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Abstract

Let S = S1S2S3...S. be a finite string which can be written in the
form X{“Xéc2 ... XF where Xik" is the k; copies of a non-empty
string X; and each k; is a non-negative integer. Then, the curling
number of the string S, denoted by cn(S), is defined to be cn(S) =
max{k; : 1 < ¢ < r}. Analogous to this concept, the degree sequence

of the graph G can be written as a string Xl(kl)oX2(k2)oX§k3) ..o XF.

The compound curling number of G, denoted ¢n®(G) is defined to be,

en®(G) = [] ki. In this paper, the curling number and compound
i=1

curling number of the powers of the Mycielskian of certain graphs
are discussed.

Keywords: Number sequences, curling number of graphs, compound curl-
ing number of graphs.
Mathematics Subject Classification: 05C07, 05C76, 11B83.

1 Introduction

For all terms and definitions, not defined specifically in this paper, we
refer to [1, 2, 9, 11, 18]. For the terminology of curling number of number
sequences and related relevant results, see [4, 5, 7, 17]. Unless mentioned
otherwise, all graphs considered here are simple, finite, undirected and have
no isolated vertices.

If r is a positive integer, the r-th power of G, denoted by G7, is a graph
with the same vertex set such that two vertices are adjacent in G" if and
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only if the distance between them is at most r. Note that if r is the diameter
of a graph G, then G" is a complete graph (see [11]).

1.1 Mycielskian of a Graph

Consider a graph G with V(G) = {v1,v2,vs,...,vn}. Then, the Mycielski
graph or Mycielskian of G, denoted by u(G) (see [13]) is the graph obtained
by applying the following steps to the graph G.

(i) Take the set of new vertices U = {uj,uz,us,...,un} and add edges
from each vertex u; to the vertices v; if the corresponding vertex v,
is adjacent to v; in G,

(ii) Take another new vertex u and add edges to all elements in U.

For the ease of the notation in context of graph powers, we denote the
Mycielski graph of a graph G by &,

1.2 Curling Number of Graphs

Let S = 515253...S, be a finite string. If we partition the sequence S
into two subsequences, say X,Y, we write S as the string S = X o Y. Let
the sequence S can be written in the form X (k1) o X, (k2) 5 .. o X {Fr) , Where
X % is the k; copies of a non-empty string X and each k is a non—negatwe
integer. Then, the curling number of the string S, denoted by cn(S), is
defined to be cn(S) = max{k; : 1 <i < r} (see [4]).

Given a finite non-empty graph G with the degree sequence S = (d;, ds,

,dn), where d; € N for all 1 < i < r. Analogous to the terminology
mentioned above, the degree sequence of the graph G can be written in the
form of a string as X l(k’) oX2(k2) oX éka) ...0X*) Then, the curling number
of G, denoted by cn(G), is defined to be cn(G) = max{k;: 1 <i <} (see
[12]). The compound curling number of G, denoted cn®(G), is defined to be

en(G) = H ki, where 1 < i <[ (see [12]). A relevant result in this context
=1
is that the curling number and the compound curling number of a regular

graph are the same and are equal to the order of that graph (see[12]).

The curling number of certain fundamental and newly introduced graph
classes have been determined in [12]. Following this study, the curling
number and compound curling number of graph join and different product
graphs have been determined in [14]. Then, further studies on the curling
number of various graphs associated with given graph classes has been done
in [15] and the curling number and the compound curling number of the
powers of certain graphs have been studies in [16].
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Motivated by these studies, the curling number and the compound curl-
ing number of the Mycielskian of certain fundamental graph classes are

discussed in this paper.

2 Curling Number of Mycielski Graphs

Throughout this paper, the vertex set of the given graph G is denoted by
V. We denote by U, the set of newly introduces vertices corresponding to
the vertices in V and w be the new vertex which is adjacent to all vertices
in U. We also denote the degree of a vertex v in G by d(v) and the degree
of a vertex v in G by d'(v).

