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Abstract

Motivated by finding a way to connect the Roman domination number
and 2-domination number, which are in general not comparable, we con-
sider a parameter called the Italian domination number (also known as
the Roman {2} —domination number). This parameter is bounded above
by each of the other two. Bounds on the Italian domination number in
terms of the order of the graph are shown. The value of the Italian dom-
ination number is studied for several classes of graphs. We also compare
the Italian domination number with the 2-domination number.

1 Context and framework

The general topic of this paper is domination in finite, simple graphs, a thorough
survey on which can be found in (18]. We begin by stating the area-specific
definitions needed to put our work in perspective.

A subset D C V is a dominating set if |[N[z] N D| > 1 for each z € V, and
is a double dominating set if |[N[z] N D| > 2 for each z € V. The notation
Nlz] denotes the closed neighborhood of z: it is the set N(x)U {z}, where
N(z) = {v : zv € E} is the open neighborhood of x. Observe that a graph
which has isolated vertices cannot have a double dominating set. The minimum
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cardinality amongst all dominating sets of G is the domination number, v(G).
The minimum cardinality amongst all double dominating sets of G is the double
domination number, vx2(G). Double domination is a special case of k-tuple
domination, which was introduced in [17] (also see [16]). A subset D C V is a
total dominating set if [N(x)ND| > 1 for eachz € V

An equivalent definition of a dominating set is a set D C V such that each
z € V = D is adjacent to a vertex in D. A 2-dominating set is aset D C V
such that each z € V — D, is adjacent to two vertices in D. Observe that 2-
dominating sets are defined for all graphs. The minimum cardinality amongst
all 2-dominating sets of G is the 2-domination number, ¥2(G). 2-domination is a
special case of k-domination, which was introduced in [11] (also see [8, 13, 14]).

A Roman dominating function is a function f : V' — {0,1,2} such that
every vertex z for which f(z) = 0 is adjacent to at least one vertex v for
which f(v) = 2. The weight of a Roman dominating function is the value
f(V) = ¥ ey f(z). The minimum weight of a Roman dominating function
on a graph G is called the Roman domination number, denoted Yr(G). One
may view Roman domination as graph labeling problem in which each vertex
labeled 0 must be adjacent to at least one vertex labeled 2. Roman dominating
sets in graphs were first studied in [27], and have been studied in a number of
subsequent papers, for example [8]. Several variations of Roman domination
have been considered in the literature, for example [22, 24, 26].

The main focus of this paper is a parameter which is a variation of both
2-domination and Roman domination: an Italian dominating function (IDF) is
a function f : V — {0,1,2} such that for each vertex z such that f(z) = 0,
2 ven(z) f(v) 2 2. The weight of an Italian dominating function is the value
f(V) = Y .ev f(z). The minimum weight of an Italian dominating function
on the graph G is called the Italian domination number of G, and denoted as
v1(G). This same concept was recently studied in [7], where it was called Ro-
man {2} —domination and what we call IDFs are called Roman {2} —dominating
functions in [7]. Italian domination in trees was considered in [21]. The main
results in [7] involve comparisons between ~; and the total domination number,
weak Roman domination number, and 2-rainbow domination number.

A generalization of double domination can be obtained by imposing the
condition -, ¢ vy f(v) > 2 on all vertices z. We call the minimum weight of
such function the generalized Italian domination number, and denote it by 2.

Let G be a graph with no isolated vertices. Then, from comparing the
definitions above, we have;

Y(G) £ 711(G) £ 72(G) < x2(G)
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and
¥(G) £ 71(G) £ r(G) < 29(G).

To illustrate, for m > 3, the complete bipartite graph K3, has v = 2,v; =
3 YvrR=Tx2=4.

After introducing some more terminology in Section 2, in Section 3, we bound
the Italian domination number in terms of the order of the graph in the cases
where the minimum degree § is 1, 2, or 3. Quartic graphs are also considered.
The proof of the first bound in Section 3 suggests considering cographs. We do
so in Section 4, and then contrast the results by considering general diameter 2
graphs. In Section 5, we characterize some classes of trees for which v; = 2+.
Finally, in Section 6, we explore Italian and 2-domination, focusing on a class a
graphs where equality between the two parameters holds.

2 Terminology

A graph is a Roman graph if yg(G) = 2v(G), see [8]. Analogously, a graph
is called an Italian graph if v;(G) = 2v(G). Stars and double-stars (i.e., two
disjoint stars, each with at least three vertices, with the center vertices of each
joined by an edge) are examples of Italian graphs. Obviously, if G is Italian,
then it is Roman. The converse is false, for example Ps is a Roman graph which
is not Italian.

A graph is called an 1 graph if the range of every minimum weight Italian
dominating function is the set {0,1}. A graph is called an I2 graph if the range
of every minimum weight Italian dominating function is the set {0, 2}. Both C,
and Ps are I1 graphs. Notice that no I1 graph can be Roman. Observe that a
graph cannot be both Italian and I1. For a graph G to be Italian, it satisfies
71(G) = 29(G); a minimum-weight Italian dominating function for G can be
formed by assigning f(v) = 2 for each vertex v in a minimum dominating set.
Kj is ITtalian, but not 12: let f(v) =1 for both of the vertices. A graph is called
an Ila graph if range of some minimum weight Italian dominating function is
the set {0,1}. The path on 6 vertices is an example of an I1a graph that is not
I1.

The following proposition is immediate from the definitions.
Proposition 1 For all G, v1(G) = 72(G) #f and only if G is Ila.

