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Abstract

The maximum number of clues in an n X n American-style crossword
puzzle grid is explored. Grid constructions provided for all n are proved to
be maximal for all even n. By using mixed integer linear programming, they
are verified to be maximal for all odd n < 49. Further, for all n < 30, all

maximal grids are provided.

1 Introduction

A crossword puzzle is constructed on a grid, each of whose squares is colored black
or white. A clue is then assigned to each maximal linear segment of white squares;
that segment is to contain the clue’s answer. We consider only an American-style
crossword puzzle grid, as dictated by the Basic Rules at www.cruciverb.com.
Such a grid is square and constructed according to the following structure rules.

1. Connectivity: The centers of any two white squares in the grid can be joined
by a path consisting of horizontal and vertical line segments that meet in
the center of and pass through only white squares.

2. Symmetry: The grid looks the same if rotated 180 degrees.
3. Three+: Each clue’s answer must be at least 3 characters long.

Given a grid, cheater squares are squares that may be switched to black or white,
while following the structure rules, without changing the number of clues in the

puzzle.
In [3], the 15 x 15 grid size used in Daily New York Times crossword puzzles is

considered. There it is seen that 96 is the maximum number of clues and this is
achievable by just two different grids, modulo cheater squares and symmetry. The
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proof of those results in [3] is somewhat tedious and is presented in a link there.
In this paper, we consider American-style crossword puzzle grids of all sizes, seek
the maximum number of clues, and consider only grids that do not have cheater
squares. For example, we establish here that 198 is the maximum number of clues
for the 21 x 21 grid size used in Sunday New York Times crossword puzzles, and
we describe the unique grid G(21) achieving that maximum. See Figure 4.

For each n > 3, let a(n) be the maximum number of clues in an nxn American-
style crossword puzzle grid. Such a grid with a(n) clues is said to be mazimal.
The values of a(n) up to n = 50 appear as sequence A243826 in Sloane’s On-Line
Encyclopedia of Integer Sequences [1].

2 Grid Constructions

For 3 < n < 6, the all-white grid uniquely achieves the maximum number of
clues, and a(n) = 2n. For n = 7,9, 11, we have verified by computer that Figure 1
displays all grids achieving the maximum number of clues. Specifically, a(7) = 22,

7% T 9x9 9“x9 9x9
% 1 18 H-f 11
11 x 11 11 x 11 11 x 11

Figure 1: All7x7,9x 9, and 11 x 11 Maximal Grids

a(9) = 32, and a(11) = 50. For each n > 8 with n # 9, 11, we now construct what
will be shown to be a well-chosen grid G(n).
For n even, G(n) generalizes the examples displayed in Figure 2. The key to

14 x 14

1

Figure 2: Maximal Grids G(n) for n = 2 (mod 4) and n = 0 (mod 4)

the construction is the repeated use of the 4 x 4 grid displayed in Figure 3 that
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Figure 3: The Fundamental Pane

we call a pane. When n = 2 (mod 4), the rows and columns within 3 units of the
boundary of the grid make up the frame of the grid, and the interior is filled by
(n — 6)/4 rows of (n — 6)/4 panes. When n = 0 (mod 4), the rows and columns
within 4 units of the boundary of the grid make up the frame of the grid, and the
interior is filled by (n — 8)/4 rows of (n — 8)/4 panes.

For n odd, G(n) depends on n mod 8 and generalizes the examples displayed
in Figure 4. When n = 1 (mod 8), the top left pane starts at (4,4), there are

17 x 17 19%19

1
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Figure 4: Maximal Grids G(n) for Odd n, Based on n mod 8

(n — 9)/8 rows of (n — 5)/4 panes in the top half of the grid, the 180-degree
rotation of this places the panes in the bottom half of the grid, and the remainder
is considered the frame. Here the frame has a 3 x n strip across the middle of
the grid. When n = 3 (mod 8), the top left pane starts at (5,4), and there are
(n—11)/8 rows of (n—7)/4 panes in the top half of the grid. Whenn =5 ( mod 8),
the top left pane starts at (4,4), and there are (n — 13)/8 rows of (n —5)/4 panes
in the top half of the grid. When n =7 (mod 8), the top left pane starts at (3, 3),
and there are (n — 7)/8 rows of (n — 7)/4 panes in the top half of the grid. In
each case, the bottom half of the grid is the 180-degree rotation of the top half,
and the frame contains a horizontal strip across the middle of the grid.
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To count the number of clues in G(n), we define the following function.

