COMPONENTS OF THE KERNEL IN A STAIRCASE
STARSHAPED POLYGON

MARILYN BREEN

ABSTRACT. For a non simply connected orthogonal polygon T, as-
sume that T = S\(A; U...U A,,), where S is a simply connected
orthogonal polygon and where Ay,..., A, are pairwise disjoint sets,
each the connected interior of an orthogonal polygon, 4; C S,1 <
i < n. If set T is staircase starshaped, then Ker T = N{Ker
(S\A;) : 1 < i < n}. Moreover, each component of this kernel will be
the intersection of the nonempty staircase convex set Ker S with a
box, providing an easy proof that each of these components is stair-
case convex. Finally, there exist at most (n + 1)2 such components,
and the bound (n 4 1)2 is best possible.

1. INTRODUCTION

We begin with some definitions and comments that also appear in [1]
and [2]. A set B in R? is called a boz if and only if B is a convex polytope
(possibly degenerate) whose edges are parallel to the coordinate axes. A
nonempty set S in R? is an orthogonal polytope if and only if S is a connected
union of finitely many boxes. An orthogonal polytope in R? is an orthogonal
polygon. Let X be a simple polygonal path in R? whose edges are parallel
to the coordinate axes. That is, let A be a simple rectilinear path in R¢,
For points 2 and y in S, the path A is called an = — y path if and only if
A lies in S and has endpoints = and y. The = — y path X is a staircase
path (or simply a staircase) if and only if, as we travel along A from z to y,
no two edges of A have opposite directions.That is, for each standard basis
vector e;, 1 < ¢ < d, either each edge of A parallel to e; is a positive multiple
of e; or each edge of A parallel to e; is a negative multiple of e;. In the
plane, an edge (or subset of an edge) [v;—1,v;] of path A will be called north,
south, east, or west according to the direction of vector ¥;_jv;. Similarly,
we use the terms north, south, east, west, northeast, northwest, southeast,
southwest to describe the relative position of points.
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For points z and y in a set S, we say = sees y (z is visible from y) via
staircase paths if and only if S contains an z — y staircase path. A set S
is staircase conver (orthogonally convez) if and only if, for every pair of
points ,y in S,z sees y via staircase paths. Similarly, a set S is staircase
starshaped (orthogonally starshaped) if and only if, for some point p in S, p
sees each point of S via staircase paths. The set of all such points p is the
staircase kernel of S, Ker S.

Many results in convexity that involve the usual idea of visibility via
straight line segments have interesting analogues that instead use the con-
cept of visibility via staircase paths. Some of these analogues concern the
kernel of a starshaped set. For example, when set S in R¢ is starshaped
via straight line segments, it is easy to show that the associated kernel is
a convex set. In a staircase analogue [4, Theorem 2|, when the orthogonal
polygon S is starshaped via staircase paths, then every component of Ker
S is staircase convex. Furthermore, [4,Theorem 1] shows that, when S is
a simply connected orthogonal polygon and S is starshaped via staircase
paths, then Ker S itself will be staircase convex. Perhaps surprisingly, (3,
Example 1] reveals that the planar results do not extend to R¢,d > 3,
although the staircase convexity of Ker S will hold for certain classes of
orthogonal polytopes, (See [1] and [3].)

Here we return to the planar case and, in particular, to the case in which
an orthogonal polygon T is not simply connected. Assume that 7" is a union
of fully two-dimensional boxes. Using the bounded components A,,..., A,
of R?\T, we write T = S\(4; U...U A,), where S is simply connected.
Theorems from [2] explore in R? the relationship between similar sets Ker
S and Ker T, when the bounded components Ay,..., A, of Rd\T are inte-
riors of boxes. It turns out that, in R?, these results may he adapted and
extended to yield results for any arbitrary orthogonal polygon. Specifically,
in the plane, these results allow us to explore the relationship between such
sets Ker S and Ker T, to find an easy proof that the components of Ker T
are staircase convex, and to obtain an upper bound on the number of these
components in terms of n.

Throughout the paper, for S a set in R?, bdryS and clS will denote the
houndary and the closure, respectively, for set S. If A is a simple path
containing points a and b, then A(a, b) will denote the subpath of A from a
to b, ordered from a to b.

Readers may refer to Valentine [8], to Lay [7], to Danzer, Griinbaum,

Kleegl (5], and to Eckhoff [6] for discussions concerning visibility via straight
line segments and starshaped sets.
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2. THE RESULTS.

