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Abstract A branch vertex of a tree is a vertex of degree at least three.
Matsuda, et. al. [7] conjectured that, if n and k are non-negative integers
and G is a connected claw-free graph of order n, there is either an inde-
pendent set on 2k + 3 vertices whose degrees add up to at most n — 3, or a
spanning tree with at most k branch vertices. The authors of the conjecture
proved it for k = 1; we prove it for k = 2.
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Introduction
In a tree, vertices of degree one and vertices of degree at least three are

called leaves and branch vertices, respectively. A hamiltonian path can be
regarded as a spanning tree with maximum degree at most two, a spanning
tree with at most two leaves, or a spanning tree with no branch vertex.
A natural extension of the hamiltonian path problem is, therefore, to look
for conditions that guarantee the existence of a spanning tree with low
maximum degree, few leaves, or few branch vertices. A survey of spanning
trees by Ozeki and Yamashita [12] examines many of these efforts, including
independence number and degree sum conditions for the existence of such
_spanning trees; low maximum degree [3, 8, 11, 14], few leaves [1, 13, 15],
and few branch vertices [2, 4, 5, 6, 9].

We denote by om(G) the smallest possible sum of degrees of an indepen-
dent set of m vertices in G. If there is no such independent set, we say
om(G) = 0o. We also denote by G[V] = G[vy,va,...,v;] the subgraph in-
duced by V = {v1,v2,...,v}. A paper of Matsuda, Ozeki, and Yamashita
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Figure 1: A vertex v outside the internal subtree St and some nearby
vertices. In this diagram, only degy(by) > 3 while degr(ly) = 1, and all
other vertices in the diagram have degree 2. The only vertex of S shown
in this diagram is b,.

[9] conjectures a particular condition on connected claw-free graphs which
ensures the existence of a spanning tree with at most k& branch vertices.

Conjecture 1. (Matsuda, et. al. [9]) Let G be a connected claw-free graph
on n vertices. If o2x4+3(G) > n — 2, then G has a spanning tree with at
most k& branch vertices.

The k = 0 case, as they point out, follows from a theorem of Matthews and
Sumner [10]; they prove the k = 1 case. In this paper, we prove the k = 2
case.

Theorem 1. Let G be a connected claw-free graph onn vertices. If 7(G) >
n — 2, then G has a spanning tree with at most 2 branch vertices.

The following definitions and notation will be useful in our proofs. For
any tree T, we denote by B = B(T') the set of its branch vertices, and
by L = L(T) the set of its leaves. Any two of its vertices u and v are
joined by a unique path, which we will denote uT'v, and we call the set
St = U uT'v the internal subtree of 7. Also, in this paper, [t] refers

u,vEB
to the set of all positive integers less than or equal to ¢. Some additional

notation will be helpful:

Definition 1. Let v € V(T)\ V(St). The induced subgraph of T given by
those vertices in the same component of T[V(T) \ V(St)] as v must form
a path, which we call M,. We denote the end of this path which is a leaf
in T as l,, and the other end as u,. We define b, = Np(u,) N V(Sr).
Furthermore, we define vt = Nr(v) NvTb,, and if v is not o leaf we define
v~ = Nr(v) NvTl,.

Proof of the Main Result
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To prove Theorem 1, let G be a connected claw-free graph. Assume o7(G) >
n—2. By way of contradiction, assume every spanning tree of G has at least
3 branch vertices. The following result, which guarantees the existence of
a spanning tree with few leaves, will be useful in our proof:

Theorem 2. (Kano et. al. [7]) Let k be a non-negative integer and let ¢
be a connected claw-free graph. If ox43 > n—k—2, then G has a spanning
tree with at most k + 2 leaves.

By Theorem 2 with k = 4, G has a spanning tree with at most 6 leaves.
Among all spanning trees of G with at most 6 leaves, choose a spanning
tree T also satisfying:

(T1) T has as few branch vertices as possible.
(T2) T has as few leaves as possible, subject to (T1).

Given that T has at most six leaves, it must have at most four branch
vertices. Define the derived tree 7 = 7(T) by homeomorphically reducing
T (so there are no more degree two vertices) and deleting all leaves. It is
not hard to show that 7 is also a tree, as any cycle in 7 would correspond to
a cycle in T, of which there are none. Now since T' has at most six leaves,
it can have either three or four branch vertices. If T has only three branch
vertices, then necessarily 7 = P3, and at most one of the branch vertices of
T has degree four in T'. If one vertex of T has degree 4, it can correspond to
either the middle vertex of 7(T') or an end vertex. We can thus impose two
more conditions (the second of which applies regardless of the structure of
T

(T3) Suppose two trees A and B exist satisfying (T2), each with exactly one
vertex of degree 4, and suppose the middle vertex of 7(A) corresponds
to the degree 4 vertex of A, while an end vertex of 7(B) corresponds
to the degree 4 vertex of B. We select A over B.

(T4) St is as small as possible, subject to (T3) if applicable or (T2) oth-
erwise.

Once this T is chbsen, several lemmas follow.
Lemma 1. If Nr(v) = {a,b,c} and a,b & Sr, then ab € E(G).

Proof. Let v € V(G) such that Nr(v) = {a,b,c}, and assume a,b ¢ St.
Since T has more than one branch vertex, ¢ € Sy. Now if ac € E(G), then
T’ := T —{va}+ {ac} either has fewer branch vertices than T (if ¢ € B(T))
or else it has the same number of branch vertices and leaves as T', with the
same structure, but a smaller internal subtree. Thus either (T1) or (T4) is

violated. a
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Lemma 2. Ifve V(T)\V(Sr) and v*l, € E(G), then vl & E(G) if I i,
any leaf of T other than l,. In particular, L(T) is an independent set.

Proof. Let v € V(T) \ V(Sr), and assume v*l, € E(G). Let | be a leaf
of T other than I,. Then T" := T - {vv*,b,u,} + {vl,lyv*} has no more
branch vertices than T and fewer leaves, violating either (T1) or (T2). [J

Lemma 3. Ifv e V(T)\ V(Sr), vtl, € E(G), and degp(by) = 3, then
vb ¢ E(G) if b is any branch vertez of T other than b,. In particular,_ if
be B(T) and l € L(T) such that degy(b) = 3 and b # by, then lb ¢ E(G).

Proof. Let v € V(T) \ V(Sr), and assume v*l, € E(G) and degy(by) = 3.
Let b be a branch vertex of T other than b,. Then T := T — {vv™*, by, } +
{vb,l,v*} has fewer branch vertices than T, violating (T1). O

Lemma 4. Let v € V(T)\ V(St) such that degy(by) = 3, vby, € E(G),
and |Np(b,) N St| = 1. Then vtly € E(G). In particular, if l € L(T) such
that deg(b)) = 3 and |[N7(b)) N Sr| = 1, then lby ¢ E(G).

Proof. Suppose v*l, € E(G). Define v’ = Np(b,) \ (StU{uv}), so Lemma
1 gives that w,u’ € E(G). It follows that T := T — {vv™,byuy, byu'} +
{vby, vt 1y, uyu'} violates (T1). O

Lemma 5. Ifa,c € L(T) and v € V(T) \ V(St) and ¢ # L, # a, then
v ¢ Ng(a) N Ng(c).