For m > 3, the star K, is an 12 graph, and also an Italian graph. Clearly
every 12 graph is Roman. However, the converse is false. The graph Kiaq is
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Roman graph, but is not 12. By the same token, il G is 12, it is necessarily
Italian. Both Py and Cy are examples of Italian graphs that are not 2.

3 Upper bounds

3.1 Bounds in terms of order

It is well-known that the domination number of any connected graph with n
vertices is at most n/2, and that the connected graphs which achieve equality
are the corona of a connected graph G with respect to K, for example, see
(18]. If D is a dominating set of G and X is the set of degree one vertices,
then DU X is a 2-dominating set of the corona of G and K,. Hence the 2-
domination number and Italian domination number of such graphs are both at
most i—". The graphs K n—1 show that n — 1 is the best possible general upper
bound on the 2-domination number of a connected graph with n > 3 vertices,

Theorem 2 For all connected graphs G with n > 3 vertices, v1(G) < 2.

Proof. It suffices to prove the statement for an arbitrary spanning tree T of
G. The proof is by induction on the number of vertices in 7. It is easy to
verify the statement if T has either three or four vertices. Choose an edge e of
T and consider the trees T and T3 that are formed when e is deleted. If both
T1 and T, have at least three vertices, then the result follows from induction,
So we must only consider the case when there is no such edge e. This implies
the diameter of 7" is at most four and the following are the possibilities. If the
diameter of T is two, then T is a star and thus v;(G) < 37". If the diameter
of T is three, then T is a double-star and thus v;(G) < 3 (with P; being the

extremal case).

If the diameter of T is four, then if T is Ps, in which case v;(G) = 3.
Otherwise, T has a vertex of degree at least three and therefore has at least six
vertices. Then either there is an edge e such that when e is deleted both T} and
T, have at least three vertices (in which case we are done), or else every edge
e is such that T — e has a component with at most two vertices. In this case,
let v be a vertex in T of minimum eccentricity. First suppose the degree of v is
at least three. Let f(v) =2, f(u) = 1 for each leaf u of T that is not adjacent
to v, and f(w) = 0 for each other vertex. This shows that v;(T") < ST". Finally,
suppose the degree of v is two. Let the neighbors of v be z,y. If  and y both
have degree at least three, then set f(z) =2, f(y) = 2 and let all other vertices
be labeled with 0. This is an IDF satisfying v7(T) < 37". Otherwise, since T is
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not a Ps, one of z and y, say z, has degree at least three, and thus y has degree
two. Let z be the other vertex adjacent to y. Since T is a tree, the degree of =
is one. Then let f(z) = 2, f(v) = 1, and f(z) = 1 and label all other vertices
with 0. This is an IDF satisfying 7,(T) < 2. O

As suggested in the discussion above, there are infinitely many graphs with
41(G) = 32, Suppose H is the corona of a connected graph G with respect to
K, and let G’ be the corona of H with respect to K. There is a 2-dominating
set of G’ consisting of a dominating set of H and the degree one vertices. This
2-dominating set has 3n/4 vertices. We claim that v;(G’) = 3" , from which is
follows that the 2-dominating set just mentioned is minimum. Ohserve that G’
consists of n/4 induced Pj’s, each of which contains exactly one vertex of G. By
the structure of G’, any Italian dominating function must have weight at least
three on each of these Py’s.

Hansberg and Volkmann [15] used the probabilistic method to show that the
2-domination number of any connected graph G satisfies

n(1+In(6 + 1))
d+1 '

72(G) <

Similar bounds hold for Roman domination [8, 19] and double domination [16].
Hence as the minimum degree increases, 47 is bounded above by smaller and
smaller fractions of n.

Favaron, Hansberg and Volkmann [10] showed that if G has minimum degree
§ > 2, then v, < 25 . When J = 2 this bound agrees with the one in [8] and
is better than bound above arising from the probabilistic method. The latter
bound is better for all larger values of 4.

We next consider Italian domination in graphs of minimum degree 6 > 2.
It is known in this case that yr(G) < 8n/11, see [6]. The family of graphs
achieving that bound is described in [6]. It is easy to see that each graph in this
family of graphs is I1 and satisfies 4;(G) = 6n/11. The theorem of Favaron,
Hansberg and Volkmann cited above gives vy < 2" for graphs with § > 2. It
follows immediately that vy < 2" for such graphs We now describe infinitely
many examples where this bound is sharp. Let k be a positive integer. Begin
with a path v;,vs,...,v¢. For each vertex v; add vertices u;,w; and edges
viui, viw;, u;w;. The resulting graph has 3k vertices and v;(G) = 2k.

We shall give a proof of the upper bound for the Italian domination number
of graphs with § > 2 which is simpler than the proof of the corresponding results
for 2-domination. For any dominatingset D CV z € D, we say that ve V —-D
is an ezternal private neighbor of z if v is adjacent to z but to no other vertex

in D.
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Theorem 3 Let G be a graph withn 2 3 vertices and §(G) 2 2. Then +(G) <
2n/3.

Proof. Let D be a minimum dominating set of G. Then we may assume that
|D| > n/3, otherwise simply label each vertex in D with a 2. In particular,
choose D such that each vertex in D has at least one external private neighbor,
which is possible as shown in [2]. Note that |[D| < n/2. Let B=V - D. We
construct an Italian dominating function f such that there is a partition of V/
into sets such that each set S in this partition satisfies f(S) < 2|5]/3.