1(n? - 2n +38) if n= 0 (mod 4)

1(2n? = 5n + 10+ (n mod 8)) if n =1 (mod 4)
g(n) = | (2 i v

3(n® —2n) if n =2 (mod 4)

%(Qn2 —5n+8—(nmod8)) ifn=3(mod4d)
For example, when n = 0 (mod 4), the number of clues in the first four rows is
3+4(22 +1)=n-1,

and the number of clues in rows 5 through n — 4 is

228(6+4. 25%) = (2=B(ect),

4
Hence, the total number of horizontal clues is

!n—2)4§n—8! i 2(71 A= 1) e na—znia.

Since the number of vertical clues is the same in this case, we see that G(n) has
g(n) clues. In each case, it is straightforward to verify Theorem 2.1, and we thus

have the lower bound
a(n) > g(n). (21)

Theorem 2.1. For each n > 8 withn ¢ {9,11,15}, G(n) is an n x n crossword
grid satisfying Connectivity, Symmetry, and Three+ that has g(n) clues.

Note that g(9) = a(9) and g(11) = 48 < 50 = a(11), as is reflected in Figure 1.
Also, g(15) = 94 < 96 = a(15), as was established in [3].

3 Optimality of the Grid G(n)

For all n, the number of clues in any row or column is at most (n + 1)/4. To
see this, think of appending a black square to each row and column, and note
that each clue’s answer requires at least three white squares and one black square.
Thus, in a grid with n rows and n columns, the total number of clues is at most

2n [n:lJ. (3.1)

Moreover, this upper bound holds for any n x 7 grid satisfying Three+ and depends
on neither Connectivity nor Symmetry.

Theorem 3.1. For each even n > 8, a(n) = g(n), whence G(n) is mazimal.
Moreover, g(n) is the mazimum number of clues in any n X n grid satisfying

Three+.
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Proof. When n = 2 (mod 4), the upper bound in (3.1) agrees with g(n) and
Theorem 2.1 now gives us a(n) = g(n). So assume that n = 0 (mod 4) and we

have a grid with a(n) clues.

Let r; be the number of clues in row i, and let ¢; be the number of clues in
column j. So we have all r;,c; < §. Let b; be the number of black squares in row
i. By Three+, squares (3,3), (3,n—2), (n—2,3), and (n—2,n — 2) are white (as
are all squares closer to the corners of the grid than these, since cheater squares

are not allowed).

Observe that r; < b; 4+ 1 for all i. Hence, —b3 < 1—r3 and —bp—2 < 1—7n_3.
If square (3,5) is black, then ¢; < 2 — 1. Moreover, if square (n — 2,7) is also
black, then ¢; < & — 2. It follows that

Z c; =C3+Cn-2 + Z Cj

J€{1,...,n} j€{3,n-2}
S. c3 4+ ch-32 1 (71 o 2)':‘:‘ b= (b3 + bn—2)
<czt+cn-2+(n—2)F +2—r3 —Tn_2.

Similarly,

Z ri <T3+Tn-2+(n—2)7+2—c3—cn-2.
By adding these two inequalities, we get

a(n) < 2(n—2)% +4 = 3(n® - 2n +8) = g(n).

From (2.1), it follows that a(n) = g(n). O

4 Relaxing the Structure Rules

For each n > 3, let u(n) be the maximum number of clues in an n X n crossword
puzzle grid satisfying Three+. Such a grid with u(n) clues that does not satisfy
all of the structure rules is said to be mazimal weak. Theorem 3.1 tells us that for
even n > 8, u(n) = a(n) = g(n). However, for odd n, equality does not hold, and
u(n) serves as an upper bound for a(n) that is not tight.

For n = 7,11, we have verified by computer that Figure 5 displays the only
grids achieving u(n) clues. Specifically, u(7) = 24, and u(11) = 54. For n > 9 with

o

Figure 5: The Unique 7 x 7 and 11 x 11 Maximal Weak Grids

n # 11, we construct grids H;(n), for i = 1,2,3,4. When n = 1 (mod 4), the

57



11

-
—-
4

Figure 6: All 17 x 17 Maximal Weak Grids Hy, H2, H3, H4

grids are shown in Figure 6. Note that H, satisfies Symmetry and not Connectiv-
ity, and H satisfies Connectivity and not Symmetry. When n = 3 (mod 4), we
construct only the grids H3 and Hy4 as shown in Figure 7. For each odd n > 9 with

i
1 11
1

Figure 7: All 19 x 19 Maximal Weak Grids H3 and Hy

n # 11 and each i, it is straightforward to verify that H;(n) has —;—(n2 —2n +5)
clues. Moreover, when n = 1 (mod 4), we have the following result, which gives

a decent upper bound for a(n).