The diameter of the Mycielskian of any graph is 4 and hence note that for
any given graph G, the Mycielskian G* is a complete graph. Hence, Glisa
on-regular graph on 2n+1 vertices. Therefore, en(G4) = en(G4) = 2n+1.
Hence, we need to find out the curling numbers the Mycielskians and their
powers up to 3.

Let us first discuss the two types of curling numbers of the powers of
Mycielskians of Paths. Some initial cases need to be discussed separately
as follows. Note that ]32 — Cé, a regular graph on 5 vertices. Thergfore,
en(Py) = en®(P,) = 5. Also, P} is a complete graph and hence en(P2) =

cn°(152) = 5 (See Figure 1).

Uy uy Uy Uy

V2 vy

(a) B, (b) Py

Figure 1

Note that the degree sequence of Pyis (2)@ 0 (3)® o (4)D. Therefore,
the curling number of P; is 4 and the compound curling number is 8. Also,
note that the diameter of P, is 3. Then, P} is a complete graph and hence
the curling number and compound curling number of P2 is 7 (See Figure
2).

For n = 4, the degree sequence of Py is (2)@0(3)® o (4)®), Therefore,
the curling number of P; is 4 and the compound curling number is 24. The
degree sequence of P? can be written as (8)(%) o (7)(® o (6)(. Therefore,
the curling number of P} is 5 and its compound curling number is 20. The
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Figure 2

cube of B, is a complete graph on 9 vertices and hence we have en(P3) =
en®(P3) = 9. For an illustration, see Figure 3.

Now, we can see that for n > 5, the diameter of P, is 4 and hence 15,‘3 is
a complete graph for n > 5. But on close examination, we can see that the
degree sequence patterns of pn;n < 7 and their higher powers are different
from that of P,; n > 8. Let us now discuss these cases one hy one.

The degree sequence of F; is (2)® o (3)® o (4)® o (5)M and hence
cn(Ps) = 4 and cn®(Ps) = 36. The degree sequence of P is (10)®) 0 (8)4 o
(6)® and hence cn(P?) = 5 and cn®(P?) = 40. The degree sequence of P3
is (10)® 0 (9)® and hence en(P$) = 9 and cnc(P3) = 18, -

Similarly, the degree sequence of Ps is (2)@ o (3)® o (4)® o (6)
and hence cn(Ps) = 4 and cn®(Pg) = 64. The degree sequence of P? is
(12)® 0 (11)® 0 (10)® 0 (9)@ o (8)@ o (6)® and hence en(P2) = 4 and
cn®(F§) = 64. The degree sequence of B is (12)® o (11)® o (10) and
hence cn(P2) = 9 and cn®(P2) = 36.

Similarly, the degree sequence of P; is (2)() o (3)®) o (4)® o (7))
and hence cn(Pr) = 5 and cn®(Ps) = 100. The degree sequence of P? is
(14)(1) 4 (12)(2) ° (11)(2) o (10)(5) @ (8)(2) 0 (6)(2) and hence cn(f’?) =5 and
cen¢(P?) = 120. The degree sequence of P3 is (14)®0(13)R0(12)Do(11)@
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and hence cn(P$) = 9 and cn°(B3) = 64.

We also note that precise closed formulae can be determined for the two
types of curling numbers for different powers of the Mycielskians of paths
of order at lest 8. Hence, we have the following theorem.

Theorem 2.1. Let P, be a path on n > 8 vertices and P, be its Myciel-
skian. Then,

(i) en(P,) = n—2 and cn®(B,) = 4(n — 2)2;
(i) en(P2) = n — 4 and cn®(B2) = 16(n — 4)%;
(iii) en(P3) =n +1 and en(B3) = 8(n? — 5n — 6).

Proof. Part-(i) Note that for the vertices v; € V, we have d'(v;) = 2d(v;)
and for all vertices u; € U, we have d'(u;) = d(v;) + 1. Also, d'(w) = n.
Therefore, the graph P, consists of (n — 2) vertices of degree 4, (n — 2)
vertices of degree 3, 4 vertices of degree 2 and one vertex of degree n. Hence,
the degree sequence of P, can be written as (4)(®=2)o(3)("=2)0(2)# o(n)™).