If v € D has two or more external private neighbors, let f(v) = 2, otherwise
let f(v) = 1. Now consider a vertex u € B such that 3°_ .y, f(z) <2. Such a
u exists since |D| > n/3; note that for such a vertex u, since D is a dominating
set, 3 en) f(z) = 1. Let w € B be a neighbor of u and denote u’s neighbor
in D as z. We examine two cases.

Case 1. Suppose w is not an external private neighbor of any v € D. Then let
f(w) = 1. Taken together u,w,z are three vertices with total weight two.

Case 2. Suppose w is an external private neighbor of a vertex v € D. If v has
three or more external private neighbors with weight 0, then assign f(w) = 1.
In this case w still has at least two external private neighbors with weight 0 and
we can assign w to the part with u,z as in Case 1.

On the other hand, suppose v has two external private neighbors with weight
0. Let z be the external private neighbor of v other than w. Then change
f(v) =0 and let f(w) = f(z) = 1. Then u,u,w,v,z are five vertices with total
weight three. O

For graphs of minimum degree 3, both the theorem of Favaron, Hansberg and
Volkmann [10] and the theorem of Hansberg and Volkmann [19] give v, < 0.6n.
We show that this bound can be improved.

Theorem 4 Let G be a graph with n vertices and minimum degree § > 3. Then
72(G) < n/2.

Proof. It is known that every graph has a spanning bipartite subgraph con-
taining at least half the edges incident with each vertex, see Exercise 1.5.8 from

Bondy and Murty [3].

Suppose G has minimum degree § > 3 and let the bipartite subgraph as
ahove have bipartition (A4, B). Each vertex in A has at least 2 neighbors in B,
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and vice-versa. Thus each of A and B is a 2-dominating set. Since one of them
has size at most n/2, the result follows. O

Corollary 5 Let G be a graph with n vertices and minimum degree 6 > 3. Then
1(G) <n/2.

An infinite family of cubic graphs with 7y = 72 = n/2 can be constructed
as follows. Let X = K4 — e with degree two vertices z and y. Let k > 2, and
X1, Xa, ..., Xx be disjoint copies of X. Let s; and ¢; be the degree 2 vertices in
X;. Fori=1,2,...,k, join t; to s;;1, where addition is modulo k. Let G be a
graph arising from this construction. An IDF of G must have weight at least 2
in each copy of X: either both degree three vertices have a 1, or one of them has
a zero and has a weight of 2 in its neighborhood. Hence v/(G) = 72(G) = n/2.

3.2 Bounds for regular graphs

In this subsection, we present some further order-related upper bounds, focusing
on cubic and quartic graphs. As we shall see, the results will primarily be for 2-
domination, with conjectures posed for Italian domination. The Petersen graph
has 2-domination number 4 and thus is a cubic graph with 42(G) < n/2. We
next describe an infinite family of triangle-free cubic graphs where equality holds
in Theorem 4.

The circulant graph C,(z, T2, z3) is the graph with » vertices vg, v1,...,Vn-1
with v; adjacent to each vertex vixz;,j € {1,2,3}, where addition is done
mod n.

Proposition 6 Let G be the circulant graph Cgi(1,4k,8k — 1). Then v(G) =
4k.

Proof. Since G has a Hamilton cycle C, it is clear that vo(G) < 4k. We say
two vertices are opposites if they are not adjacent on C but are adjacent in G.
Let D be a minimum-weight 2-dominating set of G. To see that y2(G) = 4k,
we shall partition C into 2k parts, each consisting of four consecutive vertices.
Number the parts around C as Sy, Sy, ..., S2x—1. Index the vertices within any
part by 0,1,2,3 in clockwise order.

Two vertices in S; are called ends if they are adjacent and one of them
has degree one in the subgraph induced by S;. Let Sy be a part with vertices
v,V1,V,v3. It is easy to see that at least one vertex of Sp must be in D, else
v is not 2-dominated. We claim that either (i) two vertices of Sp must be
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contained in D or (ii) if exactly one vertex of Sp is in D, then there are three
vertices from D in Sk. So suppose exactly one vertex of Sy is in D, w.l.o.g..
let us say it is vz (it must be either vy or v3). Then vo,vy € D and in order
for vo,v1 to be 2-dominated, their opposites must be in D. Observe that these
opposites, ug,u;, are contained in Sk and are ends in Sk. If Si contains three
vertices in D, we are done. Otherwise, suppose |Sx N D| = 2. Then it must be
that the other two ends in Sk (i.e., uz,u3) are not in D and it follows that their
opposites must be in D. Since 2k is even, the opposite of uz is v3 and since
v3 € D, D cannot be a 2-dominating set. O

Proposition 7 Let G be the circulant graph Cyx(1, 2k, 4k—1) with k odd. Then
72(G) = 2k.

Proof. Assume k > 1, else G is K4 and the result is trivial. Let D be
a minimum weight 2-dominating set of G and suppose it has fewer than 2k
vertices. Partition the vertices into groups of four as above; label these parts
So,S1,...,Sk-1 around the cycle. Construct auxiliary graph H with vertices
corresponding to the parts of G with two vertices in H adjacent if any vertices
in the corresponding part of G are opposites of one another.

As in the proof of Proposition 6, if a part Sg = {vp,v;,v2,v3} contains
exactly one vertex from D it must be one of v;,v,. Suppose, w.l.o.g., that
vy € D, which implies the opposites of vg,v; are in D. Note that for part Sp,
the opposites of vp, v; lie in one part (namely, SL% | ), and the opposites of va, v3
lie in a different part (namely, S f%1)‘ Since k is odd, we have that H = Cy.
Specifically, H contains the cycle SO:S[i;-j’Sk—lvstgj-l» et ,Sr%_],So.