Theorem 4.1. For n > 9 with n = 1 (mod 4), u(n) = %(n2 — 2n + 5), whence
each H;(n) is marimal weak.

Proof. Assume that n = 1 (mod 4) and we have a grid with u(n) clues. Let r;
be the number of clues in row 7, and let ¢; be the number of clues in column j.
So we have all ;,¢; < "T“. Let b; be the number of black squares in row 7. By
Three+, square (3, 3) is white, as are all squares closer to the corner of the grid

than this.
Since r; < b; + 1 for all 7, we have —b3 < 1 — 3. If square (3, 7) is black, then

¢; < 21 — 1. It follows that

4
Z ¢ =c3 +ZC;'

j€{1,...,n} J#3
SC3+(n—1)n—;—l—b3
<e3+(n—-1)22 +1-r3.

Similarly,
Z ri<r3+(n—-1)221 +1—cs.
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Hence, we get
u(n) <2(n—1)22 +2=1(n? — 2n +5). a

5 Mathematical Optimization

To verify optimality of G(n) for an initial string of odd n, we use the OPTMODEL
procedure in SAS/OR [4] and formulate the problem of computing a(n) using
mixed integer linear programming (MILP) [5] with three sets of binary decision
variables. Let w;; = 1 if square (7,7) is white, and w; ; = 0 otherwise. Let
hijx = 1 if a horizontal answer starts in square (7, j) and has length k£ > 3, and
hijx = 0 otherwise. Let v; jx = 1 if a vertical answer starts in square (¢, 7) and
has length k£ > 3, and v; jx = 0 otherwise. Let N = {1,...,n}. Over the set
N x N x (N \ {1,2}) we want to maximize

D (i + vijk) (5.1)
1,7,k
subject to
wij=+ =9 -whipik i€NjeN (5.2)
jg,k:
J2<5<j2+k-1
Wy j = Z Vi, jk 1EN,JEN (5.3)
ig,k:
igsi_<_2iz+k—1
D hijk < 1—wij ie N,je N\ {1} (5.4)
k
D vijk < 1-wio1; ie N\{1},je N (5.5)
k
Wi j = Wn—it+l,n—j+1 ieN,jEN (5.6)

hijk = hn—itln-j-ks2kc LEN,JENkE(3,...,n—35+1} (5.7)
Vi,jk = Un—i—k+2,n—j+1,k 1€ N,] S N,k € {3, A e e = 1} (58)

w;,; € {0,1} ieN,jeN (5.9)
h,-.,-,ke{o,l} iGN,jGN,k€{3,...,n—j+l} (5.10)
vijk € {0,1} ieEN,jeENke{3,...,n—i+1} (5.11)

The objective function (5.1) counts the total number of clues (or answers).
Constraint (5.2) enforces that square (¢, j) is white if and only if some horizontal
answer contains it. Constraint (5.3) enforces that square (%, 5) is white if and only if
some vertical answer contains it. Constraint (5.4) forces square (i, j—1) to be black
if some horizontal answer starts in square (¢,7). Constraint (5.5) forces square
(i — 1,7) to be black if some vertical answer starts in square (,j). Constraints
(5.6), (5.7), and (5.8) enforce Symmetry for the white squares, horizontal answers,
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and vertical answers, respectively.  Constraints (5.9), (5.10), and (5.11) enforce
integrality for all variables. Three+ is enforced implicitly by the indexing of the
%, 1 and v, 52 variables; whenever these varinbles appear, & > 3.

Connectivity could be violated by a solution to our current formulation, such as
7

the TX T grid on the left-hand side of Figure 8, whose clue count is 24 > 22 = a(7).

RIR|R\
RIR[R|M
! [ RIR[R|M

L 7 MMM
l .

|

l

Figure 8: Maximal Disconnected 7 x 7 Grid, with Regions and Moats

To enforce Connectivity, we could introduce auxiliary binary and flow variables,
with additional constraints that send one unit of flow from a white “source” square
to each other white square. Since that approach makes the problem artificially
large, we use a more sophisticated and faster cutting-plane method [2]. The idea
is to relax Connectivity and generate new constraints as needed, only when they
are violated by a potential solution.

