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ABSTRACT. The 3-sphere regular cellulation conjecture claims
that every 2-connected cyclic graph is the 1-dimensional skeleton
of a regular cellulation of the 3-dimensional sphere. The conjec-
ture is obviously true for planar graphs. 2-connectivity is a nec-
essary condition for a graph to satisfy such property. Therefore,
the question whether a graph is the 1-dimensional skeleton of a
regular cellulation of the 3-dimensional sphere would be equiv-
alent to the 2-connectivity test if the conjecture were proved to
be true. On the contrary, it is not even clear whether such de-
cision problem is computationally tractable. We introduced a
new class of graphs called weakly-split and proved the conjecture
for such class. Hamiltonian, split, complete k-partite and matro-
genic cyclic graphs are weakly split. In this paper, we introduce
another class of graphs for which the conjecture is true. Such
class is a superclass of planar graphs and weakly-split graphs.

1. Introduction

Let X be a CW-complex [10] on the 3-sphere $3 = {z € R* : |[z| = 1}
with its standard topology. X is also called a cellulation of the 3-sphere.
The ascending sequence X% C X! ¢ X2 ¢ X3 = X of closed subspaces of
X satisfies the following conditions:

[1 ] XO is a discrete set of points (0-cells)

[2]For0<k<3 X k_ Xk=1is the disjoint union of open subspaces,
called k-cells, each of which homeomorphic to the open k-dimensional
ball U¥(= {z € RF : |z| < 1}).

X* is the k-dimensional skeleton of X and is a k-dimensional CW-
complex for 0 < k < 3 on a subspace of the 3-sphere. X is a reqular
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CW-complex if the boundary of every k-cell is homeomorphic to the k — 1-
dimensional sphere S*=!, for 1 < k < 3. Then, X is called a regular
cellulation of 3. If X is regular, the boundary of every 1-cell is a pair
of 0-cells. It follows that the 1-dimensional skeleton of a regular CW-
complex represents a graph with no loops where the 0-cells correspond to
the vertices and the 1-cells correspond to the edges. From now on, we
will consider simple graphs (no loops and no multiple edges between two
vertices). In particular we are interested in cyclic graphs, that is, graphs
which contain at least one cycle. Since the graphs are simple, the cycles
must be closed paths comprising at least three vertices.

A biconnected graph G = (V, E) is 2-connected if |V'| > 2. The 3-sphere
regular cellulation conjecture claims that every 2-connected graph is the 1-
dimensional skeleton of a regular cellulation of the 3-dimensional sphere [7].
The conjecture is trivially true for planar graphs. Indeed, the embedding of
a planar graph into the 2-dimensional sphere provides a regular cellulation
of the 3-dimensional sphere with two 3-cells. 2-connectivity is a necessary
condition for a graph to satisfy such property. Therefore, the question
whether a graph is the 1-dimensional skeleton of a regular cellulation of
the 3-dimensional sphere would be equivalent to the 2-connectivity test
if the conjecture were proved to be true. On the contrary, it is not even
clear whether such decision problem is computationally tractable. In [6], we
introduced the class of weakly split graphs and proved the conjecture is true
for such class. Hamiltonian, split, complete k-partite and matrogenic cyclic
graphs are weakly split. Matrogenic graphs include matroidal graphs. Split
matrogenic graphs include threshold graphs. Several characterizations of
these classes are given in [11]. Hamiltonian graphs include complete graphs.
Over all the graphs with n vertices, the complete graph is an obvious case
where the genus is maximized. On the other hand, when the genus of the
graph is 0 the regular cellulation of the 3-sphere is provided by the graph
embedding into the 2-sphere (planar case). This consideration suggested
the conjecture that every 2-connected graph is the 1-dimensional skeleton of
a regular cellulation of the 3-sphere since this property might hold when the
graph lies, as far as embeddability into surfaces is concerned, in hetween
a planar one and a complete one. We also want to point out that such
extremal results were obtained for k-partite graphs since complete k-partite
graphs are weakly split for every k. In this paper, we introduce another
class of graphs for which the conjecture is true. Such class is a superclass
of planar graphs and weakly-split graphs.

In Section 2 we describe the previous work on the conjecture. Section 3
introduces the class of k-bisectional graphs, where k is any integer greater
or equal to zero. The conjecture is proved for a subclass of 3-bisectional
graphs, that we call the class of extended split graphs. This class includes
properly all the classes for which the conjecture has heen proved so far.
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Conclusions and future work are given in Section 4.