If part 5| & | does not contain at least three vertices in D (again, we are trying
to show an average of two vertices per part), then two adjacent vertices from
S| k) are in D and the other two ends from this part must have their opposites
in D. Continuing this chain of reasoning, we are essentially following a path
from part to part, searching for a part with three vertices. Since H = Cy, if we
never find a part with three vertices from D, we eventually wind up back at Sp
(which contains exactly one vertex from D) and we have a contradiction.

Suppose we find a part X with at least three vertices from D along this
path of parts in H. Maybe there is some other part Y with one vertex from D
that we have yet to visit while walking along this Hamilton cycle of parts that
started at Sp. Then either the opposites of the two vertices from Y that are not
in D lie in X, in which case X must have four vertices from D, so the average
of at least two vertices per part applies, or the opposites are further along our
Hamilton cycle of parts (i.e., further from Sy walking in the direction we are
walking). In which case we keep going along the path, eventually winding up
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Figure 1: Cubic Graph.

at Sp, a contradiction, or finding a part with three vertices. O

We make the following conjecture.

Conjecture 1 v;(G) = n/2 for G = Cyi(1,2k,4k-1) and for G = Cgr(1, 4k, 8k—
1).

A cubic graph with 4/(G) < 72(G) is shown in Figure 1. Note that this
graph has odd-length cycles.

We next consider 4-regular graphs.

Proposition 8 There ezist infinitely many bipartite 4-regular graphs G with n
vertices, 12(G) = n/2, and v;(G) < 72(G).

Proof. Take k > 1 copies of Ky 4. Call them Ay, As,..., Ax. Imagine these
as k blocks of eight vertices ordered left to right, with edges going from top
to bottom. For i = 1,2,...,k — 1, delete the last vertical edge of A; and the
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first vertical edge of A4y, then add in the two cross edges that makes these
to subgraphs helong to the same component. Call this graph Gx. To see that
72(Gx) = n/2, for any block A; of eight vertices except the two ends, A; and
Ay, consider the middle four vertices (two on top, two on bottom). If any of
these are not in the 2-dominating set, then two vertices in the other part of
the same block are in it. Thus each internal block has at least four vertices
in any 2-dominating set. In each of the two end blocks, look at the four most

extreme (leftmost or rightmost) vertices. The same argument applies. Hence
Y2(Gk) = n/2.

By considering groups of three consecutive blocks, one can construct an
IDF of G3; with weight 5n/12. It follows that v;(Gac+1) < 5(n — 8)/12 + 4 =
(5n +8)/12 and ~7(G3t42) < 5(n — 16)/12 4+ 7 = (5n +4)/12. Hence, if k > 1,
then 9;(Gx) < n/2. O

Corollary 9 For all graphs G with n vertices and ¢ > 4 we have v < n/2, and
this bound is sharp for infinitely many graphs.

Observe that vj(Kys4) = 4. We know of no larger, connected, 4-regular
graphs with 47 = n/2 and suspect there are none.

Proposition 8 generalizes. Instead of each block being Kj 4, use K. The
resulting graph is t-regular with n = 2kt and o = 4k = 2n/t.

It was shown in [7] that if G is a connected graph, then 7/(G) > 2n/(A +2).
Some of the regular graphs shown above demonstrate that 4y can be much larger
than 2n/(A + 2).

4 Diameter two graphs

The proof of Theorem 2 suggests that paths of length four can cause the Italian
domination number to be large. A cographis a graph with no induced Py, see [4].
Equivalently, cographs are precisely the graphs that can be constructed from K,
using the operations of disjoint union and complementation. The last operation
in the construction of a non-trivial connected cograph must be complementation,
hence any connected cograph has diameter at most two and domination number
at most two. The Roman domination number of a connected cograph is known
to be one of the integers 2,3 4, and the situations in which each value occurs
are characterized in [25]. We prove an analogous result for Italian domination.
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Theorem 10 Let G be a non-trivial connected cograph with n vertices. Then
71(G) < 3. Further, 77 = 2 if and only if G has a vertez of degree n— 1, or two
non-adjacent vertices of degree n — 2.

Proof. Clearly v;(K32) = 2. Suppose n > 3. Since G is connected, the last
operation in the construction of G is complementation. Suppose G is formed
by taking the complement of cographs A and B, which need not be connected.
Without loss of generality, A has at least two vertices. Let D be a dominating
set of A, and b be a vertex of B. The characteristic function of DU {b} is an
Italian dominating function of weight at most three.

It is easy to see that if the nontrivial connected cograph G has a vertex of
degree n — 1, or two non-adjacent vertices of degree n — 2, then vy = 2. We
show that the converse holds.

Suppose G is a nontrivial connected cograph with 4;(G) = 2. If G has no
vertex of degree n — 1, then there is no Italian dominating function that assigns
2 to a single vertex and O to all other vertices. Hence, an Italian dominating
function of weight 2 must assign 1 to two vertices, say a and b, and 0 to all
other vertices. It follows that every vertex in V — {a,b} is adjacent to hoth a
and b. Thus e and b each have degree at least n — 2. Since G has no vertex of
degree n — 1, the vertices a and b are non-adjacent and therefore have degree

exactlyn—-2. O

The complement of P; U P3 is an example of a cograph with 4y = 3 and
1r = 4.