Therefore, en(P,) = (n —2) and cn®(P,) = 4(n — 2)2.

Part-(ii): Here, we have to identify the degree sequence in P2. The
vertex w is adjacent to every vertex in U and V. That is, d(w) = 2n. Also,
since between any two vertices u; and u; in U, there exists a path u;wu;
in P,. Therefore, any two vertices in U are adjacent in P2, Besides this,

we note the following.

(a) The vertex u; is adjacent to the vertices vi,v2 and v3 and the vertex
u, is adjacent to the vertices v,_2,v,—1 and v,. Therefore, d(u;) =
d(u,) =n+ 3.

(b) The vertex uz is adjacent to the vertices v1,v2,v3 and v4 and the ver-
tex u,_; is adjacent to the vertices v,_3,Vn—2,Vn—1 and v,. There-
fore, d(un) = d(un—1) =n + 4.

(c) For 3 < i < n—2, the vertex u; is adjacent to the vertices v;_2, vi—1, Vi,
viy1 and vipo. That is, d(u;) =n+5,for 3<i<n—2.

Next, we observe the adjacencies of the vertices in V as follows.

(d) The vertex v; is adjacent to the vertices vo,v3 in V and up,ug,us3 in
U. Similarly, the vertex v, is adjacent to the vertices vn—2,Vn-1 in
V and un—2,%n—1,u,. Therefore, d(v;) = d(vn) = 6.

(e) The vertex vo is adjacent to the vertices vy,vs,vs in V and the ver-
tices u1, U2, U3, Uq in U. Similarly, the vertex v,—1 is adjacent to the
vertices Un_3,Vn_2,V, in V and the vertices in ¥n—_3,Un—2,Un—1,Un
in U. Therefore, d(un) = d(un-1) = 8.
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(f) For 3 < i £ n—2 the vertex v; € V is adjacent to the vertices

Vie2y Vie1, Vi+1y Vi42 iV and ui_2, Ui—1, Ui, Li+1) Uit2 in U. That is,
d(v;) = 10, for 3<i<n-—2.

Therefore, the degree sequence in P? can be written as (2n)V o (n +
5)("=4) o (n + 4)? o (n + 3)@ o (10)"=Y o (8)(2) 0 (6)(?). Then, the curling
number of P2 is (n — 4) and the compound curling number is 16(n — 4)2

Part-(iii): In P3, the vertex w is adjacent to all vertices in Uuv,
Also, any two vertices in U are also adjacent to each other. As the distance
between a vertex in U and a vertex in V is at most 3, we have every vertex
of U is adjacent to all vertices in V' as well. Hence, for any vertex u in
U U {w}, we have d(u) = 2n. Now, we have to find out the degree of
vertices in V/, which can be done as follows.

(a)

(b)

()

(d)

The vertex v; is adjacent to all vertices in U U {w} and to the vertices
s, v3 and v4 and the vertex vy, is adjacent to all vertices in Uu{w} and
the vertices vUn_3,Un—2 and vn—1. Therefore, d(v;) = d(vn) =n + 4.

The vertex vy is adjacent to all vertices in UU {w} and to the vertices
v1,vs,vs and vs. Similarly, the vertex v, is adjacent to all vertices
in U U {w} and to the vertices vn—4,Vn_3,Vn—2 and vn. Therefore,
d(v) = d(vn-1) =n +5.

The vertex vs is adjacent to all vertices in U U {w} and to the ver-
tices vy, v2,v4,Vs and ve. Similarly, the vertex v, is adjacent to all
vertices in U U {w} and to the vertices vn_5,Vn—4,VUn—3,Vn—2 and v,.
Therefore, d(v3) = d(vn—2) = n + 6.

For 4 < i < n — 3, any vertex v; is adjacent to all vertices in U U {w}
and to the vertices v;_3, Vi—2, Vi—1, Vi+1, Vi+2 and vi4+3. Hence, d(v;) =
n+7 fora<i<n-3.