2. Previous Work

The first subsection shows the proof of the conjecture for hamiltonian
graphs and, therefore, for complete graphs [3]. Then, the second subsection
extends the result to complete k-partite graphs and to split graphs. These
results are a corollary to the proof of the conjecture for the class of crown-
less weakly split graphs which is a superclass of all the classes previously
mentioned [6]. Finally, in the third subsection weakly split graphs are pre-
sented to include matrogenic graphs and extend further the validity of the
conjecture [6]. The theorems in [3] and [6] and their proofs are presented
again as lemmas in this paper since necessary to the proof of the theorem
on extended split graphs in the next section.

2.1 Hamiltonian Graphs

In [3], the 3-sphere regular cellulaton conjecture has been proved true for
hamiltonian graphs as it follows:

Lemma 1.1. Every hamiltonian graph G = (V, E) is the 1-dimensional
skeleton of a regular cellulation of S2.

Proof. We embed V into the 3-sphere. Let vy,vs,...vn,v; be the se-
quence of vertices (0-cells) ordered by a hamiltonian cycle h of G, where
|V| = n. We embed the edges of h (1-cells) into the 3-sphere so that we
have a 1-dimensional complex X. Then, we add to X a 2-cell with bound-
ary h. If G is a simple cycle, another 2-cell with boundary h is added to
X. At this point, by adding two 3-cells to X we obtain a regular cellula-
tion of the 3-sphere. If G is not a simple cycle, let us consider any edge,
say (vi,v;), which does not belong to h, with i < j. We add to X the
edge (vi,v;) as a 1-cell and two 2-cells with the cycles vy, ..., i, Vj, ...Un, v
and v, v;, V-1, ...,V; as boundaries, respectively. These 2-cells are added
so that the intersection of their closures is the edge (v;,v;) to satisfy the
property of a CW-complex on the disjointness of cells. Then, we add one
3-cell bounded by these 2-cells and by the 2-cell with k as boundary. Since
we added only one 3-cell, we can embed the remaining edges of G and,
similarly, the corresponding two 2-cells and one 3-cell for each edge. Dif-
ferently from the first 3-cell we added, the boundaries of these additional
3-cells comprise four 2-cells instead of three. Finally, we add to X one
more 3-cell to obtain the regular cellulation of the 3-sphere with G as 1-
dimensional skeleton. O
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Lemma l.l1isa m‘::::\*: result for the J-sphere regular cellulation con-

jecture since complete graphs with at least three vertices are hamiltoni:

-

W

. -
i::dea‘l. such result is extremal as far as embeddability of :er.e:a. g:a;ﬁ*.s
ir.’.o surfaces is concerned. as the one for planar graphs mentioned in the

introduction. Such extremal results hold for k-partite graphs as we will
ohserve in the next subsection.

2.2 Crownless Weakly Split Graphs

We define a superclass of cyclic split graphs and hamiltonian graphs which
also includes complete k-partite graphs, as shown in '6‘

A connected graph G = (V. E) is crounless weakly split if |
of two disjoint sets [ and H such that.

is the union

- I is empty or a stable set in G:

ry

- H is non-empty and the subgraph induced by H is hamiltonian.

If the subgraph induced by H is complete, G is split. If I is empty. G
is hamiltonian. Furthermore, a complete k-partite graph Kpm, my,-ma IS
crownless weakly split (with my,ma > 1if k = 2) [6]. In [6], the 3-sphere
regular cellulaton conjecture has been proved true for crownless weakly

split graphs graphs as it follows:

Lemma 1.2. A 2-connected crownless weakly split graph G = (V. E)
is the I-dimensional skeleton of a regular cellulation of S3.

Proof. Since G is crownless weakly split, V' is the union of two disjoint
sets I and H such that I is stable and the subgraph induced by H is
hamiltonian. We embed H into the 3-sphere. Let wy,ws,..wg wy be the
sequence of vertices ordered by the hamiltonian cycle A of the subgraph
induced by H. We embed the edges of h into the 3-sphere so that we have
a one-dimesional complex X and we add to X a 2-cell with boundary A.
Then, we can apply to X the procedure of Lemma 1.1 to produce a regular
cellulation of a proper subspace B, of S3. B, is a proper subspace of S%
because we do not add to X the last 3-cell produced by the procedure of
Lemma 1.1. Therefore, B, is homeomorphic to a closed 3-dimensional ball
while the complement B; of B; in S% is an open 3-dimensional ball where
we embed the vertices uy, u,...u; of I. For each vertex u;, 1 <7 <1, first
we add the edges connecting u; to the adjacent vertices in A to X. Since
G is 2-connected, there are at least two such vertices for each u;. Then,
for each pair of vertices w and w' adjacent to u; and consecutive in A, we
add to X a 2-cell with boundary the cycle defined by u;, w, w' and the
vertices in h between w and w' (which, obviously, are not adjacent to u;).
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These 2-cells can be added so that they are disjoint and a 3-cell bounded
by these 2-cells and the 2-cells determined by u;_; (if j = 1, the 2-cell with
boundary h) is added as well. The homeomorphisin of such boundary to
the 2-sphere follows from the disjointness of the 2-cells. Then, we add to
X one more 3-cell to obtain the regular cellulation of the 3-sphere with G
as 1-dimensional skeleton. O