The Italian domination number of a diameter 2 graph can be greater than 3.
For example, the unique planar graph of diameter two and domination number
three, see [12, 23|, can be seen to have 4;(G) = 5 and ygr(G) = 6 (to see the
former, put 1’s on the corner vertices and middle vertex of Figure 1 of [12] and
0’s on all other vertices). The Cartesian product of K; and K; has diameter 2
and domination number t. Suppose we draw this graph so that each of ¢t K;’s are
drawn as horizontal rows of ¢ vertices, one beneath the other (so the t* vertices
are laid out in a grid). If there is a “row” with no vertex in the dominating
set, then there must be an element of the dominating set in each “column”.
Thus the Italian domination number is at least ¢. The set of vertices on the
“diagonal” is a 2-dominating set, so 4; = ¢. One can therefore observe that the
Roman domination number of this graph is 2t.

It is shown in [19] that v(G) < [%] + 1 for any diameter two graph. The

only examples they demonstrate achieving this bound have n € {8,10}. Each of
these examples with n = 8, see Figure 1 [19], has 4(G) = 3 and 7;(G) < 72 < 4.
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The examples with n = 10 are 4-regular graphs. We prove that the examples
with n = 10 are not Italian.

Proposition 11 Let G be a 4-reqular, diameter two graph with n = 10 vertices.
Then 4(G) €3 and 4;(G) £5.

Proof. The bound on 4(G) is obvious. Let v be a vertex and let A =V/(G) -
N[v]. Note that |4| = 5. If each vertex in A has at least two neighbor in N(v),
then 77(G) < 4 (label each vertex in N(v) with 1 and all other vertices with
0). Otherwise, let w € A have only one neighbor in A (it has at least one, since
the diameter of G is two). Then w has three neighbors in A. Let u € A be the
vertex in A that is not adjacent to w and let = € N(v) be adjacent to w.

Suppose u has at least two neighbors in N(v). Then the following is an IDF
of weight five: label w with 2, z and v with 0, the other three vertex in N(v)
with 1. Otherwise, suppose u has one neighbor in N(v). If that neighbor is z,
then an IDF of weight five is: label v, w with 1, z and v with 0, the other three
vertex in N(v) with 1. If that neighbor is not z, then an IDF of weight five
is: label u, w,v with 1, z and u’s neighbor in A with 0, the other two vertex in
N(v) with 1. O

We claim that there are only finitely many diameter two graphs with (G) =
| 3] + 1. For any diameter two graph, v(G) < 6(G) as the open neighborhood
of any vertex is a dominating set. It is also well-known that when 6(G) > 1,
Y(G) € n[1 +1n(6(G) + 1)]/(8(G) + 1), see [1]. Let 6(G) = n/k for some integer
k > 1. Then for any k, once n is sufficiently large, the second upper bound gives
a better bound on the domination number than | %] + 1. Thus for any fixed &,
there are only finitely many graphs G for which 4(G) < n/k.

The bound on the domination number cited above can be used to obtain
a bound on the domination number of diameter 2 graphs which is better than
| %3] + 1 once n is large enough.

Proposition 12 If G has diameter two, then v(G) < \/nin(n).

Proof.  If the minimum degree § < y/nln(n), then the neighbors of a vertex
of minimum degree form a dominating set of the required size. If § < 10, then
2] +1 < y/nln(n), and the result follows from the bound of Hellwig and
Volkmann [19]. Hence, assume § > \/nln(n) > 10.

Then,
v < n(l+In(vnln(n) +1))/(Vnln(n) +1)
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< n(1 +In(v/nln(n)))/(vnlIn(n))
< V(1 +In(v/nln(n)))/In(n)

= /n(1 + In(v/n) + In(In(n))/In(n)
< V(1 + In(vn) + In(y/n)/In(n)
= V(1 +In(n)/ Inn)

< Vnln(n)

where the last inequality usesn >éd+12>11. O

5 Trees

5.1 Tree Fundamentals

A stem in a tree is a vertex of degree at least two that is adjacent to at least one
leaf. A strong stem is adjacent to at least two leaves. A weak stem is adjacent
to exactly one leaf. The result stated in Proposition 13 also appears in (7], but
we include a self-contained proof to aid in what follows.

Proposition 13 ~;(P,) = [23].

Proof. We first show ;(P,) < [241]. For n odd, let f(v) =1 for every other
vertex, including the leaves. For n even, let f(v) = 1 for every other vertex,
starting with the leftmost leaf, except that f(v) = 2 for the rightmost stem.}

That v;(P,) > [%ﬂ] follows by a simple induction on n, given the base
cases for n < 4, which are easy to verify by inspection. O

Corollary 14 P, with n odd and n # 3 is an I1 graph and these are the only
paths that are I1.

Proposition 15 P,, P, Ps are the only Italian paths and no paths are I2.

Proof. 1f P, were Italian, it would be that [2}1] = [%*], which is not possible
when n > 6. That no path is 12 follows from Proposition 13. O

1This is not necessarily the only minimum-weight Italian dominating function for even
length paths. P; has a minimum-weight Italian domination function with f(v) = 2 for each
stem. Likewise, all paths can be seen to be Ila.
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< n(1+In(vnlin(n)))/(vnln(n))

< Vn(1 +In(v/nln(n)))/ In(n)

= VA(1 + In(v/7) + In(In(n))/In(n)
< Va(l+In(vn) +In(v/n)/In(n)
= Vn(1 +In(n))/In(n)

< Vnln(n),

where the last inequality uses n > é+12>11. O

5 Trees

5.1 Tree Fundamentals

A stemin a tree is a vertex of degree at least two that is adjacent to at least one
leaf. A strong stem is adjacent to at least two leaves. A weak stem is adjacent
to exactly one leaf. The result stated in Proposition 13 also appears in [7], but
we include a self-contained proof to aid in what follows.