Proof. Suppose av,cv € E(G) for some a,c,v as above. Since v is not
a leaf (by Lemma 2), there exists v~. Since G[v,v™,a,c] is not a claw
and Lemma 2 ensures that ac ¢ E(G), it follows that either av™ € E(G)
or cv~ € E(G). Without loss of generality, assume av™ € E(G). Then
T':=T —{vv~,uyby } + {av~, cv} has no more branch vertices than T' and
fewer leaves, violating either (T1) or (T2). O

Lemma 6. Letl € L(T), b € B(T), andv € V(T)\V(St) such thatl # L,
b 75 b 75 bv, lb ¢ E(G), and degT(bv) =3. Then v ¢ Ng(l) N Ng(b)

Proof. Assume lv,bv € E(G) for some l,b,v as above. Lemma 2 ensures
that v is not a leaf, so there exists v=. Since Glv,v™,l,b] is not a claw
and b ¢ E(G), either v~ € E(G) or v~ € E(G). If lv™ € E(G), then
T’ :=T—{ww™,byuy }+{lv~, bv} has fewer branch vertices than T, violating
(T1). Otherwise bv~ € E(G), so T" := T—{vv ™, byuy }+{lv, bv™ } has fewer
branch vertices than T, still violating (T1). O

Lemma 7. Let w € V(T)\ V(St) such that ub, € E(T), and let l, # 1 €
L(T). Thenul & E(G).
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Figure 2: If 7 = P3, T may have a degree 4 vertex corresponding to the
middle vertex of 7. Each vertex labeled b; is also called b;43.

Proof. Suppose ul € E(G) for some u,l as above. Then T" := T — {uby} +
{ul} has no more branch vertices than T and fewer leaves, violating either

(T1) or (T2). O

Lemma 8. Letu € V(T)\V(Sr) such that ub, € E(T) and degp(bu) =3,
and let by, # b € B(T). Then ub ¢ E(G).

Proof. Suppose ub € E(G). Then T" := T — {ub, } + {ub} has fewer branch
vertices than T, violating (T1). O

We now prove several results about 7.

Theorem 3. Figure 2 does not accurately represent T. That is, under
our assumptions, it is not the case that 7(T) = P3 with its middle vertex
corresponding to a degree 4 vertex of T.

Proof. By contradiction, suppose Figure 2 accurately represents T'. As
shown in Figure 2, we select two leaves with the same nearest branch vertex,
which has degree three, and call them I; and l4. We then call the other two
such I, and l5. We also call the two leaves whose nearest branch vertex has
degree four I3 and lg, and we then abbreviate u;, as u;, and b, as b;, and
M, as M;, for each i € [6]. We also define w; = Nr(b3) N V(bsTh;) and
Q; = w;Tb; for each j € [2]. Note that b3 = be is in none of the labeled
paths.

Since G is claw-free, there can be no induced claw centered at b3. Among the
four vertices of Np(bs), therefore, there must be two disjoint cliques whose
union is all of Np(bs). If these are a singleton and a triplet, the singleton
cannot be us; for any i € [2], since otherwise T” := T — {ug—3;b3,bswa} +
{ug_3z;wy, wrwy} violates either (T1) or (T4). Therefore either uzug €
E(G) or ugwy,ugwz € E(G) or uzwz,ugw; € E(G). Also, u1,uz,us,us &
St are neighbors of b; and bs, so Lemma 1 gives that uju4, u2us € E(G).
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Claim 1. The vertex set X := {l1,l2,13,14,05,1,b3} is independent.

Proof. By Lemmas 2 and 3 and symmetry, we need only show that l3b3 &
E(G), so suppose l3b; € E(G). If ugug € E(G), then T' := T—{baus, baue } -+
{ugus, bsl3} has the same number of branch vertices as T but fewer leaves,
violating (T2). On the other hand, if ugus ¢ E(G), then without loss
of generality we may assume uzw; € E(G), so T := T — {bsug,bsw1} +
{ugwy, bsl3} has the same number of branch vertices as T' but fewer leaves,
still violating (T2). O

Claim 2. For every h € [6], (Ng(ln) NV (My))~ N Ng(bs) = 0.

Proof. Suppose some v € (Ng(lh) N V(M4))™ N Ng(b3). By Lemma 3, we
may assume 3 | h. Now if usug € E(G), then we may assume h = 3 without
loss of generality, so T := T — {vv, ugbs, ughs } + {vbs, vtl3, ugug} has the
same number of branch vertices as T and one less leaf, violating (T2).
Otherwise, either ugw;,ugwy € E(G) or ugwa,ugw; € E(G). Without
loss of generality, we may assume h = 3 and ugw; € E(G). Then 7" :=
T — {vvt, bsus, bswy } + {b3v,l3v*, uzw; } has the same number of branch
vertices as T' and one less leaf, violating (T2). O

Claim 3. Ifi# h, then Ng(l;) N V(Mp) N Ng(b3) = 0.

Proof. Suppose v € Ng(l;)NV (Mp)NNg(b3). Lemma 6 ensures that either
3| h or 3| i. Consider cases:

Case 1: Suppose 3t h. Then 3 | i, and since v # [, by Lemma 2, there
exists v~. Since G[v,v™,bs,l;] is not a claw and b3l; ¢ E(G) by Claim
1, either bsv~ € E(G) or jv~ € E(G). If bsv~ € E(G), then T” :=
T — {vv~,brus} + {vl;,b3v™} has fewer branch vertices than T, violating
(T1). Otherwise l;v~ € E(G), so T' :== T — {vv~,byun} + {vbs,l;v~} has
fewer branch vertices than T, still violating (T1).

Case 2: Suppose 314. Then 3 | h, and since v # I, by Lemma 2, there exists
v~. Since Glv,v™,l;,b3] is not a claw and L;b3 ¢ E(G), it follows that either
liv™ € E(G) or b3v™ € E(G). If b3v™ € E(G), then T :=T—{vv™, u;b; } +
{bsv~,l;v} has fewer branch vertices than T, contradicting (T1). On the
other hand, if l;u= € E(G), we consider whether or not uzug € E(G).
If ugug € E(G), then TV =T — {vv",b3u3,b3u6} 1 {li’U“, bsv, u3u6} has
the same number of branch vertices as T' but fewer leaves, contradicting
(T2). If ugug ¢ E(G), then upw; € E(G) for some j € 2], and TV :=
T — {bsun, bswj,vv~} + {upwj, b3v,l;u~} has the same number of branch
vertices as T but fewer leaves, contradicting (T2).
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Case 3: Suppose both 3 | i and 3 | h. Without loss of generality, assume
h=3andi=6,80v€V(M;)and vbs,vlg € E(G) (and there exists v,
as before). Consider cases:

Case 3a: Suppose wiuz € E(G) for some i € [2]. Since Glv, v, by, lg is
not a claw and bylg ¢ E(G), either lgv~ € E(G) or byv~ € BE(G). If
lgv~ € E(G), then T' := T — {vv™, byug, byw;} + {lgv~, byv, ugw} has the
same number of branch vertices as T' and fewer leaves, contradicting (T2).
On the other hand, if byv~ € E(G), then T := T — {vv~, byus, byw;} +
{bsv™, lgv, uaw;} has the same number of branch vertices as T’ but fewer
leaves, still contradicting (T2).

