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Abstract. For a graph G, the Merrifield-Simmons index i(G) is defined
as the total number of its independent sets. In this paper, we determine
sharp upper and lower bounds on Merrifield-Simmons index of generalized
6- graph, which is obtained by subdividing the edges of the multigraph con-
sisting of k parallel edges, denoted by 8(r1,72,...,7x). The corresponding
extremal graphs are also characterized.
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1. Introduction

Graph theory has provided chemist with a variety of useful tools, such as

topological indices. Molecules and molecular compounds are often modeled
by molecular graph. Topological indices and graph invariants based on the
stable sets are used for characterizing molecular graphs. Also, topological
indices of molecular graphs are one of the oldest and most widely used de-
scriptors in quantitative structure-activity relationships (QSAR) [28]. The
Merrifield-Sitnmons index is one of the most popular topological indices in
chemistry, which was extensively studied in a monograph [19]. There Mer-
rifield and Simmons showed the correlation between this index and boiling
points. :
Let G be a graph on n vertices. Two vertices of G are said to be
independent if they are not adjacent in G. An independent & set is a set of
k vertices, no two of which are adjacent. Denote by i(G, k) the number of
the k-independent sets of G. It follows directly from the definition that
is an independent set. Then i(G,0) = 1 for any graph G. The Merrifield-
Simimons index of G, denoted by i(G), is defined as i(G) = L}_yi(G, k).
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Now the research on Merrifeld-Simmons index mainly focuses on graphs
with pendent vertices, e.g., trees, unicyclic graphs, bicyclic graphs and tri-
cyvclic graphs: see [4. 5, 11, 12, 13, 14, 15, 1§, 20, 21, 24, 25]. On the other
hand. only a few papers reported the progress on Merrifield-Simmons in-
dex of graphs without pendent vertices. In [1]. Alameddine determined
the sharp bounds for Merrifield-Simmmons index of a maximal outer pla-
nar graph. Gutman [10], Zhang and Tian [22, 23] studied the Merrifield-
Simmons indices of hexagonal chains and catacondensed systems, respec-
tively. Ren and Zhang [26] determined the minimal Merrifield-Simmons
index of double hexagonal chains. Here we continue this line of research
by investigating sharp upper and lower bounds of so called generalized

g-graphs.
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Figure 1: 8(ry,r2.~- ,ry)

A generalized #-graph 8(ry.ra2,--- , i) consists of a pair of end vertices
joined by %k internally disjoint paths of lengths ry + 1,0 +1,+-- ,1x +1
(see Fig.1). We denote the set of n-vertex generalized 8-graphs by 6% =
O(ry,royeeyti),rp+ra+--+re=n-2,r<ra<--- <, k23.

In order to state our results, we introduce some notation and terminol-
ogy. For other undefined notation we refer to Bollobs [2]. We only consider
finite, sinple and undirected graphs. If W C V(G), we denote by G — 1V
the subgraph of G obtained by deleting the vertices of 11" and the edges inci-
dent with themn. Similarly, if E’ C E(G), we denote by G— E’ the subgraph
of G obtained by deleting the edges of E'. If W = {v} and E' = {xy}.
we write G — v and G — ry instead of G — {v} and G — {xy}, respectively.
We denote by P, the path on n vertices. Let N(v) = {uluv C E(G)},
N[v] = N(v) U{v}-

We list the following results which will be used in this paper.
Lemma 1.1. (/5/)Let G = (V, E) be a graph
(i) If uv € E(G), then i(G) = (G — uv) — i(G — (N[uJUN[v]);
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(ii) If v e V(G), then i(G) = i(G —v) - i(G = N(v]);
(iii) If G1,Ga,...,G¢ are the components of the graph G, then i(G)
[T5=11(G))
According to the definition of the Merrifield-Simmons index ol a graph
G, by Lemma 1.1, if v is a vertex of G, then i(G) > i(G —v). In particular,
when v is a pendent vertex of G and wu is the unique vertex adjacent to
v, we have i(G) = (G — v) + i(G = {u,v}). So it is easy lo see that
i(P) = Li(P) = 2 and i(P,) = i(Pa-t) + i(Pu-a) for n 2 2. Let F,
be the nth Fibonacei number, defined by F, = Iy + F—g with initial
conditions Fy = 1 and Iy = 1. Therefore,

I L \/— u|'2 (1 Ft \AF’)N-I-Q].
f ) )

Note that Fy,ym = FnFy, + F -1 Fy-1. For convenience, we let /9, = 0 for
n < 0. Our wmain result in this paper is the following.