Proposition 13 v(P,) = [23].

Proof. We first show y;(P,) < [2+L]. For n odd, let f(v) =1 for every other
vertex, including the leaves. For n even, let f(v) = 1 for every other vertex,
starting with the leftmost leaf, except that f(v) = 2 for the rightmost stem.!

That v;(Pn) > [2F] follows by a simple induction on n, given the base
cases for n < 4, which are easy to verify by inspection. O

Corollary 14 P, with n odd and n # 3 is an I1 graph and these are the only
paths that are I1.

Proposition 15 P, P3, Ps are the only Italian paths and no paths are I2.

Proof. If P, were Italian, it would be that [21] = | 211, which is not possible
when n > 6. That no path is I2 follows from Proposition 13. O

IThis is not necessarily the only minimum-weight Italian dominating function for even
length paths. Pg has a minimum-weight Italian domination function with f(v) = 2 for each
stem. Likewise, all paths can be seen to be Ila.

137



Therefore, the only Italian paths are P, Py, Ps.
Theorem 16 Let T be a tree withn > 1 vertices. Then v(T) < ~1(T).

Proof.  The proof is by induction on n. It is easy to verify the statement
if T has fewer than three vertices. Let n > 3. Let u be a leaf of T having
maximum eccentricity and v the stem adjacent to u. If v is a strong stem,
then v is in every minimum dominating set of T and there exists a minimum-
weight Italian dominating function of T with f(v) = 2. The result follows by
induction in this case. Otherwise, v is a weak stem and T — {u,v} is a tree with
(T = {u,v}) < /(T - {u,v}). Since there is a minimum-weight dominating
set of T containing v and a minimum-weight Italian dominating function of T
with f(v) = 1, the result follows by induction. O

5.2 Italian Trees

Since v/(T') < yr(T) for all trees T, the Italian trees are a subset of the Roman
trees. We hoped to modify the construction of [20] to yield a construction that
generates all Italian trees. However, any such construction seems to require
conditions more complex than those in [20]. For example, let T} = K 1.3. Apply
construction 73 from [20] with tree P3 three times, once to each leaf of 73.
The domination number of the resulting tree is four, but the Italian domination
number is seven, even though each tree generated during this construction is
Italian until the last one. Hence in this section, we focus our attention to some
special classes of trees.

A spider S is a tree formed by taking k paths and attaching them together
at a common vertex. In other words, a spider is a subdivision of a star: k& paths
with ly,l2,...,{; vertices, called the legs of the spider which are joined at a
common vertex v. When we refer to the number of vertices of a leg, we do not
include v in that count. If £ = 2, .S is a path. For spiders that are not paths,
the unique vertex of degree greater than two is called the central vertex.

Theorem 17 Let S be a spider with k > 3 legs. Then S is Italian if and only
if either (i) each l; is equal to 1 (i.e., S is a star) or (ii) S is one of the two
types of spiders shown in Figure 2.

Proof. It is easy to verify that each of the spiders of type (i) and (ii) are
Italian.

For the other direction, let v be the unique vertex of S of degree k. Suppose
to the contrary that S is Italian and not of type (i) or (ii). We distinguish two
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cases.

Case 1. Suppose that no leg has more than two vertices. If only one leg has
two vertices, then S is not Italian as 4(S) = 2 and «,;(S) = 3. So suppose at
Jeast two legs have two vertices. If no leg has one vertex, then let f(z) = 1
for each leaf of S and f(v) = 1. This shows S is not Italian as 4(S) = k and
~1(S) = k + 1. Now suppose at least one leg has one vertex. Then let f(z) =1
for each leaf of S that is on a leg with two vertices (say there are q of these)
and let f(v) = 2. The 4(S) =q+1 and v;(S) =q + 2.

Case 2. Suppose that some leg has at least three vertices. We consider two
subcases.

Case 2.1 Suppose v is a stem (so some leg has one vertex). First suppose that
S has a leg with two vertices. Then by letting f(v) = 2, f(z) = 1, where z is
the leaf on the leg with two vertices and then assigning weights per Proposition
13 for all other paths in the subgraph induced by V(S)—{N|[v]Uz}, we produce
an IDF of weight less than 2v(S). This is true because y(S) > 2+ v(F;), over
all P;, where the P; are the paths in the subgraph induced by V(S)—{N[v]Uz},
and the weight of this IDF is at most 3 + 2y(F;).

Thus we may suppose that S has no legs with two vertices. If any leg has
six vertices, then let f(v) = 2, let f(z) = 1 for three vertices = on the leg
with six vertices (the leaf and vertex distance two and four from the leaf) and
then assigning weights per Proposition 13 for all other non-trivial paths in the
subgraph induced by V(S) — N|[v], we get an IDF of weight less than 2v(S).
This is true because y(S) > 3+ )_ v(F;), over all P;, where the P; are the paths
in the subgraph induced by V(S) — {N[v] Uz}, and the weight of this IDF it
most 5 + 2y(F;).