Case 3b: Suppose w;ug € E(G) for some i € [2]. Since Glv,v™,b3,lg] is
not a claw and bsls ¢ E(G), either lgv~ € E(G) or byv~ € E(G). If
lgv™ € E(G), then TV :=T - {U'U_,b3u6, bgw,-} + {lev‘,lev,ugw;} has the
same number of branch vertices as T' and fewer leaves, contradicting (T2).
On the other hand, if b3v~ € E(G), then T := T — {vv~, baug, baw;} +
{bsv~,lev, usw;} has the same number of branch vertices as T but fewer
leaves, still contradicting (T2).

Case 3c: Suppose w;ug,wiug, Waus,woug ¢ E(G). In this case, since
G|bs, w1, u3, ug] is not a claw and uzwy, ugw1 € E(G), it follows that uzug €
E(G). Also, since G[bs, w1, ws,us) is not a claw and wyus, wouz ¢ E(G),
it follows that wywy € E(G). As before, since G[v,v™, b, lg) is not a claw
and b3ls ¢ E(G), either lgv~ € E(G) or bsv~ € E(G). If lgv~ € E(G),
then T/ := T — {bsus, bsug, vv~—} + {usus, b3v,lev™} has the same number
of branch vertices as T but one less leaf, contradicting (T2). We consider
separately the case where bzv~ € E(G):

Case 3c’: Suppose ugus, wiws,b3v~ € E(G). For each i = 0 (mod 3),
j € [2], since G[bs,v™,u;,w;] is not a claw and ww; ¢ E(G), it fol-
lows that either v~ u; € E(G) or v"w; € E(G). In other words, there
does not exist a pair (4, 5) such that v~ u;,v"w; € E(G). Therefore either
v~ wy,v"wy € E(G), or else v uz,v"ug € E(G). If v~wy,v"ws € E(G),
then TV := T — {vv™, bgwy, b3us, baug} + {w1v™, wiws, b3v, ugug} is a tree
with the same number of branch vertices (barring w; = by, which would
violate (T1)) and leaves, with the same structure, but |V (St)| < |V (ST)|,
contradicting (T4). On the other hand, if v~u3,v"ug € E(G), then T' :=
T — {vv~,bsus} + {lsv,v"u3} has the same number of branch vertices at

T and fewer leaves, contradicting (T2) and completing the proof of Claim
3 O

Claim 4. Ifi= j(mod 3), then Ng(l;) NV (Q;) = 0.
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Proof. Suppose v € Ng(l;) N V(Q;). Then v # b; by Lemma 4, so 7" :=
T — {biui} + {vl;} has the same number of branch vertices and leaves as T
still with the same structure, but |V (Sy)| < |V(Sr)|, violating (T4). O

Claim 5. Ifi+j = h = 0(mod 3), then Ng() NV (Q;) N Nag(ln) = 0.

Proof. Suppose some v € Ng(l;) NV (Q;) N Ng(ln). Lemma 3 ensures that
v # bj, so T' := T — {bui, baup} + {liv,lnv} matches the structure of T
but |V(St)| < |V(ST)|, violating (T4). 0O

Claim 6. Ifi+ j = 0(mod 3), then (Ng(b3) N V(Q;))~ N Ng(l;) = 0.

Proof. Suppose some v € (Ng(b3)NV(Q;))~ NNg(l;)- Then vtbs € E(G),
so T' :=T — {vv*,bju;} + {vbs,l;v} violates (T1). O

Claim 7. Ifi+j =3, then Ng(l;) N V(Q;) N Ng(li+3) = 0.

Proof. Suppose some v € Ng(l;) N V(Q;) N Ng(li+3). Then T := T —
{bsui, bswi} + {liv, liy3v} violates (T4) since |V (S7)| < |[V(ST)|- O

Claim 8. For every j € [2], Ng(l3) N V(Q;) N Ng(ls) = 0.

Proof. Suppose v € Ng(l3) N V(Q;) N Ng(lg). Now if ugus € E(G),
then T' := T — {b3us,bsue} + {vl3,usug} has no more branch vertices
than T and fewer leaves, violating either (T1) or (T2). Otherwise, either
uzwi, ueW2 € E(G) or ugws,ugw; € E(G). Without loss of generality,
assume uzwi,ugw2 € E(G) and j = 1. Then T” := T — {bsug, bswa} +
{vle,usw2} has at most as many branch vertices as T' and fewer leaves,
again violating (T1) or (T2). O

Claim 9. If 3|i, then (Ng(bs) N V(Q;))~ N Ne(l:) = 0.

Proof. Suppose v € (Ng(bs) NV(Q;))” N Ng(l;). Then v*tbs € E(G), so
T' :=T — {vvt,bsw; } + {l;v, v+ b3} violates (T4) since |V(Sz)| < |V (ST)|-
O

Claim 1 gives an independent 7-vertex set X := {l1,12,13,l4,15,16,b3}. For
every h,i € [6] with ¢ # h, (Ng(lp) N V(Mp))~ is disjoint from both
Ng(l;) N V(M}) and Ng(bs) N V(Mp), by Lemma 2 and Claim 2, respec-
tively. Lemma 5 gives that the five sets Ng(l;) N V(M},) are disjoint from
each other, and Claim 3 ensures that Ng(b3) NV (M}) is disjoint from any
of them. Therefore, for every h € [6], the seven sets (Ng(lr) NV (M4))™,
Ng(bs) N V(Mp), and Ng(l;) N V(Mp) for each i # h are all disjoint. Fur-
thermore, Lemmas 7 and 8 show that uj is in none of these sets if 3 { h.
Therefore:
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Claim 4, meanwhile, shows that for each j € [2] the only possible neighbors
of vertices in V(Q;) in X are l3_;, lg_j, I3, lg, and y3; Claims 5-9 show
that for each j € [2], the five sets Ng(ls—;) N V(Q;), Ng(ls—;) N V(Qj;),
Ng(l3) NV(Q;), Na(lg) NV(Q;), and (Ng(bs) N V(Q5))~ are all disjoint.
Therefore, for each j € [2]:

Y INe(v) NV(Q;)| = [Ng(ls—;) NV (Q5)| + INa(le-3) N V(Q5)| +
veX
[N (l3) NV (Qj)| + INa(ls) NV (Q)| + |(Ne(bs) N V(Q5)) ™| < [V(Qj)l-

Since b3 € X, no vertex of X is adjacent to b3 in G, so we can sum these
inequalities for

Z deg(v) < n — 4, contradicting the assumption that 07(G) > n — 2

vEX
O
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Theorem 4. There is no degree § vertex in T.

Proof. Suppose there is a degree 4 vertex in T. Theorem 3 gives that it
cannot correspond to the middle vertex of 7(T"), so it must correspond to
an end vertex. We call the degree 4 vertex b, and we call the middle branch
vertex = and the remaining one y. The three leaves whose nearest branch
vertex is b shall be called 1y, l2, and l3, and we abbreviate u;, as u; and M;,
as M; for each i € [3]. The other leaves and branch vertex neighbors are
labeled as shown in Figure 3, with the labeled paths running only between
nearest labeled vertices, similar to Figure 2 (for example, @1 = bT'z;), with
one important exception: P = wT'z.