Lemma 1.2 strengthens the 3-sphere regular cellulation conjecture since
the extremal results of the previous subsection are extended to k-partite
graphs, for 2 < k < n, where n is the number of vertices. In the next
subsection, we extend the validity of the conjecture to a superclass of the
crownless weakly split graphs by adding a "crown” which is a linear forest.
Due to this fact, weakly split graphs include matrogenic graphs [11].

2.3 Weakly Split Graphs

A connected graph G = (V, E) is weakly split if V is the union of three
disjoint sets I, H and C such that:

- I is empty or a stable set in G;
- H is non-empty and the subgraph induced by K is hamiltonian;

- C is either empty or none of its vertices is adjacent to a vertex in [ and C
induces a subgraph such that each connected component is a simple
path where each vertex in it is adjacent either to at least two vertices
in H or to none.

We call the subgraph induced by C the crown of G (the definition of the
crown in this paper slightly modifies the one in [6] for the one-connected
case in order to extend further the class of weakly split graphs).

Lemma 1.3. A 2-connected weakly split graph G = (V,E) is the 1-
dimensional skeleton of a regular cellulation of §°.

Proof. It follows from Lemma 1.2 that the subgraph of G induced by
IU H is the 1-dimensional skeleton of a regular cellulation X of a subspace
v3 of S3. If C is empty G is crownless weakly split and the statemnent
of the lemma follows from Lemma 1.2. Otherwise, the vertices in C are
embedded into S® — £3. C induces a graph with p connected components
where each connected component is a simple path. Let Cy,---C, be the
partition of C such that each element of the partition induces one of the
p connected components. Let t1,---t. be the vertices of C; in one of the
two orders induced by the corresponding simple path. Then, for 1 <j <c
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we add to X the edges (if any) connecting 5 to the adjacent vertices in 4
and, for each pair of vertices w and w' adjacent to t; and consecutive iy
h, we add to X a 2-cell with boundary the cycle defined by t;, w, w’ and
the vertices in h between w and w’ (which are not adjacent to t; since w
and w' are consecutive in h). As for the vertices in I, these 2-cells can be
added so that they are disjoint. Let 71+« je be the subsequence of 1---¢
such that tj, --+t;, are the vertices of Cy adjacent to at least two vertices
in K. Since G is 2-connected j; = 1 and j, = ¢. Then, for 1 < r < ¢,
we add to X the edges of the path from t;, to t; . It follows from the
definition of weakly split graph that we can select in h two vertices ad-
jacent to t;, and two vertices adjacent to tj ,,. These selections define a
set S of vertices in h of cardinality between two and four, depending on
whether two, one or none of the selected vertices adjacent to t; coincide
with the two selected vertices adjacent to t;,,,. Then, we add two 2-cells
with boundaries the cycles defined by the vertices of the path from ¢; to
tj,+1» two vertices of S respectively adjacent to ¢;, and t; ., which are con-
secutive (unless they coincide) in h with respect to S and the vertices in
h (if any) between them (which do not belong to S since the two vertices
of § are consecutive). It follows that these two 2-cells can be added to X
so that they are disjoint. Therefore, two disjoint 3-cells can be added to
X bounded by these two 2-cells and complementary subsets of the 2-cells
determined by ¢; ., and by t; . Moreover, we add one 3-cell bounded by
the 2-cells determined by ¢;, and the ones determined by u;, the vertex
in I on the boundary of £3. Again, the boundaries of these 3-cells are
homeomorphic to the 2-sphere. Such embedding procedure is repeated for
each connected component Cy, - - - C,, of the crown (for each of these com-
ponents, the last 3-cell added to X is partially bounded by 2-cells of the
previous component). Finally, we add to X one more 3-cell to obtain the
regular cellulation of the 3-sphere with G as 1-dimensional skeleton. O

Weakly split graphs are a superclass of cyclic matrogenic graphs [6].
Matrogenic graphs include matroidal and threshold graphs. Differently
from threshold graphs, matrogenic and matroidal graphs are not always
split. As mentioned in the introduction, several characterizations of these
classes can be found in [11]. Since a 2-connected graph is always cyclic,
Lemma 1.3 validates the 3-sphere regular cellulation conjecture for matro-
genic graphs adding another important class to the ones discussed in the
previous sections.