Hence, the degree sequence of P3 can be written as (2n)™*+1) o (n +
7)"=% o (n + 6) o (n + 5)@ o (n + 4)(@). Hence, the curling number of
P2 is n+ 1 and its compound curling number is 8(n? — 5n — 6). O

In the next theorem, we determine the curing number of the Mycielskian
of cycles.

Theorem 2.2. Let C,, be a cycle on n vertices and C,, be its Mycielskian.

Then,

(@) cn(cu'n) =n and Cnc(é’n = n?;

166



(it)

2 1 ifn=
cn(é§)={ n+l ifn=34,5
n ifn>6
and
o [m41 ifn=3,45
en’( n) = D) .
ne; if n > 6.
(iii)
m+1 if3<n<7
3y _ =
en(Cr) = {n +1 ifn>8.
and

cnc(és)= n+1 if3<n<7
. n?+n ifn>8.

Proof. Part-(i) As mentioned in the previous theorem, for the vertices v; €
V, we have d'(v;) = 2d(v;) and for all vertices u; € U, we have d'(u;) =

d(v;) + 1. Also, d'(w) = n. Therefore, the graph C., consists of n vertices
of degree 4, n vertices of degree 3, and one vertex of degree n. That is, the
degree sequence of C, is (4)(™ o (3)(") o (n)(M). Therefore, cn(C,) = n and
cnc(C'n) = n2.

Part-(zz) For n = 3,4,5, we can see that C2 is a complete graph.
Hence, in this case, cn(C’2) =cn¢(C2) =2n+1. Then, let n > 6. In C2,
the vertex w is adjacent to every vertex in U U V. That is, d(w) = 2n
Also, since the distance between any two vertices u; and u; in U in P, is
2, every pair of vertices in U are adjacent in 15,?. More over, each vertex
u; € U is adjacent to the vertices vi—g,vi—1,%;,Vi+1 and v;42. That is,
d(u;) = n+ 5, where 1 <7 < n. Also, any vertex v; € V is adjacent to the
vertices v;_g,V;_1,Vit1, Vit2 in V and w;_2,u;_1, Ui, Ui41,ui42 in U. That
is, d(v;) = 10, where 1 < 7 < n. Therefore, the degree sequence of C2
can be written as (2n)®) o (n + 5)(™ o (10)(™. Therefore, cn(C2) =n and
ens(€2) = n2.

Part-(ii): For n = 6,7, we can see that C2 is a complete graph. Hence,
in this case, en(C3) = (0’3) = 2n+1. Now let n > 8. In C3, vertex
w is adjacent to all vertices in U U V. Since the distance between any
two vertices in U is 2 and the distances between a vertex in U, we note
that all vertices in U U {w} are adjacent to each other. Moreover, every
vertex in V is adjacent to all vertices of U U {w}. Hence, for any vertex u
in U U {w}, we have d(w) = 2n. In addition to the vertices in U U {w},
a vertex v; € V is adjacent to the vertices vi—3,Vi—2, Vi—1, Vi+1, Vi+2 and
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vi+3. Hence, d(v;) =n + 7 for all v; € V. Therefore, theé czlegree sequence
of C3 is given by (2n)™+1 o (n + 7)™, Therefore, cn(Cy) = n +1 and
en®(C3) =n® +n. 0

A fan graph F,4, is the graph obtained by drawing edges from all
vertices of a path P, to an external vertex (see [2]). That is, Fn41 =
P, + K — 1. Then, we have the following result.

Proposition 2.3. For a fan graph F,41, we have

(i) en(Fry1) = n and en®(Fnyy) = 4(n? — 2n);
(i) en( Vr?+1) = cnc(ﬁ‘3+l) =2n+3.

Proof. Part-(i): Let vy,vs,...,vn be the vertices of the cycle Cy, and v be
the central vertex in W, 4+, and let uy,us,. .., u, and u be the corresponding
vertices in U and w be the vertex which is adjacent to all vertices in U.
Then, we have d'(w) = n+1, d'(u) = n+1, d'(v) = 2n, while d'(v1) =
d'(v,) = 4, d'(u;) = d'(un) = 3, and for all 2 < 7 < n —1, we have
d(v;) = 6 and d(u;) = 4. That is, the degree sequence of F2,, is given by
(n + 1)@ o (2n)M 0 (6)? o (4)(™ o (3)). Hence, we have cn(Fp41) = n
and cn®(F41) = 4(n? — 2n).