I

l(-Pu) - ?

Theorem 1.2. For any generalized 0-graph 0(ry, 72, ,7k) € ok,

i) ([27)Ifk =8, n 27, then Fy,+F,—3 < i(0(ry,7,73)) < I = 1431 —
3. The equality holds on the left if and only if 0(1 1, 72,73) 2 0(0,1,n-
3)). The equality holds on the right if and only if 0(ry,ro,13) =
6(1,1,n — 4)).

(ii) Ifk =4, then 108, + TF,-¢ < i(()(‘l'],’l‘g, 7'3,7‘4)) < (23 -+ 1)F"_4 +-
F,_s. The equality holds on the left if and only if 0(ry,r2,r3,74) =
0(0,2,2,n — 6), or 0(0,1,2,n —5). The equality holds on the right if
and only if 0(ry,72,73,74) = 0(1,1,1,n = 5).

(i) If k > 5, then 2+ 3% 2F, _arqa + 25 Fcarg S i(0(r1, 72,0y 1)) S
(281 4 1) Fek + Fuor—1. The equality holds on the left if and only
if 0(ry, 72y, .., 1) £0(0,2,2,...,2,n - 2k — 4). The equality holds on

the right if and only if 0(ry, o, ..., ) £0(1,1,1,...,1,n =k - 1),

2. Proof of Theorem 1.2

We first give some leimmas that will be used in the proof of our main
results.
Lemma 2.1. Let 8(r1,72,...,7%) € @:‘; be from Figure 1. Then
i(0(7'1,1'2, Ve ,’l‘k)) — FV‘['H Ff‘2+1 . F"k+l -+ QF” Fm ‘o F,‘k +
F. _1F,_1... Fr 1. Especially, when ry.= -+ = rp-1,=1,4(0(1,1,...,1,
n—k—-1)) = (2! + 1) Fa + Froi-1.
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Proof. By Lemma 1.1, we have

z(O(r,,rg,...,rk))

= i(0(r1, 2, Tk) —u) + (0 (r1,72,..+Tk) — N[u])

= i(0(r1,72y. - Tk) —u = v) +9(0(r1, T2, Tk) —u— N[v]) +
i(0(r1,72y+ -, k) = N[u] = v) +z(9(r1,r2,...,rk)-N[u]—N[v])

=" (PyUPR, ViU P )+ 2%(PreqU Py iU. SUF, 1 )+
J(Br=g U Peza ULl Piis)

= F1-1+1Fr2+1 .o .Frk-l-l +2FT1FT2 "‘Frk + Frl_lFr2_1 _— .Frk—l-
The second part of this lemma is ohvious hy direct computing. O

Lemma 2'2' Let 9(01 T2y...4,7 +Tk) € 9:2 Then i(9(0,7‘2, seeyT1 +1‘k)) —
Fr‘2+lFr3+l . "Fr1+rk+l + 2Fr2Fr3 e ‘F"1+"k + Frg—IFr3—l 5 -Fr1+rk—l .

Proof. By Lemma 1.1, we have
i(9(0,r2,. oy Tha 15Tl +7'k))
= i(0(0,r2, S | +7'k) —’U.) +i(9(0,1’2,... , 71 +1‘k) — N[u])
= FonFon B+ 2FFry o Py +
IR S RS DR
O

Lemma 2.3. Let ry,72,...,7k—1 be positive integers with 2 < ry, < 1o <
++ < 7k_1. Then F-,-2+1 oo Frk-l"l'l +Fr2._1 . 'ka-l—l ~2Fr2 oo K, >0.

