case, that is, hoth of vy and v4

are 3-vertices.

Case 1. ¢(U31)4) ¢ C¢(v1) ) C¢(v2).

Then the color set of v3 is different from that of v; and v, in any exten-
sion of ¢ to G. The same result also holds for the color sets of vz and vy,
since the colors of v2u3 and v3vy are distinct in any proper total coloring.
Observe that |C \ (Cy(v1) U Cg(va) U {d(v3vq)})| > 1, we can color vauy
with a color a € C'\ (Cg(v1) U Cy(v2) U {@(v3v4)}). Then C(v;) # C(va).
Furthermore, since |{#(v1), #(v1v3), d(v2), @, ¢(v4), p(vava)}| < 6, we may
color v3 with a color ,3 € C\ {¢(U1)a ¢(U1U3)1 ¢(v2)i ai¢(v4)1 ¢(U3v4)} sat-
isfying {a, B} U Cy(vs) # Cy(vs).

Case 2. ¢(vsvs) € Cy(v2) and ¢(vava) ¢ Cy(v1).

Then we have that ¢(vs3vg) = ¢(v2), and in any extension of ¢ to
G, the color set of v; is different from those of vy and v3. Since |C'\
(Cy(v2) U {¢(viv3),d(v3v4)})| > 4, one can color vpuz with a color & €
C \ (Cp(v2) U {¢(v1v3), #(v3vg)}) such that {a} U Cy(vq) # Cg(vs). Since
{(v1), p(v1v3), d(v2), o, d(v4), d(vq), P(v3vs)}| < 5, we can choose a color

B ¢ {¢(v1), p(v1vs), d(va), @, p(vg), B(v2), d(v3v4)} to color vz such that the
new color set of v3 is different from those of vy and vj.

Case 3. @(v3vg) € Cy(v1) and ¢(vzvg) & Cy(v2).

Since in any extension of ¢ to G, the color on vqvs is different from
#(v3vg), we can get that the color sets of v1,v3 and vy are different from
that of vy. Since |Cy(v1) U Cy(va) U {@(v3vy)}| < 6, we color vovs with a
color & € C \ (C4(v1) U Cy(va) U {¢(v3vs)}). Further, since the number of
colors on the incident or adjacent elements of v3 is at most six, there exists
at least one color f such that {a, B} UC4(v3) # Cs(v4). By the choice of a,
we also have {a, f} U Cy(v3) # Cy(v1). Now we get a total-k-avd-coloring
of G, a contradiction.

Case 4. Both of Cy(v1) and Cg(vg) contain ¢(vzvy).

In this case we also have |Cy(v1) U Cg(va) U {#(vav4)}| < 6, so we can
color vv3 with one color a € C'\ (Cy(v1) U Cy(v2) U {¢(vavy)}) such that
{a} U Cy(vg) # Cy(vq). And since a ¢ Cy(v1), in any extension of ¢ to
G we always have that neither of the color set of vy and v3 is the same as

that of v,.
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Case 4.1. The number of colors on the incident or adjacent elements
of vz is at most five. Then there exists at least one color 8 such that
{CY, IB} U C¢(U3) ?é C¢(U4) and {a, ﬁ} U C¢(’U3) # C¢(U2) U {a}

Case 4.2. The number of colors on the incident or adjacent elements of
v3 is six. Then we must have that ¢(vivy) = ¢(vavs) and there is a color
B such that {a, 8} U Cy(v3) # Cy(vs). We color vz with color B to get an
extension of ¢ to G.

If ¢(vivs) € Cy(v2), then Cy(v2) U {a} # {a, B} U Cy(va). So the new
color sets of vy and of v3 are always distinct.

If ¢(viv3z) € Cy(va), then we have ¢(vivz) = ¢(vqvg). However, hy
the choice of 3, B # ¢(vz2). Thus, {a} U Cy(v2) # {a,B} U Cs(v3). The
extension of ¢ to G is a total-k-avd-coloring of G, a contradiction. g

Finally, we assuine that G contains G3 as a configuration.

Claim 8. Both of z and y are 6*-vertices in G.

First, by Claims 2-4, both of z and y are 5T-vertices in G. Suppose
d(z) = 5. Let z1,Z2 and z3 be the remaining neighbors of z. Let G’ =
G —{zu,zv}. Then G’ has a total-k-avd-coloring ¢ with u and v uncolored.
Let A = C\ Cys(x) and Ay be the 2-element subsets of A. Then |A| > 4
and |Az| > 6. Thus, there must be an element {a, 3} € Az such that
{a, B} U Cy(z) # Cy(zs), i+ = 1,2,3. Since yu and yv are colored with
distinct colors, we can properly color zu and zv by a and 5. Then ¢
can be extended to a total-k-avd-coloring of G, a contradiction. The same
argument holds when d(y) = 5. a

Claim 9. Both of z and y have at least three 6*-neighbors.
Similar to the argument as in the proof of Lemma 8, we can extend ¢

to G. O

Let G* be the graph obtained from G by deleting the two 2-vertices in
all G3 configurations in G. Then G* is also an outer 1-planar graph. Call
the two 3*-vertices = and y of G3 special vertices in G*.

Claim 10. G* contains a special vertex x which has at most three 3*-
neighbors in G*.

First, by Claim 9, we observe the following fact: No new 2~ -vertex will
appear in G*.

So G* contains no G3 and §(G*) > 2. Applying Theorem 1.3 again,
G* contains one of the configurations G, G2, G4-G17. On the other hand,
by the previous argument, G contains none of G, Gs, G4-G17. Hence, we
conclude that some special vertex in G becomes a solid 3*-vertex in G*. It

is easy to see that each solid 3*-vertex has at most three 3*-neighbors in
G*. O
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Since no new 2~ -vertex will appear in G*, the special vertex x in Claim
10 is also adjacent to at most three 3*-neighbors in G. Combining Claimns
9 and 10 together, we have that x has exactly three 6*-neighbors in G.
Furthermore, by the structure of the configurations, each special vertex
lies in at most two G3 configurations in G. Let d = dg(z).

Case A. z lies in two G3 configurations.

We use G} and G} to denote the two G3 configurations containing
z. Denote V(GY) = {z,ui,vi,%i}: @ = 1,2, Let xy,x9,23 be the 6*-
neighbors of . Let G' = G — {xu1, zv), xup, 2v2}. Then G’ has a total-k-
avd-coloring with wy,v;,up and va uncolored. Let A = C'\ Cg(v). Then
|A| = k—(d+1 —4) =k—d+3 > 4. Let A4 denote the sets of all 4-elemnent

subsets of A.
If |A| > 5, then |A4| > 5. There must be an element {a1,B1,02,B2} €

A4 such that {al,ﬂl,ag,ﬂg} U Cd,('ll) 7& C¢((L‘i), t =1y 2, 3.
If |A| = 4, then k = d + 1. The proof can be given with a similar
argument as in the case k = d + 1 of Claim 6.

Case B. z lies in only one G3 configuration. Denote the two 2-
neighbors of z in G3 as u and v. Recall that = has exactly three 6*-
neighbors, there is another 2-neighbor w of z. Let G' = G — {zu, zv, zw}.
Let A=C\Cs(v). Then |A|=k—-(d+1-3)=k—-d+2 > 3. Let A3
denote the sets of all 3-element subsets of A. The following argument is

similar to the above case. O
It is easy to check that each extension of ¢ is a total-k-avd-coloring of

G. This contradiction completes the proof of Theorem 1.2.
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