We begin with a helpful lemma.

Lemma 1. Let S be an orthogonal polygon, and let A be the connected
interior of an orthogonal polygon, with AC S. Then Ker (S\A) C Ker S.

Proof. Let ze Ker (S\A), and let yeS, to show that there is an = — y
staircase in S. If yeS\A, the result is immediate, so assume that yeA.
Let A(x,y) represent any x — y staircase. Certainly A(z,y) N A is a finite
union of staircase paths. Since z ¢ A, there exists some zebdryA such
that A(z,y)\{z} C A. Since zeS\ A,z sees z via a staircase path p(z,z) C
S\A. Certainly p(z,z) and A(z,z) (and any = — z staircase) will employ
compatible edges. (That is, the directions of their edges will be the same.)
Hence p(z, z)UA(z, y) will be an z—y staircase. Moreover, u(z, z)UA(z,y) C
(S\A) U (clA) = S. That is, = sees y via an x — y staircase in S. Hence z¢
Ker S, finishing the proof. a

Theorem 1. Let S be an orthogonal polygon, and let A be the connected
interior of an orthogonal polygon, with A C S. Let D denote the union of
all horizontal and vertical lines that meet A. Then R2\D is a union of
four closed regions R;,1 < j < 4, one at each vertez of the smallest bozx
containing A. For each R;,1 < j < 4, either R;N (Ker S) is disjoint from
Ker (S\A) or R;N (Ker S) is a subset of Ker (S\A). Moreover, Ker (S\A)
is exactly the union of those sets R;N (Ker S) that lie in Ker (S\A).

Proof. By Lemma 1, the only candidates for points in Ker (S\A) are points
of Ker S. Clearly no points of D can belong to Ker (S\A), so every point of
Ker (S\A) must lie in one of the sets R; as well as in Ker S. To establish
the result, it remains to show that, for each R;, either R;N (Ker S) is
disjoint from Ker (S\A) or R;N (Ker S) is a subset of Ker (S\A).

Without loss of generality, consider the R; set northwest of A, call it R;.
We will show that one of the two conditions above must hold. If R;n (Ker
S) is disjoint from Ker (S\A), then we have satisfied the first condition.
Otherwise, for some point z in RjN (Ker S), z also belongs to Ker (S\A).
Let w belong to RyN (Ker S) to show that w is in Ker (S\A) as well.

For yeS\ A, we will prove that w sees y via a staircase path in S\A. If
y is not south, east, or southeast of points in A, then any w — y staircase in
S will provide a w — y staircase in S\ A. Without loss of generality, assume
that y is south or southeast of points of A.

Let A(z,y) denote an z — y staircase in S\A. Now consider the relative
positions of z and w. If w is northwest of z, then let u(w,z) be any w —x
staircase in S. Certainly p(w,z) C S\A, and p(w,z) U A(z,y) yields a
w — y staircase in S\A, the desired result. If w is northeast, southeast, or
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southwest of x, then either there is a point of A\(z,y) directly south of w or
there is a point of A(x,y) directly east of w. The cases are symmetric, so
without loss of generality assume that there is a point t of A(z,y) directly
south of w. (Point ¢t need not he unique, since a whole segment of A(z, y)
may be south of w.) Since we Ker S, [w,t] C S. Then clearly [w,t] C S\ A,
and [w,t] U A(t,y) provides a w — y staircase in S\A, again the desired
result. It follows that w sees y via a staircase in S\ A, and we Ker (S\A).
That is, for 1 < j < 4, if one point of R;N (Ker S) lies in Ker (S\A), then
all points of R;N (Ker S) lie in Ker (5\A), and Ker (S\A) (if nonempty)
is exactly the union of the appropriate sets R;N (Ker S). This finishes the
proof of Theorem 1. =l

Theorem 2. Let S be an orthogonal polygon, with pairwise disjoint
sets Ay,..., A, each the connected interior of an orthogonal polygon, A; C
S,1 <i<n. Then Ker (S\(A1U...UA,)) =n{Ker (S\4:) : 1 <i < n}.