Among all the classes we mentioned in this paper, the class of planar
graphs is the only one for which the class of weakly split graphs is not a
superclass. In the next section, we introduce a superclass of planar graphs
and weakly split graphs for which the 3-sphere regular cellulation conjec-
ture is validated.
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3. Extended Split Graphs

We introduce the class of k-bisectional graphs, where k is any integer
greater or equal to zero. The conjecture is proved for a subclass of 3-
bisectional graphs, that we call the class of extended split graphs.

Defining a graph G as k-bisectional involves the Colin de Verdiere pa-
rameter u, where 4 is an integer greater or equal to zero itself. The Colin
de Verdiere parameter is a graph invariant p(G) that was defined in [1], [2].
A graph G = (V| E) is k-bisectional if V is the union of two disjoint sets H
and C such that:

- the subgraph induced by H is hamiltonian or H is empty;
- the subgraph induced by C has its u < k or C is empty;

The subgraphs induced by H and C are called the head and the crown,
respectively. We are interested in k-bisectional graphs such that 0 < k£ < 3.
It was proved in (1] that:

p(G) <0 if and only if G has no edges;

p(G) < 1if and only if G is a linear forest;

u(G) <2 if and only if G is outerplanar;

1(G) < 3 if and only if G is planar;

A graph G = (V, E) is called eztended split if V is the union of two
disjoint sets H and C such that:

- G is 3-bisectional with H and C inducing the head and the crown (so C
is empty or inducing a planar graph);

a connected component of the subgraph induced by C is a single vertex,
a simple path or 2-connected;

if a connected component of the subgraph induced by C is a simple path,
each vertex in it is adjacent to at least two vertices in H or to none
(first linking rule);

if a connected component of the subgraph induced by C is hamiltonian
then it is connected to the subgraph induced by H by at most three
edges with at least two disjoint edges (second linking rule);

if a connected component of the subgraph induced by C is non-hamiltonian
2-connected then it is connected to the subgraph induced by H by
exactly two disjoint edges (third linking rule).
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Planar graphs are extended split since H may be empty. If G is 4
2-bisectional extended split graph only the first or second linking rule ap.
plies since 2-connected outerplanar graphs are always hamiltonian [13],
The class of weakly split graphs is the class of 1-bisectional extended split
graphs, when only the first linking rule applies. Finally, the class of crown-
less weakly split graphs is the class of 0-bisectional graphs and there is no
linking rule. Therefore, the next theorem will prove the conjecture when
the second or third linking rule is applied since the other cases have already
been considered by the previous lemmas.

Theorem 3.1. A 2-connected extended split graph G = (V, E) is the
1-dimensional skeleton of a regular cellulation of S3.

Proof. Let H and C be the head and the crown of G, respectively. If
H is empty, G is planar and the statement of the theorem is trivially true.
If C is empty, G is hamiltonian and the statement of the theorem follows
from Lemma 1.1. If the subgraph induced by C is a planar graph where
each connected component is either a single vertex or a simple path, G is
weakly split and the statement of the theorem follows from Lemma 1.3
Finally, since G is 2-connected the only case left by the definition of ex-
tended split graph is that there is a subset C’ of C such that the connected
components of the subgraph induced by C’ are 2-connected. It follows
from Lemma 1.3 that the subgraph of G induced by H U (C — C’) is the
1-dimensional skeleton of a regular cellulation X of a subspace -3 of S3,
We know from Lemma 1.3 that one of the 2-cells of X on the boundary
of §* — 3 is bounded by a hamiltonian cycle h of the subgraph induced
by H. Let C,---C; be the partition of C’ such that each element of the
partition induces one of the connected components of the subgraph induced
by C’. Since G is 2-connected, each of the p components is connected to
the subgraph induced by H by at least two disjoint edges. Let us consider,
first, the case of exactly two disjoint edges.