Part-(ii): Note that the diameter of the fan graph F,.; is 2 and hence
F?2,, is a complete graph on n + 1 vertices and F2 ., is a complete graph

on 2n + 3 vertices. Hence, cn(ﬁ‘,f_,_ﬂ = cnc(ﬁ‘gﬂ) =921 4+ 3. 0

A wheel graph, denoted by Wy, is the graph obtained by adding edges
from all vertices of a cycle C, to en external vertex (see [2]). That is,
Wny1 = C, + K;. The following proposition discusses the two curling
numbers of a wheel graph.

Proposition 2.4. For a wheel graph W, 1., we have

(i) cn(WnH) =n and cnc(WnH) = 2n?;
(i) en(W2y) = ens(W2,,) = 2n+3.

Proof. Part-(i): Let vy,vs,...,v, be the vertices of the cycle C,, and v be
the central vertex in W, ;; and let uy,us,. .., u, and u be the corresponding
vertices in U and w be the vertex which is adjacent to all vertices in U.
Then, d'(w) = n+1, d'(v) = n +1 and d’'(v) = 2n, while d'(v;) = 6 and
d'(u;) = 4. Therefore, the degree sequence of Wy, 4, is given by (2n)(M o

v

(n + 1)@ 6 (6)(™ 0 4("). Therefore, cn(Wny1) =n and ené(Wpy1) = 2n2.

168



Part-(ii): We know that the diameter of the wheel graph W,,+; is 2 and
hence W2, is a complete graph on 2n + 3 vertices. Hence, en(W2,,) =

en®(Wiyp1) = 2n + 3. 0

The curling number and the compound curling number of the Myciel-
skians of complete graphs can be found out as explained in the following

theorem.

Theorem 2.5. For a complete graph K,, we have

(1‘) Cn(kn) =n+1 and cnc(ff,,) = n2 +n,
(ii) en(K2) = en®(KZ2) = 2n +1.

Proof. Part-(i): Let v1,va,...,vn be the vertices of the complete graph K,
and let uy,ug,...,un be the corresponding newly introduced vertices in U
in K, and w be the vertex which is adjacent to all vertices in U in K,,.
Then, d'(w) = n, d'(u;) = n and d'(v;) = 2(n - 1). Therefore, the degree
sequence of K, is given by (n)("+1) o(2n—2){"). Therefore, en(K,) =n+1
and en®(Kn) = n? +n.

Part-(ii): We know that the diameter of the graph K, is 2 and hence
K? is a complete graph on 2n + 1 vertices. Hence, en(K?2) = en®(K2) =
2n+ 1. O

The two curling numbers of the Mycielski graphs of given complete
hipartite graphs can be found out as follows.

Theorem 2.6. For a complete graph Ky, n, we have

(i cn(Kmn) = max{m,n} and cn®(Kmn) = m®n?;

(i) en(K2 ) = ecn®(K2, ) =2m+2n+ 1.

Proof. Let (X,Y) be the bipartition of the complete bipartite graph K, ,
such that |[X| = m and |[Y| = n. Also, let X' and Y’ be the sets of
newly introduced vertices in Ky, » corresponding to the vertices in X and
Y respectively in K, . Also let w be the new vertex in Iv{m,n which is
adjacent to all vertices in X’ UY’. Then, the vertices in X are adjacent to
the vertices in Y UY' and the vertices in Y are adjacent to the vertices in
X U X'. Therefore, every vertex in X has degree 2n and every vertex in Y
has degree 2m.

Now, note that the vertices in X’ is adjacent to the vertices in Y U {w}
and the vertices in Y’ is adjacent to the vertices in X U {w}. Therefore,
every vertex in X' has degree n+1 and every vertex in Y’ has degree m+1.
Also, note that the degree of the vertex w is m + n.
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Therefore, the degree sequence of Kum.n is given by (2m)™ o (2n)(™ o
(m+ 1)™o(n+ 1) o (m +n)®. Hence, the curling number of Ko , is
max{m,n} and its compound curling number is m?n2.