Recall condition (T3), which prefers trees whose middle branch vertex has
degree 4 over trees with an “end” branch vertex of degree 4. This condition,
together with our choice of T, rules out the existence of any spanning tree
of G whose middle branch vertex (of three) has degree 4.

Once this T is chosen, since G is claw-free, there can be no induced claw
centered at b. Define bt := Nrp(b) N V(bT'z). If there are two distinct
i,7 € [3] such that u;b*,u;b* € E(G), then consider T’ := T — {bu;, bu;} +
{uib*,ujbt}. If b+ = =, then T” has fewer branch vertices than T, violating
(T1). Otherwise T” has the same number of branch vertices and leaves as T,
with the same structure, but |V (Sz/)| < |V (S7)|, violating (T4). Therefore
there is at most one ¢ € [3] such that u;b* € E(G). If such an i exists,
let {j,k} = [3] \ {i}, so it is easily seen that ujur € E(G). Otherwise,
it is easily seen that {uj,u2,us} is a clique. Also, Lemma 1 gives that
wiwy € E(G)

Claim 1. The vertez set X := {l1,l2,13,w,y1, yo,b} is independent.

Proof. By Lemmas 2 and 3, we need only show that I;b ¢ E(G) for each
i € [3]. Assume l;b € E(G). Then either u;b* € E(G) or w;u; € E(G)
for some j # i. If uibt € E(G), then TV := T — {bb*,bu;} + {b*u;,L;b}
has the same number of branch vertices as T' but fewer leaves, violating
either (T1) or (T2). Otherwise u;u; € E(G) for some j # %, so T :=
T — {bu;,bu;} + {bl;,u;u;} has the same number of branch vertices as T
but fewer leaves, violating (T2). O

Claim 2. For every h € [3], (Ng(lx) N V(M4))~ N Ng(b) = 0.

Proof. Suppose v € (Ng(lp) N V(My))~ N Ng(b). Then vt € Ng(lp) N
V(Mp,), and either upb™ € E(G) or upu; € E(G) for some i # h. If upb* €
E(G), then T’ := T — {bb*,bup,vvt} + {v*ly,vb, btup} has the same
number of branch vertices as T’ and fewer leaves, violating (T2). Otherwise
upu; € E(G) for some i # h, so T’ := T — {vv*t, bug, bu; } + {vb, vin, upu; }
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has the same number of branch vertices as T' and fewer leaves, violating
(T2). ]

Claim 3. For everyi € [3], Ng(li) NV (P) N Ng(b) = 0.

Proof. Suppose v € Ng(l;) N V(P) N Ng(b). Now if v = z, then consider
Glz,2~,b,li]. We have bl; ¢ E(G) by Claim 1, z~l; ¢ E(G) by Lemma
7, and £7b ¢ E(G) by Lemma 8. This makes G[z,z~,b,l;] an induced
claw, which is a contradiction. On the other hand, if v # z, then since
v # w, there exists v~. Since G[v,v™,b,1;] is not a claw and bl; ¢ E(G), it
follows that either v=b € E(G) or v~l; € E(G). If v=b € E(G), then T’ :=
T — {vv~,zz~} + {v™b,vl;} has fewer branch vertices than T'; otherwise
v7l; € E(G),s0 T :=T—{vv™,xz~ }+ {bv, l;v~} has fewer branch vertices
than T. Either way (T1) is still violated. 0

Claim 4. For every i € [3] and h € [2], Ng(l;) N V(Ry) N Ng(b) = 0.

Proof. Suppose v € Ng(l;) N V(Rp) N Ng(b). Since v # yn, there exists
v~. Since G[v,v7,b,1;] is not a claw and bl; ¢ E(G), either bv~ € E(G)
or v~ € E(G). If v~ € E(G), then T' := T — {wv~,ywn} + {bv~, liv}
has fewer branch vertices than T'; otherwise ;v~ € E(G), so T' := T —
{vv~=,ywn}+ {bv,l;v=} has fewer branch vertices than T. Either way (T1)
is violated. O

Claim 5. For every h € [3], Ng(w) N V(M) N Ng(b) = 0.

Proof. Suppose v € Ng(w) N V(M) N Ng(b). Now either upb* € E(G) or
there exists some 7 € [3] \ {h} such that u,u; € E(G). Consider two cases:

Case 1: Suppose upb™ € E(G). Now if bt = z, then T/ := T — {bup} +
{zup} corresponds to Figure 2, violating (T3). If b* # z, then T” :=
T —{bup, bb™, 221 }+{vw, vb, b*up} corresponds to Figure 2, violating (T3).

Case 2: Suppose upu; € E(G). Since v # ly, there exists v~, and since
G[v,v™, b, w] is not a claw and bw ¢ E(G), it follows that either bv~ € E(G)
or wv~ € E(G). Now if v~ € E(G), then T' := T — {vv™, bup, bu;} +
{bv™,wv,upu;} has the same number of branch vertices as T but fewer
leaves, violating (T2). Otherwise wv~ € E(G),so T" := T—{vv~, bus, bu; }+
{upus, bv,wv™} has the same number of branch vertices as T but fewer
leaves, violating (T2). 0

Claim 6. For every h € [3] and i € [2], Ng(y;) N V(M) N N (b) = 0.
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Proof. Suppose v € Ng(yi) NV (M) N Ng(b). Now either upb* € E(G) or
there exists some j € (3] \ {h} such that upu; € E(G). Consider two cases:

Case 1: Suppose upb* € E(G). Now if b+ = z, then T := T — {bun} +
{rup} corresponds to Figure 2, violating (T3). Otherwise, 7' := T -
{bup,bb*, zz3} + {vyi,vd,btup} corresponds to Figure 2, again violating
(T3).

Case 2: Suppose upu; € E(G). Since v # ln, there exists v~, and
since G[v,v~,b,¥;] is not a claw and by; ¢ E(G), it follows that either
bv= € E(G) or y;v— € E(G). Now if bv— € E(G), then T' := T -
{vv™,bup,bu;} + {bv,yiv,upu;} has the same number of branch ver-
tices as T but fewer leaves, violating (T2). Otherwise, y;v~ € E(G), so
T’ :=T—{vv~,bup, bu;} + {unu;, bv, y;v~} has the same number of branch
vertices as T but fewer leaves, again violating (T2). O

Claim 7. If h # i, then Ng(l;) "N V(M) N Ng(b) = 0.

Proof. Suppose v € Ng(l;) N V(M) N Ng(b). Choose j € [3] \ {h,i} and
consider two cases:

Case 1: Suppose ujb* ¢ E(G). Then either uju; € E(G) or ujup € E(G).
If uju; € E(G), then T' := T — {bu;, bu;} + {uju;,vl;} has the same number
of branch vertices as T but fewer leaves, violating (T2). Otherwise u;uy, €
E(G), so T' := T — {bup, bu;} + {unu;,vl;} has the same number of branch
vertices as T but fewer leaves, still violating (T2).