For example, the disconnected solution in Figure 8 has four connected regions,
and the squares in one such region are marked with an R in the grid on the right-
hand side. The neighbors of these squares in the rest of the grid form a moat,
M = {(1,4),(2,4),(3,4),(4,1),(4,2), (4, 3)}, each of whose squares is marked with
an M on the right-hand side of Figure 8. To prevent this particular connected
region from arising in a solution, we introduce the additional constraints!

wij < Y Wi for (i,j) € R S (5.12)
(iz.2)€M

The logical rule expressed here is that if square (,j) € R is white, then some
square (i2,72) € M must also be white for a white path to connect (7,j) to its
symmetric partner (n—i+1,n—j+1), and R therefore cannot form a connected
region in a solution. By adding such a constraint for each? connected component R
(with moat M) arising in a possible solution, we cut off all disconnected solutions
without cutting off any connected solutions.

Since the number of such constraints is large (the number of possible connected
components grows exponentially with n), we generate them dynamically, rather

'We actually introduce instead the weaker “aggregated” constraint Z(-.j)en w;; <
|R} Z(iz'”)eu w;, j, because doing so turns out to speed up the MILP solver calls.

2We do not generate such a constraint for a connected component that has 180-degree rota-
tional svinmetry with respect to the full grid; doing so would cut off connected solutions.



than all at once in the initial formulation. Explicitly, the cutting-plane approach is
to repeatedly call our MILP solver, check Connectivity of each resulting potential
solution with our network solver, and add any violated constraints (5.12) to the
formulation, terminating once a connected solution is obtained. Typically, only a
few iterations of this loop are needed, with only a tiny percentage of constraints
generated.

Cheater squares are eliminated using a secondary objective to maximize the
number of white squares
Zw"j’ (5.13)

i,J
subject to an objective cut

Z(hi,j,k +v; %) = a(n), (5.14)
i3,k

where a(n) is the maximum number of clues already computed. The steps are:
1. Apply the cutting-plane method to maximize objective function (5.1).

2. Add the objective cut (5.14) to the formulation.

3. For all 7, j such that w; ; = 1, fix w; ;.
4. Maximize the secondary objective function (5.13).
5. Unfix all Wi 5.

All desired solutions are found as follows. Once one optimal solution is found,
we solve a sequence of related problems to find all optimal solutions. For each
solution s, let W, = {(¢,7) : w;; = 1}, the set of white squares. Any solution
that differs from s and has no cheater squares must have at least one white square
that is black in solution s. The following constraint enforces this condition and

excludes solution s:
Z w;; 2> 1. (5.15)
(i,7)E(NXN\W,

To find all solutions, first solve once and include the objective cut (5.14). Then
include constraint (5.15) for each new solution and solve again, until the problem
becomes infeasible.

To reduce the solution set modulo dihedral symmetry, we modify the loop by
introducing multiple constraints (5.15) for each solution s. By Symmetry, the
eight dihedral group elements reduce to just four: identity (= 180-degree rota-
tion), 90-degree rotation (= 270-degree rotation), horizontal reflection (= vertical
reflection), and diagonal reflection (= antidiagonal reflection). Each time a so-
lution s is found, we exclude not just s but the (up to four) images of s under
multiplication by each of these four group elements.
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6 Computer Results

For odd n ¢ (11,15} with 9 < n < 49, we have verified by computer that a(n) <
g(n). Morcover, for 8 < n < 30 with n # 9 and nmod 4 # 3, we have verified
that G(n) is the unique maximal grid, modulo symmetry. For n € {19,23,27}, our
program has also yielded all maximal grids besides G(n), as displayed in Figures 9
through 11.

Figure 10: All Maximal 23 x 23 Grids Besides G(23)
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Figure 11: All Maximal 27 x 27 Grids Besides G(27)

For odd n # 11 with 9 < n < 49, we have verified by computer that u(n) =

%(n2 — 2n + b). Moreover, for odd n < 31, we have verified that the grids H;(n)

are the only maximal weak grids (when they are defined), modulo symmetry.

7 Open Questions

Our first conjecture holds for n < 49.

Conjecture 7.1. For each odd n > 17, a(n) = g(n), whence G(n) is mazimal.
Our second conjecture holds for n < 30.

Conjecture 7.2. For n > 10 with nmod 4 # 3, G(n) is the unique mazimal
grid, modulo symmeltry.

When n mod 4 = 3, how many different American-style crossword grids have
a(n) clues? Besides G(n), what are they?
Our third conjecture holds for n < 49,

Conjecture 7.3. For each n > 15 with n = 3 (mod 4), u(n) = 1(n? — 2n + 5),
whence Hy(n) and Hq(n) are mazimal weak.

Our fourth conjecture holds for n < 31.

Conjecture 7.4. For odd n > 9 with n mod 4 # 3, Hy, Hy, H3, Hy are the only
mazimal weak grids, modulo symmelry.
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