If any leg has either five, or more than six vertices, then assign weights to
vertices on that leg so that it is not an Italian weighting, assign f(v) = 2, and
then assign weights per Proposition 13 for all other non-trivial paths in the
subgraph induced by V(S) — N[v]. In this manner we get an IDF of weight less
than 2+(S).

To complete this case, observe that if one leg has one vertex and all ¢ > 1
remaining legs have three vertices, then S is not Italian, as v(S) = q¢ + 1 and
(S) = 29 + 1.

Case 2.2 Suppose v is not a stem. Partition S into k — 1 paths, one of which
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O O 89

(a) (b)

Figure 2: Italian spiders. Type (a) has t > 1 leaves and g > 1 legs with 3 or 4
vertices each (and at least one has 4). Type (b) has ¢ 2 2 legs with 3 vertices
each and one leg with two vertices.

combines v and two legs into a single path. If each of these k — 1 paths is such
that it has 2y = 4y (i.e., the induced subgraph of each such path is Italian), it
seems hypothetically possible that S is Italian; but we show that, in fact, S is
not Italian. Since v it not a stem, the path containing v must be a Fs in order
to be Italian. If one of the k — 1 paths has 2y > 4y, then clearly S is not Italian.
If one of the other paths is a P, then that path can be merged with the P
into a spider S’ containing eight vertices with y(S’) = 3 and v;(S") = 5 and it
follows that S is not Italian. If one of the other paths is a Fs, then that can he
merged with the P containing v into a spider S’ with y(S’) =4 and v;(5") =7
and it follows that S is not Italian. Thus, all the other paths must be P;’s and
S is of type (ii.b). Hence the proof. O

A super-caterpillaris a tree in which all vertices of degree greater than two lie
on a path known as the spine. A caterpillar is a super-caterpillar in which each
vertex is at most distance one from some vertex on the spine. Stated another
way, a super-caterpillar is a subdivision of a caterpillar. Refer to a vertex of
degree greater than two in a super-caterpillar as a branch vertex. A spider
partition of super-caterpillar C is a partition of V(C) into parts Sy, ..., Sk such
that each S; induces a spider. A spider partition of C is said to be minimum if
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the sum of the Italian domination numbers of the spiders is minimum over al|
spider partitions of C. Observe that for any minimum spider partition of C, the
central vertices of every spider lie on the spine of C, though not every vertex
on the spine of C is the central vertex of a spider in the partition. It is easy to
see that every super-caterpillar has a spider partition.

Theorem 18 Let C be a super-caterpillar with n > 3 vertices. Then C s
Italian if and only if every minimum spider partition of C consists of Italian
spiders.

Proof.  First suppose that C is Italian. We use induction on the length of the
spine, s. If s=1, then C is a spider, so assume s > 1. We also assume that C
has more than one branch vertex, otherwise it is a spider. Let v be a branch
vertex of maximum eccentricity. Then v is the central vertex in a spider in every
minimum spider partition of C. Let S be such a partition and S the spider
containing v (we abuse notation and use S) to refer to both this set of vertices
and the subgraph induced by these vertices). Let C’ be the super-caterpillar
induced hy V(C) = S;. We claim that S; is Italian. Suppose to the contrary
that S; is not Italian and so 2y(S;) > vs(S1). We know that 29(C’) > ~,(C")
and that v;(C) < 1(C") +71(S1). If 7(C) = 4(C") +4(S1), we are done (since
this would imply C is not Italian), so suppose this is not the case. That is,
suppose y(C) = 4(C') +v(S1) — 1. This implies there is a leaf w in the spider
S (w is not a leaf in C, i.e., it is the unique neighbor of v on the spine of C)
that is adjacent to a vertex z € V(C’) such that  is in a minimum dominating
set D' of C' and w is in a minimum dominating set of Sy, but they do not
appear together in any minimum dominating set of C. Since C is Italian, lahel
each vertex of D', including z, with a 2 and this is a minimum weight IDF of
C’. Then w can effectively be “moved” from S; to C’ without changing the
Italian domination number of C’. In so doing, 4(S; — w) = 4(S1) = 1 and
71(S) — w) = v;(S)) — 1, thereby forming a spider partition of weight less than
S, a contradiction. Therefore S, is Italian and it follows by induction that each
spider from S that lies in C’ is Italian.

Now suppose that every minimum spider partition of C consists of Italian
spiders. We claim that C is Italian. To the contrary, suppose every minimum
spider partition of C consists of Italian spiders and that C is not Italian. Let C
be a minimum counterexample; obviously, C' has at least two branch vertices.
As ahove, let S; be a spider (from a minimum spider partition S) centered
at a branch vertex v of maximum eccentricity. By assumption, S is Italian.
Let C' be the super-caterpillar induced by V(C) — S). Then C’ is an Italian
super-caterpillar, else it is a smaller counterexample.

Let f be a minimum weight IDF of C. Since C is not Italian, there must be
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some vertex z € C such that f(z) = 1. Since C is a smallest counterexample,
we may assume that 2 € S; and in fact z = v (otherwise either S or C' is a
smaller counterexample). Thus there is a w € S that is adjacent to v and toa
vertex y € V(C”) and such that f(w) =02 If f(y) = 2, then we may move w
to the part S, of S containing y (in which case Sy is a smaller counterexample),
so therefore f(y) = 1. There are now two possibilities. If the super-caterpillar
induced by V(C')Uw is Italian, it follows that f*(y) = 2 for some minimum
weight IDF f* of C and therefore S) is a smaller counterexample. On the other
hand, suppose the super-caterpillar induced by V(C')Uw is not Italian. Then a
minimum weight IDF f, of V(C')Uw can be combined with a minimum weight
IDF of S; to form an IDF of weight less than f, a contradiction. O

6 2-domination

It follows from Theorem 17 that the spiders with v;(G) = v2(G) are paths, the
spiders of type (ii.b) from Figure 17, and the spiders of type (ii.a) from Figure
17 that have at most two legs with one vertex.