Case 2: Suppose ujbt € E(G). Then upu; € E(G), and since v # I,
there exists v~. Since G[v,v™,b,l;] is not a claw and bl; ¢ E(G), it
follows that either v~ € E(G) or bv— € E(G). If liv™ € E(G), then
T' := T — {bup, bu;, vv~} + {bv, upus, ;v~ } has the same number of branch
vertices as T but fewer leaves, violating (T2). Otherwise bv~ € E(G),
and since G[b,us,v™,b%] is not a claw and upbt ¢ E(G), it follows that
either upv~ € E(G) or bTv~ € E(G). If upv~ € E(G), then TV :=
T — {vv~,bup} + {liv,upv~} has the same number of branch vertices as
T but fewer leaves, violating (T2). Otherwise b*v~ € E(G), so consider
T' .= T — {vv™,bup,bu;} + {btv~,b%u;,liv}. If b¥ = x, then T’ has
fewer branch vertices than T, violating (T1). Otherwise, T’ has the same
number of branch vertices and leaves as T, with the same structure, but

[V(ST)| < |[V(ST)|, violating (T4). O
Claim 8. If h,i € [2], then Ng(y:) N V(Qn) = 0.
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Proof. Suppose v € Na(wi) N V(Qn). Choose j € [2] \ {i} and consider
T = T - {yw,yw;} + {vpi,wiw;}. 1l v = borv =y then T has
fower branch vertices than T', violating (T1). Otherwise, T has the same
number of branch vertices and leaves as T', both matching Figure 3, but

V(S| < IV(St)l, violating (T4). )
Claim 9. Ifi # j, then Ng(l) 0 V(Ql) n N(;(lj) = ().

Proof. Suppose v € Ng(li) N V(Q1) N Ng(lj). Then v # b, so T =
T — {bu;,bu;} + {vli,vl;} has the same number of branch vertices and
leaves as T, with the same structure, but |V(S7v)| < |V(S7)|, violating

(T4). 8
Claim 10. If i # j, then Ng(l:) N V(Q2) N Na(l;) = 0.

Proof. Suppose v € Ng(l;) N V(Q2) N Ng(l;). Then consider T' := T -
{bus, bu;} + {vli,vl;}. If v =y, then T' has fewer branch vertices than T

violating (T1). Otherwise 7" corresponds to Figure 2, violating (T3). O
Claim 11. Ifi € [3] and h € (2], then Ng() N V/(Qn) N No(w) = 0.

Proof. Suppose v € Ng(l;) N V(Qn) N Ng(w). Then v # b, and it is easily
verified that v # y, so T := T — {bu;, zz~} + {vw, vl;} has corresponds to
Figure 2, violating (T3). O

Claim 12. Ifi € [3], then (Na(5) NV(@1)~ N No(l:) =0.

Proof. Suppose v € (Ng(b)NV(Q;))~ NNg(li). Then vt € Ng(b)NV(Qy),
so T' :=T—{vv*,bb*} +{l;v, bvt} has the same number of branch vertices
and leaves as T, with the same structure, but |V (S1)| < |V(S7)|, violating
(T4). 0

Claim 13. We have (Ng(b) NV (Q1))~ N Ng(w) =0.

Proof. Suppose v € (Ng(b)NV(Q1))~NNg(w). Then v+ € Ne(b)NV(Qy),
so T' := T — {vv*,zz~} + {vw,v*b} has fewer branch vertices than T,

violating (T1). O
Claim 14. Ifi € [3], then (Ng(b) NV(Q2))” N Ng (k) = 0.

Proof. Suppose v € (Ng(b)NV(Q2))~NNg(l;). Then vt € Ng(b)NV(Q2),
so T' := T — {vv*,zz2} + {bv*,liv} has fewer branch vertices than T,

violating (T1). a
Claim 15. We have (Ng(8) N V(Q2))~ N Ne(w) = 0.
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Proof. Suppose v € (Ne(b)nV(Q2))~NNg(w). Then vt e Ng(b)NV(Q2),
so T := T — {vot,zz,} + {wv,bv*} has fewer branch vertices than T,

violating (T1). (]
Claim 16. We have wz ¢ E(G).

Proof. Suppose wx € E(G). Since Glz,z~,z1,T2] is not a claw, either
=z, € E(G) or 2~z, € E(G) or zya2 € E(G). If 2721 € E(G), then
T =T - {q:x_,mml} + {wx,x—xl} violates (Tl) Ifz~zy € E(G)’ then
T’ := T - {xz~, x5} + {wz,z~z2} violates (T1). Otherwise 173 € E(G),
so T :=T — {zx,} 4 {z132} violates (T4). O

Lemma 2 ensures that (Ng(w) N V(P))~ is disjoint from Na(yi) N V(P)
for each i € [2] and from Ng(l;) N V(P) for each j € [3]. Lemma 3 ensures
that (Ng(w) N V(P))~ is disjoint from Ng(b) N V(P). Lemma 5 erisures
that the five sets Ng(y;) NV (P) for each i € [2] and Ng(l;)NV (P) for each
j € [3] are all disjoint. Lemma 6 ensures that Ng(b) NV (P) is disjoint from
Ng(y:) N V(P) for each i € [2], and Claim 3 ensures that Ne(l;) NV (P)
is disjoint from Ng(b) N V(P) for each j € [3]. Therefore the seven sets
(Ng(w)NV(P))~, Ng(y%:)NV(P) for i € [2], No(l;)NV(P) for j € [3], and
Ng(b) NV (P) are all disjoint. Furthermore, Lemmas 7 and 8 and Claim 16
ensure that none of them contain z~, so the sum of their cardinalities is at

most |V(P)| —1.

Similarly, for each h € [2], Lemma 2 ensures that (Ng(yn) NV(Rp))™ is
disjoint from any of Ng(y3—n)NV(R},), Na(w)NV (Rh), and N (l;)NV (Rp)
(for j € [3]), and Lemma 3 ensures that (Ng(yn) NV (R4))™ is disjoint from
Ng(b) N V(Rp). Lemma 5 ensures that the five sets Ng(y3—r) N V(R4),
Ng(w)NV(R4), and Ng(I;)NV(Ry,) are all disjoint. Lemma 6 ensures that
Ng(b)NV (Ry) is disjoint from both Ng(y3—r)NV(Rr) and Ng(w)NV (Ry),
while Claim 4 ensures that Ng(b)NV (R}) is disjoint from Ng(l;) NV (Ry).
Therefore the seven sets (Ng(yn) NV(Rr)) ™, Ne(y3—r) NV(Rp), No(w)N
V(Rr), Na(;)NV(Ry) for j € [3], and Ng(b)NV (Ry) are all disjoint. Now
Lemmas 7 and 8 ensure that none of them contain wp, so the sum of their
cardinalities is at most |V (Ry)| — 1.

Similarly, for each h € [3], Lemma 2 ensures that (Ng(lp) N V(M4))~
is disjoint from any of Ng(l;) N V(Mp) (for i # h), Ng(w) NV (M), and
Ng(y;) NV (My) (for j € [2]), and Claim 2 ensures that (Ng(ln) NV (Mp))~
is disjoint from Ng(b) NV (M}). Meanwhile, Lemma 5 ensures that the five
sets Ng(l;) N V(M},) for i # h, Ng(w) N V (M), and Ng(y;) NV (Mp)
are all disjoint. Now Ng(b) NV (M}) is disjoint from Ng(y;) NV (M}) (by
Claim 6), Ng(w) NV (M) (by Claim 5), and Ng(l;) NV (M) (by Claim
7). Therefore the seven sets (Ng(ln) NV (M4))~, Ng(li)NV (M}) for i # h,
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Figure 4: If 7 = P;, T may have no degree 4 vertices. Each vertex labeled
b; is also called b;y3.