Proof. We use an inductive argument. If n = 1, the result is immediate.
Assume that the result is true when n = k > 1 to prove for n = k 4+ 1. To
show that Ker (S\(A1U...UAr;1)) CN{Ker (S\A4;): 1 <i<k+1},let x
belong to the left set to show that z belongs to Ker (S\4;),1 <i < k + 1.
For convenience, it suffices to show that z belongs to Ker (S\Ax4+1). Let
T.= S\(A2 Wesrnll Ak+1)- Then S\(Al WU Ak+1) = T\Al, SO x£
Ker (T'\A;), and by Lemma 1, ze Ker T. However, using our induction
hypothesis, Ker T' = N{Ker (S\A;) : 2 <i < k + 1}, so ze Ker (S\Ax+1),
the desired result. We conclude that z lies in every set Ker (S\A4;),1 <1 <
k+1, and Ker (S\(A1U...UAr41)) CN{Ker(S\A4;): 1 <i<k+1}.

To establish the reverse inclusion, let z belong to N{Ker (S\A4;) : 1 <
i < k +1}. By our induction hypothesis, N{Ker (S\A4;) : 1 < ¢ < k}
= Ker (S\(A1 U...U Ag)) so N{Ker (S\4;) : 1 <£i < k+1} = Ker
(S\(A1 U...Ax))N Ker (S\Ak+1). Using Theorem 1, point = necessarily
Ielongs to one of the four regions R;, one at each corner of the box of Ax, ;.
Without loss of generality we assume that z lies in the region R; northwest
of Axy1. Let y belong to S\(A; U...U Ag41) to show that = sees y via a
staircase path in S\(A;U...UAk41). As in the proof of Theorem 1, if y is
not south, east, or southeast of points in Ax;1, then any = — y staircase in
S\(A; U...UA;) will provide an z — y staircase in S\(A; U...U Ag41).

Now consider all the z — y staircases A(z,y) in S\(4,U...U Ax). Each
A(z,y) has the same length, which is the rectilinear distance from z to y.
We will assume that every such A meets Ay, for otherwise the argument
is finished. Since z,yeS\Ak41, for every such A, AN Agyy will be a finite
union of relatively open segments. Using the order on A from z to y, select
the last endpoint zy of the last of these segments. That is, select z, so
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that there is a segment in A(z,y) N Ayy; immediately preceding z, but
Mzay) © S\ Ak+1. Of course, then /\(Z,\, y) CS\(A1U...UAk41).

From all such paths A, select one path Ao and associated z), = zo for
which the length of Ag(zp,y) is as large as possible. That is, the rectilinear
distance from zp to y is as large as possible, and the rectilinear distance
from x to zg is as small as possible, for all such paths A.

Let (z§,z0) represent the last segment of A\o(z,y) in Ax+1. Since y is
southeast of z, the direction of [z§, z9] in A¢(z,¥) is either south or east.
The arguments for these cases are essentially the same, one obtained from
the other by appropriately modifying the directions of the vectors involved.
Therefore, in the write-up, we consider just the case in which [zg, 2] is a
south vector in Ao(z,y). Certainly 2o must lie on a horizontal edge e of
bdryAk41-

We assert that 2o cannot be the west endpoint of e. Otherwise, the
vertical edge adjacent to zp in bdryAgy; would lie either north of 2z or
south of z9. Consider each case: '

Case 1. If the vertical edge of bdryAx4+1 adjacent to zg were north of
zo, then points of (z{, 20) near zp would lie in bdryAg4,, impossible since
(2, z0) lies in the open set Ax+1. (See Figure 1.)

Ak+l

Zg

" FIGURE 1. Edge e north of zp.
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Case 2. If the vertical edge of bdryAy, adjacent to zo were south of zg,
then  could not see z, via a staircase path in S\ Ax41, impossible since ze
Ker (S\Ax+1)- (See Figure 2.)

Ak+l

FIGURE 2. Edge e south of zp.

We conclude that zg is not the west endpoint of edge e and hence is
either relatively interior to e or the east endpoint of e. Select the west
endpoint wo of e. Observe that wyp is strictly closer to = than z is to x.
Since woebdryArs1 € S\(A; U...U Ay), there is a staircase path p(z,wo)
in S\(A;U...UAy) from z to wg. Moreover, p(z,wo) U [wo, 20)UAo(20,y) is
again an x —y staircase in S\ (A, U...UA}). Certainly [wo, zo]UAo(20,y) C
S\(A,U...UAks1), and the length of this path is strictly greater than the
length of Ao(zo,y), contradicting our choice of Ag. Our assumption that
each © — y staircase A in S\(A; U...U A;) meets Axy; must be false,
and there is some z — y staircase in S\(A; U...U Ag41). That is, ze
Ker (S\(A; U...U Ag41)), and N{Ker (S\A4;) : 1 < i < k+ 1} CKer
(S\(A; U...U Aky41)). Since the reverse inclusion holds as well, the sets
are equal. By induction, the set equality holds for all n, finishing the proof
of Theorem 2. O