Part-(ii): We know that the diameter of the graph K. » is 2 and hence
K2, , is a complete graph on 2(m +n) +1 vertices. Hence, en(K2 )

en (f(,znn) =2(m+n)+1.

a

An n-sun or a trampoline is a chordal graph G on 2n vertices, where n >
3, whose vertex set can be partitioned into two sets V; = {vy,va,v3,...,vn}
and V3 = {z1,22,23,...,Zn} such that V; is an independent set of G’ and
z; is adjacent to vy if and onlyifj=diorj=1+1(mod n). A complete sun,
denoted by Sn, is asun G where the induced subgraph (V1) is complete (see
[2]). The following theorem discusses the curling numbers of the Mycielski
graphs of the complete sun graphs S,,.

Theorem 2.7. For a complete sun graph Sy, we have

(i) cn(S’n) =n and ch(S‘n) =nd;
(i) cn(88) =2n-+ 1 and en($) = r¥2n +1);
(ifi) en(S3) = en®(S3) = dn+1,

Proof. Part-(i): Clearly, S, isa graph on 4n + 1 vertices. Let V = Vj U
= {v1,v2,93,...,Vn, T, T2, T3, - ., T} be the vertex set of S, and U =
U1 U U, be the set of vertices in .S' corresponding to the vertices in "V,
where the vertex set Uy = {uy,u2,us,...,u,} corresponds to V; and the
set Uy = {y1,¥2,¥3, -+, Un} corresponds to V, and w be the vertex which is
adjacent to every vertex in U in S,. Then, for 1 < i < n, we have d’(v;) =
2n+1),d'(z:) =4,d'(wi) =n+1, d’(y,) 3 and d'(w) = 2n. That is, the
degree sequence of S, is given by (2n+1)™o(n+1)Mo(4)™o(3)(™) o(2n) 43 8

Hence, cn(S,) = n and cn®(S,) = nf,

Part-(ii): Here, we determine the pattern in 52 as follows. Note that the
vertex w will be adjacent to all other 4n vertices S2 That is, d'(w) = 4n.

Now, every vertex in U is adjacent to each other and every vertex in V)
will be adjacent to all vertices in V. Therefore, for 1 <4 < n, d(u;) = 4n.
Now, any vertex y; € U, is adjacent to w and all other vertices in U and
all vertices in V;. Moreover, y; is adjacent to the vertices z;_;,z; and Tiy
in V5. Therefore, for 1 <i <n, we have d'(y;) = 2n + 3.

It can be noted that all vertices in V] is adjacent to all vertices in
U U {w}. Moreover, each vertex v; € Vi is adjacent to all vertices in V5.
Therefore, for 1 <1 < n, each vertex v; is adjacent to all other vertices in
$2 and hence we have d'(v;) = 4n. Now, each vertex z; € V3 is adjacent



to all vertices in Vj and all vertices in Uy, the vertices y;_y, y;, and y,,, in
U; and the vertices z;_; and ity in V3. That is, d'(z;) = 2n + 5, for all
1<i<n,

Hence, the degree sequence of 52 can be written as (4n)2n+1) 5 (27 4
5)"™ o (2n + 3)(™). Therefore, cn(S?) = 2n + 1 and en®($2) = n?(2n + 1),

Part-(iii): We know that the diameter of the graph S, is 3 and hence

5'3 is a complete graph on 4n + 1 vertices. Hence, cn(S’,:f - c,,c(g: i
in+ 1. 0

3 Conclusion

In this paper, the two types of curling numbers of the Mycielskians of certain
fundamental graph classes have been determined. More problems in this
area are still open. There are several graph classes for which the curling
numbers are still to be investigated. Problems on the curling numbers of
certain graphs that are derived from given or known graph classes, including
the Mycielskians, are yet to be settled. All these facts highlight a wide scope

for further investigations in this area.
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