Proof. In fact,
Fopdi =B it Fry 1o By 3 23K, i By

= (Ffz +F7‘2-1)"'(Frk_1 +Fr‘k_1—l) +Fr2—l "'Frk_l—l —Frz s Frk_l
‘_(Frz—l +Fr2‘2) -k (Frk-l_l +Frk_1—2)-

Let

g = (F"z +F"2—1)'“(FTI=-1 +ka-1-1)+Fr2—1 "'Frk-l—l -
Frz"'Frk_l (2.1)
B = (Ffz-l +F1‘2-2)"'(FTL_1—1+Fr,,_1-2) (2'2)

Note that the last term in (2.1) will be canceled when we simplify the ex-
pression of g;. On the other hand, the total number of terms of (2.1) is 2%—2,



which is equal to that of (2.2). The largest terin in gy is Fy,—y -+ Fr,_, -1,
for each other terin, say Fy, i F i, -+ Fy _ _i,_,, in (2.2), there is a term
Frg—il+lFr3—i,+l oo By i _a41, in (2.1) such that

Frz—l'lpf‘s—iz e Frk—l_‘ik—z < Frz—i1+1Fr3—i2+l T Fm-l—ix-z-!"l'

wherei; =1lor2,j=1,2,...,k—2. Notice that the term Fy,_y - - Fy,_,-1is
also contained in (2.1). Therefore, we obtain that g; > g2, as desired. I

Lemma 2.4. Let 0(ry,...,7x) € ©F with ry > 1. Then i(0(r1,...,7%)) <
i(0(1, 7o, ...,k +71 —1).

Proof. By Lemma 2.2, we have

072, ok L= 1)) 1= FoFoprisss Bropr + 2R F, voFopprio1 i
FOFTQ—]“'FT;'-{»-Tl—z'

Let At =1i(0(1,7re,...,7x + 71 — 1)) — i(8(ry,72,...,7%)). Hence,

Ai = F"l—2ka—2(Ff‘2+1"'Frk-1+1+F"2—1"'F1'k—1‘1_2F7‘2"’Frk—1)
<O

a

Lemma 2.5. If’f‘l,...,'f‘i > 1, then ’i(g(l,...,1,1°.,'+1,...,Tk_1,7‘k +7r 4+
N s’

"+Ti—i))>i(g(l,...,1,Ti,...,Tk_1,7‘k+T1+"'+7“i_] —l+1))
|

i—1
Proof. Let
A = 7:(0(1,...,1,1‘i+1,...,7‘k_1,7'k+T‘1+"'+Ti—i)),
Y
B = i(g(l,...,l,‘ri,...,Tk_l,Tk+T1+"'+T'i_1—i+1)).
ol
i—1

By Lemma 2.1, we have

A = 2iF7'i+l+1 RO F‘r‘k—1+lFrk+r1+-~-+T.'—i+1 +
2Fr.’+1 UL Frk—lFTk+7'l+"'+ri—i
+F7‘i+1-1 pgers FTk—lFTk+T1+"'+7'.'—i+11

B = Qi_lFTf-H <o F"‘k-—1+1Frk+7’1+“-+1‘;—1—i+2 +
2, o Py Frgriparioi—igl
et e By Bpptory sivprosg =i
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This yields,

A=B = 0 "Boasi el it =00 00 Fali
+Frip1=1 oo By oy 1) B2 Frpdry 4oidbrica—i=1

S (TR | 7 SRRET RN DR 1 ¢ ST ROS et

BF i s o s B chvon Praca =1 ) Prea Fesibry b -dre sy

(Frocinn vis By da = Dy w v By 7T

Frip-1-- - Fry_ 1) 2Frp4ri4etrisg=i-1 > 0,

\Y

where the last inequality follows from Lemma 2.3 and the assumption that
r1,....7; > 1. This completes the proof. O
Lemma 2.6. Let O(ry,--- ,7x) € ©F with ry > 1. Then i(8(ry,... 7)) >
1(6(0,7r2, ..., 7 +7%)).
Proof. Let Ai' = i(6(r1,72,-..,7k)) — i(6(0,72,...,71 + 7&)). By lemmas
2.1 and 2.2, we have
Ai' = [(Fry o FrsPraeaPr s = Py <o P g-1Fry i -2) ¥+
(B vt BBy BB, R aBl o o535
By i, Fioaly Fo of
I S S Y M
+F e By g Py iy g a Py o
ST S . NS e S o SEL) | o Y I
s MRy ST JURGIE Y SR oF O N T 2Ly U,
> (Foy—1Fr Foy_ Fros1 By o By Frya
+F 1B o Py Fres=1Pry_a=1Fry s Fr—1
F i o Fo i e i B gt By = 1850<1)
~(Fri=1Fry—1+ Frp 1 P2+ Fr Py q - By 1 F, )
- N SRR S MR ¢ S T R B 1 K

Hence i(6(ry, 7o, ..,7%)) > 1(8(0,79,...,71 4 1%). a

Lemma 2.7. Let 0(0,72,73,...,7k—1,714+7%),0(0,2,73,...,Tk=1,71 + T2+
ry —2) € ©F. Then

((6(0,72,73, .- -y Tk—1,71 + 7)) > 1(0(0,2,73,. . -, Th—1,T1 + 72 + 1% — 2)),

forry,r2 > 2.