Theorem 3. Let S be a simply connected orthogonal polygon, with pair-
wise disjoint sets Ay,..., A, each the connected interior of an orthogonal
polygon, A; C S,1 <i<n. If S\(A1U...UA,) is staircase starshaped,
then so is S and so is each set S\(AyU...UA4;),1 <i < n-—1. Fach
component of Ker (S\(A1 U ...U A,)) is staircase convez, and there are
at most (n + 1)2 such components. Moreover, the bound (n + 1)? is best
possible.

Proof. By Lemma 1, the sets Ker (S\(A; U...U A;)) are nested, with Ker
(S\(AjU...UA;+1)) C Ker (S\(A1U...U4;)),1 £i<n-1, and with
Ker (S\A;) C Ker S. Thus the first statement is true.

To establish the second statement, recall that, by Theorem 2, Ker
(S\(A; U...UA,)) = N{Ker (S\A;) : 1 < i < n}. Moreover, by The-
orem 1, each set Ker (S\A;) is the union of certain sets R;;N Ker S, where
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R, is one of the four disjoint regions described in Theorem 1, one at each
vertex of the smallest box containing A;,1 < j < 4. For convenience, let
B denote the smallest box containing S. Then each component of Ker
(S\A;) is the intersection of Ker S with some box R;; N B. Of course,
any intersection of boxes is again a box. It follows that each compo-
nent of N{Ker (S\A;) : 1 < i < n} and hence each component of Ker
(S\(A; U...UAy,)) will be the intersection of Ker S with a box, where the
hox is an appropriate intersection of boxes of the form R;; N B for some i
and 7,1 <i<n,1<j<4. Since Ker S is staircase convex (by [4, Theorem

1)), each component of Ker (S\(A; U...U A,)) will be staircase convex,

too.

It remains to count the possible components of Ker (S\(A;U...U As) )
Using the discussion in Theorem 1, each set A; introduces one associated
horizontal strip and one associated vertical strip, 1 <7 < n. Since some
of the strips may share points, in all we have at most n disjoint horizontal
strips and at most n disjoint vertical strips. Let V represent the corre-
sponding collection of strips. The set RZ\(U{V : V in V}) creates a grid
consisting of at most (n+1)? regions, n+1 in each horizontal row and n+1
in each vertical column. The intersection of one of these regions with Ker
S is a candidate for a component of Ker (S\(4; U...U A,)). Thus there
are at most (n + 1)? such components, finishing the proof. O

The following easy example shows that the bound (n + 1)2 in Theorem
3 is best possible.

Example 1. Let S be a rectangular polygon in the plane, and let G
denote the diagonal of S that extends from the northwest vertex to the
southeast vertex. Along G, arrange n pairwise disjoint sets Ay,..., A,
each the interior of a rectangular region, A; C 5,1 < i < n. For each 1,
place the northwest and southeast vertices of c/A4; on G. Using the notation
in Theorem 3, let V denote the collection of horizontal and vertical strips
determined by the A; sets, 1 < i < n. Then R?\(U{V : V in V}) has exactly
(n+1)? regions, and each region contributes to Ker (S\(4,U...UA,)). In
fact, this kernel is exactly S\(A;U...UA,). Thus Ker (S\(4;U...UA4,))
has exactly (n + 1) components, and the bound (n + 1)? in Theorem 3 is
best possible.

Figure 3 illustrates the situation when n = 2. Here K}, ..., Ky represent
the components of Ker (S\(4; U 4z)).

Concluding remarks. Let T represent a non simply connected orthog-
onal polygon in the plane. If T' is a union of fully two-dimensional boxes,
then T may be represented as S\(A; U...UA,), where S is a simply con-
nected orthogonal polygon and where A;, ..., A, are pairwise disjoint sets,
each the connected interior of an orthogonal polygon, A; C S,1 <1i < n.
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FIGURE 3. The kernel U{K; : 1 <i <9} of S\(A; U A2).

Of course, in this case, we may apply the results above to 7. Otherwise,
we may write T as the union of such a set (or sets) with line segments con-
tained in U{A; : 1 € i < n}. Replacing the segments with sufficiently thin
hoxes will create a new set to which our results apply and whose staircase

kernel is Ker T.
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