Without loss of generality, let C},---C;, induce the components con-
nected to the subgraph induced hy H by exactly two disjoint edges, with
¢' < q. The subgraph induced by Cj is embedded into a subspace £2 of
53 — 3 homeomorphic to S2. With such embedding, we obtain a regular
cellulation of £2. Let (vy,w;) and (v, w2) be the two disjoint edges con-
necting the subgraph induced by C7 to the subgraph induced by H with
v1,v9 € C]. Since the subgraph induced by Cj is 2-connected, there is in
it a simple cycle including v; and vs. Such simple cycle is the boundary
of two open disks in £2 and comprises two simple paths p} and p,” from
vy to v2. On the other hand, h comprises two simple paths h} and h,”
between w; and wp. We call ¢} and ¢;” the simple cycles that (vy,w;)
and (vg,ws) form with p}, k] and p,”, h,", respectively. Then, we add
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to X two 3-cells with their boundaries. One 3-cell is bounded by £2? with
its regular cellulation. The other 3-cell is bounded by the 2-cells on the
boundary of S — £ except the one bounded by h, the 2-cells on one of
the two open disks bounded by the simple cycle including v; and v2 plus
a couple of 2-cells bounded by ¢ and ¢;”, respectively. It is easy to see
that this can be done preserving the property of a regular cellulation for
X. The subgraphs induced by C! for 2 < i < ¢’ can be embedded into S,
similarly as the one induced by Cj, to extend the regular cellulation X.

According to the definition of extended split graph, C, ., -- C; induce
hamiltonian components. Then, for each of these components there inight
be a third edge connecting it to the subgraph induced by H besides the two
disjoint edges required for 2-connected graphs by the second linking rule.
Let (v],w}) and (v, w)) be the two disjoint edges connecting the subgraph
induced by C, . ; to the subgraph induced by H with v},v; € C, ;. Then,
we can extend the regular cellulation X in a similar way as for the com-
ponents induced by Cj, - - - C,. Therefore, there is a simple cycle including
v; and v; in the subgraph induced by Cj,.; and comprising two simple
paths p,.; and py+1” from v] to vj involved with the extension of X. On
the other hand, h comprises two simple paths h;, +1 and hgyy” from wi
to wy. Let (v3,w3) be the third edge with v; € Cp,,,. Withour loss of
generality, we assume that h;, ., and p;, ., are the paths including w3 and
v3, respectively. Moreover, since vertices in H are the only ones to which
vertices in C;,,; may be adjacent in V — C, ., we assume that A7, and
P+ have the same orientation. Then, the third edge can be drawn on
the 2-cell with the boundary including the two paths (obviously, dividing
such cell into two cells). The subgraphs induced by C! for ¢' +2 <i<gq
can be embedded into S3, similarly as the one induced by Cqr 41, to extend
the regular cellulation X. Finally, a 3-cell covering the complement of X
completes the regular cellulation of S3. O

Since extended split graphs are a superclass of weakly split graphs and
planar graphs, such class represents the state of the art for the validation
of the conjecture.

4. Conclusion

A fundamental question for 2-connected graphs has been faced, that is:
is a 2-connected graph always the 1-dimensional skeleton of a regular cel-
lulation of the 3-dimensional sphere? We presented the partial positive
results and argued there is enough evidence to conjecture an affirmative
answer to the question. The 3-sphere regular cellulation conjecture, as it
was called in [7], was given for graphs with at least two cycles in [5] because
we assumed that two 2-cells cannot share the same boundary in order to
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relate it to the concept of spatiality degree [9]. The spatiality degree of
a connected graph G is the maxinum number of 3-cells that the cellula-
tion of a 3-sphere can have with G as a 1-dimensional skeleton, assuming
that two distinct 2-cells of the complex cannot share the same houndary
and the 2-dimensional skeleton is regular. In (3], [4], it is shown that the
3-sphere regular cellulation conjecture is true if and only if the spatiality
degree of a 2-connected graph G = (V, E) with at least two cycles is equal
to 2(|E| — |V|). We denote the spatiality degree of a connected graph G
with s(G). In [3], it is also shown that for any connected graph G

k

s(G) =" s(Bi)—k+1

i=1

where B - -- By, are the biconnected components of G. It follows that comn-
puting the spatiality degree of a connected graph could be an interesting
combinatorial optimization problem only if the conjecture were proved to
be false. On the other hand, the next step to extend further the valida-
tion of the conjecture could be to consider linkless embeddable graphs [12],
which is a superclass of planar graphs. In (8] it was proved that, given a
graph G, u(G) < 4 if and only if G is linkless embeddable. Proving the
conjecture for linkless embeddable graphs would provide a superclass of
extended split graphs, inside the class of 4-bisectional graphs, for which
the conjecture is true.
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