Ng(w) N V(My), Ng(y;) NV (My) for j € [2], and Ng(b) N V(My) are all
disjoint, so the sum of their cardinalities is at most |V (Mj)|.

Finally, for each h € [2], Claim 8 gives that the two sets Ng(y;) NV (Qn)
are empty, and Claims 9-15 give that the five sets Ng(l;)NV(Qn), No(w)N
V(Qn), and (Ng(b) N V(Qr))~ are all disjoint, so the sum of their cardi-
nalities is at most |V (Qp)|-

Summing these inequalities gives Z deg;(v) < m — 3, contradicting the
vEX
assumption of the theorem. O

We now know that T" has no degree 4 vertices.
Theorem 5. Our tree T has at least four branch vertices.

Proof. By contradiction, suppose T has only three branch vertices. Since
Theorem 4 requires that they all have degree 3, we label vertices and paths
as shown in Figure 4, with each labeled path connecting only the nearest
labeled vertices, as with the other figures, with one important exception:
M3 = zTl3. Lemma 1 gives that uju4,uous € E(G). Furthermore, (T4)
gives that wiywy € E(G), so either w1z~ € E(G) or wez™ € E(G).

Claim 1. The vertez set X := {l,l2,3,l4,15,b1,b2} is independent.

Proof. By Lemmas 2, 3, and 4, we need only show that b1b; ¢ E(G). If
biby € E(G), then T' := T — {wyx} + {b1b2} has fewer branch vertices than
T, violating (T1). O

Claim 2. Ifh#i and j € [2], then Ng(l;) N V(Mp) N Ng(b;) = 0.
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Proof. Suppose v € Ng(l;)NV(Mp)NNg(bj). Lemma 6 requires that either
h = j(mod 3) or i = j(mod 3), and since v # I, there exists v~. Consider

cases:

Case 1: Suppose h = i = j(mod 3). Since Glv,v™,l;,bj] is not a claw
and l;b; ¢ E(G), it follows that either iy~ € E(G) or bjuv~ € E(G).
If iv- € E(G), then TV .= T - {bjuh,bju,-,vv‘} * {l,-v‘,ij,uhu.-} has
fewer branch vertices than T, violating (T1). Otherwise bjuv~ € E(G),
so since G[bj, v, up,b}] is not a claw and upb; ¢ E(G), it follows that
either b}v= € E(G) or upv™ € E(G). If bjv™ € E(G), then T := T —
{vv~,bjun} + {liv, b v~} either has fewer branch vertices than T' (if by =
z) or else the same number of branch vertices and leaves, with the same
structure, but with a smaller internal subtree. Otherwise upv~ € E(G), so
T :=T - {vv™,bjup} + {liv,upv™} has fewer branch vertices than 7". In
each case, (T1) or (T4) is violated.

Case 2: Suppose h = j # i(mod 3). If i = 3, then T' := T — {zz~, bju;,
bjujsa}+{uju;+3, vl;, vb;} has fewer branch vertices than T. If i # 3, then
T' :=T — {biui, bjuj, bju;s3} + {u;jujs3,vl;,vb;} has fewer branch vertices
than T. Either way (T1) is violated.

Case 3: Suppose h = 3. Theni = j(mod 3), so T’ := T—{zz ™, bjuj, bjuj+3}+
{bjv,l;v,ujujs3} has fewer branch vertices than T, violating (T1).

Case 4: Suppose 3 # h # j = i(mod 3). Then T’ := T—{b;juj, bjujt3, Tw;}+
{vbj,vl;, ujuji3} has fewer branch vertices than T', violating (T1) and prov-
ing the claim. O

Claim 3. For every h € [5], Ng(b)) N V(M) N Ng(b2) = 0.

Proof. Suppose v € Ng(b;) N V(M) N Ng(bs). Since v # I by Claim 1,
there exists v~. Consider cases:

Case 1: Suppose h # 3. Without loss of generality, suppose h = 1. Since
G[v,v™,b1,bo] is not a claw, either v=b; € E(G) or v"bp € E(G). If
v=b € E(G), then T' := T — {vv™,bjuy,bjus} + {bav,b1v~,usus} has
fewer branch vertices than T, violating (T1). Otherwise v~b; € E(G), so
T :=T — {vv~,byus, byus} + {b1v, bov~, uus} similarly violates (T1).

Case 2: Suppose h = 3. If v = z, then without loss of generality, assume
z~w; € E(G), so it is easily seen that by # wy, so T’ :=T — {zz~,zw1} +
{zby,z~w; } has fewer branch vertices than T, violating (T1). If v # z, then
since G[v,v™, by, bs] is not a claw, and b1b, & E(G), either v=b, € E(G)
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or 9”by € E(G). Without loss of generality, assume v-by € E(C), wo
T = T = {vv=,@a”} + (v by, vbz} hns fewer vertices than T violating

(T1) and proving the claim, ()
Claim 4. Ifi # 3, then Nag(Li) NV (Qy) = 0.

Proof. Suppose v € Na(li) "V(Qy) for some 1 # 3. For T" :="T' ~ {bjug} +
{vl;}, we have |V (S77)| < |V (S7)], violating (T4). )

Claim 5. For every j € (2], (Na(by) NV(Qy))” N Ny(ls).

Proof. Suppose v € (Na(by) NV(Qy))” N Ng(ls). Then vt € Ng(bj) n
V(Qy), 80 T' := T = {vw*,2a™} + {v*by,vls} has fewer branch vertices
than T, violating (T1). 0

Claim 6. If {i,j} = (1,2}, then (Ng(b;) N V(Q;))~ N Na(b;) = 9.

Proof. Suppose v € (Na(bj) N V(Q))~ N Ng(bs). Then vt € Ng(by)n
V(Qj), so T' := T = {vv*,zuy} + {v*bs,vb;} has fewer branch vertices
than T', violating (T1). O

Claim 7. If {i,j} = {1,2}, then Ng(b;) N V(Q;) N Ne(ls) = 0.

Proof. Suppose v € Ng(b)) N V(Q;) N Ng(l3). Then since bjly ¢ E(G),
v # bj so there exists v=. Since Glv,v~,b;,l3] is not a claw and b;lz ¢
E(G), either v=b; € E(G) or v~l3 € E(G). If v~l3 € E(G), then T’ :=
T - {w~,zw;} + {biv,l3v7} has fewer branch vertices than T, violating
(T1). Otherwise v=b; € E(G), so T" := T — {vv~,zw;} + {l3v,bjv~} has
fewer branch vertices than T, again violating (T1). O

Claim 8. We have zl3 ¢ E(G).

Proof. We already know z~w; € E(G) for some i € [2], so if zl3 € E(G),
then T := T — {zz~,zw;} + {z~wj, zl3} has fewer branch vertices than T,

violating (T1). a
Claim 9. If {1,j} = [2], then w; & Ng(b;) U Ng(l3).