A cactus is a graph in which any edge belongs to at most one cycle. The
cactus graphs G with v(G) = 7,(G) were characterized in [14] as those that are
formed by taking any non-trivial tree, replacing each edge with two parallel edges
and subdividing each edge (note that §(G) = 2 for these graphs). Therefore,
these are exactly the cactus graphs with v(G) = v;(G).

There are infinitely many cactus graphs with §(G) = 1 and ;(G) < 72(G),
so we focus on those with 6(G) = 2.

Theorem 19 Let G be a cactus with §(G) = 2. Then G is I1a and thus 7;(C) =
1(G).

Proof.  Assume without loss of generality that G is connected. Let C be an
end-block of G with cut-vertex u. Let G’ = G — {V(C) — u}. We distinguish
two cases.

Case 1. Suppose 6(G’) > 2. If there is a minimum-weight IDF f of G’ such that
f(u) = 1, then we proceed by induction, since any cycle is I1a and the inductive
hypothesis ensures that the range of f is {0,1}. The result then follows from
Proposition 1. So suppose every minimum-weight IDF f of G’ has f(u) = 0.
V(G)-V(G') induces a path P with k > 2 vertices. A minimum-weight labeling

2Note that w may be a branch vertex of degree three, but it has no neighbors with non-zero
labels from f other than v,y, so we may assume for simplicity that the degree of w is two.
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of any path can be achieved with [£] 1’s on alternate vertices (starting with
the first).

Case 1.1 Suppose P has two vertices (i.e., C is a cycle of length three). Then
any minimum-weight IDF needs total weight at least two on the vertices of C
and this can be achieved with f(u) = 0 and labeling the two vertices of P with
1’8

Case 1.2 Suppose P has k > 2 vertices (i.e., C is a cycle of length k+1). If we
label u with 0, any minimum-weight IDF needs total weight at least ["—‘,_,Ll'l on
the vertices of P. If we label u with a label greater than 0, then we can label
C with total weight ["—‘*22] and the total weight of this labeling is at most one
more than that of f (when restricted to G’). In fact, a label of 1 on u suffices
in this case. In either event, we can achieve a minimum-weight I1a IDF of G of
weight [££1] more than the minimum-weight IDF of G'.

Case 2. Suppose that §(G’) < 2. If G’ is I1a, then in any such labeling of G it
must be that f(u) = 1, sine the degree of u ins G’ is 1. This labeling can easily
be extended to an Ila labeling of G.

On the other hand, suppose G’ is not I1a. Let f’ be a minimum-weight IDF
of G’. Let u’s neighbor in G’ be w. Then G’ can be partitioned into a cactus
G* with §(G*) > 2 and a path P* with k > 1 vertices, including u. There are
three possibilities.

First suppose P* = uw. Then the degree of w in G is two. Then we can
find an Ila labeling f* of G*. Clearly, the weight of f’ is at least two more
than the weight of f*. Thus we may assume that the that the label assigned
by f' to w is a 2 and the label assigned to u is 0. Modify this labeling so that
the label assigned to u is 1, that assigned to w is 0, and that assigned to the
other neighbor of w is 1. This is an Ila labeling of G’ and this labeling can be
extended to an Ila labeling of G.

Next suppose P* = u. Therefore the degree of w in G’ is greater than two.
Thus there is a minimum-weight I1a IDF of G’ — u in which the label assigned
to w is either 0 or 1. This can then be extended to a minimum-weight I1a IDF
of G by labeling the cycle containing u with 1’s on alternating vertices, starting
with one of the vertices adjacent to u.

Finally, suppose the length of P* is £ > 1. Then in any minimum-weight
IDF of G, the sum of the weights of the vertices on P* — « must be at least
|%]. If equality is achieved in some IDF, then we can find an I1a labeling of G:
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3 V- 4 .
?tar;; ' ;th an I1a labeling of G*, label |5) vertices of P* with 1’s (including the
urthest vertex from u), and label alternate vertices of C with 1's.

If this is not possible, then k is odd and there is no minimum-weight I1a
IPF of G* with a 1 on the vertex z € V(G*) that is adjacent to P°. Then
either (i) every minimum-weight IDF of G* has a 0 on z, in which case every
minimum-weight IDF of G requires weight [5] on the vertices of P* — u and
this can be achieved by alternating 1's on the vertices of P* and extending that
around C to complete an Ila labeling of G or (ii) some minimum-weight IDF
of G* has a label of 2 on z. Let z; be the vertex on P* adjacent to z and z; its
neighbor on P*. Let H be the subgraph of G induced by V(G*)U{z1, 22}. Let
H* be the graph H plus edge zzo. Then H* is a cactus of minimum degree two,
Note that y;(H*) = 77(G*). But since H* is a cactus of minimum degree two
smaller than G, it is I1a, via Italian dominating function h. Either function A
is an I1a IDF of H, or else h(z;) = h(z) = 1,h(z2) = 0 in which case modify
that to h(zz) = h(z) = 1,h(2z1) = 0. The modified h can be extended an Ila
labeling of G. O
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