Proof. Suppose wj € Ng(b;) U Ng(l3). Then either w; € Ng(b;) (in which
case T' :=T — {zw;} + {b;w;} violates (T1)) or else w; € Ng(l3) (in which
case T := T — {zw;} + {law;} violates (T1)). O

For every i # h € [5], Lemma 2 ensures that (Ng(lp) NV (M}))~ is disjoint
from Ng(l;)NV(M}). Lemma 3 ensures that (Ng(lp)NV (Mp))™ is disjoint
from Ng(b;) NV (Mp) when h # j(mod 3), and Lemma 4 ensures the same
when h = j(mod 3). Lemma 5 ensures that the four sets Ng(l;) N V(M)
are all disjoint, and Claim 2 ensures that each Ng(l;)NV (Mp) with i # h is
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disjoint from each Ng(b;)NV(My). Finally, Claim 3 ensures that Ng(by) N

V(My) does not intersect Ng(b2) N V(My), 80 the seven sets (Ng(ln) N
V(My))~, Na(l;) N V(M) (for each i # h), and Ng(bs) NV (Mp) (for
j € (2]) are digjoint, so the sum of their cardinalities equals the cardinality
of their union, which cannot exceed the cardinality of V(M,). Furthermore,
none of these contain = by Lemmas 7 and 8 and Claim 8, so:

Y ING(v) NV (My)|

vE\
= ZlNG (L) N V(My) |+}:|NG b;) NV (My)|
i=1 Jj=1

= [Na(l) A V(My)| + Y ING(L) NV (My)| + Z ING(bs) NV (M)
i#h j=1

= |(Ne(ln) NV(MR)~| + > INa(l) NV (Mp) |+E|Na(b )NV (Mp)|
i#h j=1

<o\ N ={ PGml 1 AZs

Meanwhile, for each j € [2] (and {i} = [2] \ {j}), Claim 4 gives that b,
by, and I3 are the only vertices in X that can be adjacent to any vertex of
V(Q;), and Claims 5, 6, and 7 give that the three sets (Ng(b;) NV (Q;))~,
Ne(l3)NV(Q;), and Ng(b;)NV (Q;) are disjoint, and none of them contain
w; by Claim 9, so the sum of their cardinalities is at most |V (Q;) \{w;}| =

|V(QJ)I —1,s0

Y INa(v) N V(@)

vEX

= ZING In) nVQJ)|+Z|NG (be) NV(Q;)]

h_

INe (1) N V(@) + ING( ,) V(@) + |Ne(b) N V(Q5)|
INg(ls) N V(Q))| + [Na(b:) N V(R))] + |(Ne(b;) N V(Q;)) |

< [V(@s)l -1

Summing these inequalities gives Z dega(v) < n — 3, contradicting the
veEX
assumption of the theorem. O
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Pigure b 11T hia 4 braneh vertices, we may have r = Py, Here, by is alao
oalled by, while by I also called b,

Therefore 7' must have ab least 4 branch vertices (all with degree 3 of
course), so elther 7 & Py or 7 I a claw,

Theorem 6. The derived tree v(1) % Py,

Proof. By contradiction, suppose (1) & Iy, We then label vertices and
paths as shown In Figure b, Noto that each vertex ls In exactly one labeled
path. Once this 1" I chosen, we choose n (potentially different, but still
with 7 & P;) T such that

(T5) P is as short as possible,

By Lemma 1, ujus € E(G) and uyug € E(G). Similarly, since no induced
claw is centered ab by; for any i € [2), (T4) and (T6) give that ugwsi €
E(G). Meanwhile, Lemmas 2, 3, and 4 ensure that X := {ly,13,03,14,15,16,01)
is an independent set. Define b = Nyp(by) NV (5r).

Claim 1. If h# i, then Ng(l;) N V(M) N Ng(by) = 0.

Proof. Suppose v € Ng(l;)NV (My,)NNg(b1). By Lemma 6, we may assume
h = 1(mod 3) or i = 1(mod 3). Consider several cases:

Case 1: Suppose i # 1 = h(mod 3). Then T := T — {bjui, byur, brua} +
{u1uq,vb1,vl;} has fewer branch vertices than 7', violating (T'1).

Case 2: Suppose i = 1 # h(mod 3). Then 7" := T' = {byun, byut, brua} +
{u1ug,vb1,vl;} has fewer branch vertices than T, violating (T'1).

Case 3: Suppose i = 1 = h(mod 3). Since v # ), there exists v™.

Since G[v,by,l;,v=] is not a claw and byl ¢ E(G), either vl € E(G)
or v~by € E(G). Now if v™l; € E(G), then T' := T — {vv~, byuy, bius} +
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{uyug, vby,v=1;} has fewer branch vertices than T, violating (T1). Other.
wise v=b; € E(G), then since G[by, b}, v™,up] is not a claw and blup ¢
E(G), it follows that either bj v= € E(G) orupv™ € E(G). Itbfv- € E(G),
then T' := T — {vv~, byup} + {bf v, liv} either has fewer branch vertices
than T (if b} = by) or else has the same number of branch vertices and
leaves as T' with |V (S7)| < |V(Sr)|, so either (T1) or (T4) is violated. On
the other hand, if u\v~ € E(G), then T' := T — {byup,vv™} + {liv, upv™}
has fewer branch vertices than T', violating (T1). 0

Claim 2. The following statements hold:

Part 1. If i # O(mod 3), then Ng(l;)NV(Q;) = 0.
Part 2. We have Ng(by) N V(Qs) N Ng(la) = 0.
Part 3. We have Ng (b)) N V(Qs) N Ng(ls) = 0.
Part 4. Ifi € (2], then Ng(l3) N V(Q3:) N Na(ls) = 0.
Part 5. We have (Ng(b1) N V(Q3))~ N Ng(l3) = 0.
Part 6. We have (Ng(by) NV(Q3))~ N Ng(ls) = 0.
Part 7. We have Ng(l;) N V(P) = 0 for each i € [6].

Proof. To prove Part 1, suppose v € Ng(l;) N V(Q;). By symmetry, v #
bj/s, so T' := T — {bju;} + {liv} has the same number of branch vertices
and leaves as T with |V(S7+)| < |[V(Sr)|, violating (T4). To prove Part
2, suppose v € Ng(b1) N V(Qs) N Ng(I3). By symmetry, v # by, so T :=
T — {wsbs, webe} + {vl3,vb1} has fewer branch vertices than T”, violating
(T1). To prove Part 3, suppose v € Ng(b1)NV(Q6)NNg(ls). By symmetry,
v # by, so T := T — {ws3bs, webe} + {vls, vb1} has fewer branch vertices
than T’, violating (T1). To prove Part 4, let i € [2] and suppose v €
Ng(l3) N V(Qgi) N NG(ls) Then T" =T — {'u,3b3,u6b6} + {’l)lg,’vls} has
fewer branch vertices than T, violating (T1). To prove Part 5, suppose
v € (Ng(b1) NV(Q3))~ N Ng(l3). Then vt € Ne(b1)NV(Q3), so T' =
T — {vv*,b3uz} + {l3v,b,v*} has fewer branch vertices than T, violating
(T1). To prove Part 6, suppose v € (Ng(b1) N V(Q3))~ N Ng(lg). Then
vt € Ng(b)) NV(Qs), so T’ := T — {vv't,beus} + {lgv,byv*} has fewer
branch vertices than T, violating (T1). To prove Part 7, suppose v €
Ne(L;) N V(P). Now if v € {b3,be}, Lemma 3 ensures that i = 0(mod 3)
and v = b;, so T' := T — {b;w;, b;u; } + {bsl;, u;w; } has fewer branch vertices
than T, violating (T1). Otherwise, b3 # v # bs, so T' := T — {b;u; } + {vli}
has the same number of branch vertices and leaves as T, and |Sr| = |S7|,
but P is shorter for T’ than it is for T, violating (T5) and proving the

claim. g
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Lemma 2 ensures that (Ng(ln) N\V(My)) ™ is disjoint from Ne(1;) NV (M)
(for each i # h). Lemma 3 ensures that (Ng(In) NV (My))~ is disjoint from
Ng(by) N V(M) for h # 1(mod 3). Lemma 4 ensures the latter for h =
1(mod 3). Lemma 5 and Claim 1 ensure that the five sets Ng(l;) N V(Mj)
are disjoint from each other and Ng(by) N V(My,), respectively. Therefore
the seven sets (Ng(ln) N\V(My))~, No(b) N V(My), and Ng(l:) NV (Mp)
for i # h are all disjoint, and by Lemmas 7 and 8, none of them contain uy,
if h # 1 (mod 3). Therefore:

Y [NG(v) NV (My)

veX

= |NG(b1) ﬂV(Mh)| +i1|NG(li) ﬂV(Mh)l

= |Ng(b1) NV (Mn)| + ;1—\/'6(111) NV (Mg)|+ Z; [N (l;) NV (My)|

= |Ng(b1) N V(Mp)| +|(Ne(ln) NV(My))~ lj' Zh |Ng(l;) NV (My)]
(e ey

By Claim 2 Part 1, for i € [2], the only vertices of X that can be adjacent to
Qs; are l3, lg, and b;. By Parts 2, 3, and 4, the three sets Ng(l3) N V(Qs),
Ng(lg) N V(Qs), and Ng(b1) N V(Qs) are disjoint. By Parts 4, 5, and 6,
the three sets Ng(I3) N V(Qs), Ne(ls) N V(Q3), and (Ng(b1) N V(Q3))~
are disjoint. Therefore:

Y INa(®) N V(Qs)]

vEX
INc(l3) N V(Qs)| + |Na(ls) N V(Qs)| + [ Ne(b1) NV (Qs)|
< V(Qs)l

and:
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Figure 6: If T has 4 branch vertices, 7 may be a claw. Each vertex labeled
b; is also called b;43.

3 IN6(v) N V(Qs)]

veX
= |Ng(ls) NV(Qs)] + |Ne(ls) N V(Q3)| + | Na(b1) N V(Q3)]
|Ng(l3) N V(Q3)| + |Na(le) N V(Q3)| + |(Ne(b1) N V(@Q3)) ™|

V(Qs)|

IN

By Claim 2 Part 7, by is the only vertex of X that can be adjacent to any
of P, so

Y INa(v) nV(P)| = [Na(b:1) NV(P)| < [V(P)].
veEX

Summing these inequalities gives Z degg(v) < n — 4, contradicting the
vEX
assumption of the theorem. O

Theorem 7. The derived tree T is not a claw.

Proof. By contradiction, suppose 7 is a claw. We label vertices and paths
as shown in Figure 6. Since u;b; € E(T) and u; ¢ Sr for every i € [6],
Lemma 1 gives that u;ui+3 € E(G) for each i € [3]. Furthermore, the
vertex set X := {l1,l2,13,l4,15,1,b3} is independent by Lemmas 2, 3, and
4.

Claim 1. Ifi # h, then Ng(l;) N V(M}) N Ng(b3) = 0.
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Proof. Suppose v € Ng(l;) N V(My) N Ng(bs). By Lemma 6, we may
assume that either 3| or 3Jh. Now if i = 0 # h(mod 3), then 7' :=
T — {bsus, baug, baup} + {vl;, vb3,u3ug} has fewer branch vertices than T,
violating (T1). On the other hand, if h = 0 # i(mod 3), then 7" :=
T - {bus, byug, bius} + {vbs, vli, uzug} has fewer branch vertices than T,
violating (T1). Otherwise, h = i = 0(mod 3), so since v # I, there
exists v™. Since G[v,v™,b3, ;] is not a claw and bsl; ¢ E(G), it follows
that either v™l; € E(G) or v=b3 € E(G). If v™I; € E(G), then T :=
T — {vv~,bsun,b3ui} + {vbs,unt;,liv=} has fewer branch vertices than
T, violating (T1). Otherwise, v™b; € E(G), and since G[bs,b],up,v]
is not a claw and uhb;r ¢ E(G), it follows that either v=u, € E(G) or
v=bF € E(G). If v™up € E(G), then T" := T — {bgup,vv™} + {vli, v up}
has fewer branch vertices than T, violating (T1). Otherwise, v=b3 € E(G),
so T' :=T —{vv™,b3u;} + {v™b5, vl;} either has fewer branch vertices than
T (if b = ) or else has the same number of branch vertices and leaves
as T, but |V (S7)| < |V(ST)|, so either (T1) or (T4) is violated, so we’ve
proven our claim. O

Claim 2. Ifi € [6], then Ng(l;) NV (Sr) = 0.

Proof. Suppose v € Ng(l;) N V(S7). By Lemma 4, v # bj, so T :=
T — {biu;} + {vl;} may have fewer branch vertices than T, violating (T1),
or the same number of branch vertices and leaves, violating (T4) since
V(St)| < V(5. 0

For any h € [6], Lemma 2 ensures that (Ng(lx) NV (M4))~ is disjoint from
Ng(l;) N V(Mp) for i # h. Lemma 3 ensures that (Ng(lp) N V(My))™ is
disjoint from Ng(bs)NV (M4) for h # 0(mod 3). Lemma 4 ensures that the
latter are disjoint for h = 0(mod 3). Lemma 5 and Claim 1 ensure that the
five sets Ng(l;) NV (M},) with i # h are disjoint from each other and from
Ng(bs) NV (M) respectively. Therefore the seven sets (Ng(ln) NV (Mr)) ™,
Ng(bs)NV (M4), and Ng(1;)NV (M) for i # h are all disjoint. Furthermore,
if 31 h, Lemmas 7 and 8 give that uy, is not in any of these sets. Therefore:
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Z lN(" nV Mh)l
veX

= |NG(bq)nV(Mh|+}:ING ) N V(My)|

i=1

= |[No(bs) NV (M) + INa(ln) N V(M) + D [Na(li) NV (Ma)|

i#h
= |Ng(bs) NV(My)| + [(No(ln) N V(M) ™| + Y INa(l) NV (M)
i#h
2 (M) \ {un}| = |V(Mp)| =1 3th.

Meanwhile, Claim 2 gives that b; is the only vertex of X that can be
adjacent to any vertex of St. Therefore

Y IN(v) N V(Sr)| = INg(bs) N V(Sr)| < [V(Sr) \ {83} = [V(Sr)| - 1
veX

Summing these inequalities gives Z degs(v) < n — 5, contradicting the

N veX
assumption of the theorem. O

By Theorems 5, 6, and 7, the T we’ve chosen must have four branch vertices
but cannot have any of the possible structures on four branch vertices, and
therefore cannot exist. This is a contradiction, so Theorem 1 is proven.
Thus Conjecture 1 holds when k = 2.
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