Proof. By Lemma 2.3, we have i(0(0,2,ra,...,7 1y + 1 — 2)) =
FaFrgr Frygrgri =1 + 2F2Fr:; v g2 + Fryg—1 Frn»rrrl»n ~3(2.3)
Let A = i(0(0)7'2)7'3’ RN B 7'k)) e 1(0(0a 2s P3yeeeyT1 kT2 -+ 1Tk — 2)) By
(2.3) and Lemma 2.4,
A = (Fr3~|~]"'1:‘1'1_|-|-| —2F‘1'3"']'17‘g_| +

g 510 Fr;_;—l)Fr‘z—ﬂFrrl-m -3 >0,
where the last inequality follows from Lemma 2.3 and the assumption
r1,72 > 2 . This completes the proof. O
Lemma 2.8. Let 6(0,2,...,2,7i41,...,7k=1,71 + -+ + 7 + 1% — 21 — 2),

N —r

i—1

9(0, Bis o525 Pigins iy Thaly Tl "!-1‘i+1-l~1'k—2i)) € (—),k; URth vy iy Tig1 >

2,42 1. Then i(6(0,2,...,2, i41y:00yThmyT1 + oo+ 1+ —2i —2)) >
N i
i—1
1(0(0, 3 T Sy N Y L R SREE FTig1 1% — 22))
\—Y—/
1
Proof. Let
X = (00,252, TiftyregPhals Tl 55 by 41 — 26— 2)),
R e
i—1

Y = 1(0(0’21 ey 2, Ti42yeo ey Th=1T14 +Tig1 + 17 — 21))
i
By Lemina 2.2, we have
i— 1
X = 3 FT.+1+1 T 'FTA-1+lFr;+7'|-I ----- ri=2i43 +
2‘Fr.+x ¥ F"‘k—l‘l']FY‘& 41y e =2i42
Fr;+1—1 UL ka—l—1Ff’k+"l+"'+7‘i'—2i+la
Y = 3F 41 Fr 1 Frndoodrig=2ie1 +
i+ 1
2% Fr,+2 % Frk—x-HFrk—i-rl+---+7‘.+|—2i +

Frija=1"" Py =1 B g —2i-1

This yields

X-Y (B = 1) Friypt1 o Fry_ 1 — (2 - 2)Fpiq e Foy_y +
(Frisat1Frli+1=2F 3 F,, ., +

F"'+2—l i FTA—1-1)1F7‘-‘+1—3 A Frh~'|‘7'l+""|"r:—2i—l
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> (FT'.42+1"'F"A_.1+1_2Fr.;3"'Fu-l+
FT-+2"1 # Frk—l"l)Fr.+|-3 & .Frk+rl+"'+ri"2i-l 20

The last inequality follows form Lemma 2.3. This completes the proof. [
By Lemnma 2.8, we have

1(6(0,2,73,...,71 +ro+ 71k —2)) >1(0(0,2,2,74,.. -y T1 + T2+ Tk — 2))
>...>1(0(0,2,...,2,n - 2k +2)) (2.4)

Lemma 2.9. Let ry =Tk +rig2 — 2, rig2 > 2, fori 2 1,

1(6(0,1,...,1,742,. .., Tk=1,7k) > 1(6(0,1,...,1,2,7i43,... yTh=1,Tk))-

i i
Proof. Let
L= i(g(o,l,...,1,7‘,-+2,...,Tk_1,7'k)),
.
1
V = i(0(0;1,:.9,1,2,7i438% 0 3Th=1,TE)):
[

i
By Lemma 1.1, we have

= 2iFr.+2+1FTi+3+l R FrA--1+1Fr'k+1 e 2Fr.+2F'f'-+3 ¥ Frk-lFrkv
V. = 2iF3FT.+3+1 Ry Frk—1+1FT.+2+7'k—1 Ly 2F2F"‘-+3 e Frk-IFr-+2+"k—2-

This yields, U~V = Fy.,,,-3Fr—3[2Fp, g1 Fry_y4142F g -+ Fry ] >
0. |

With the similar discussion in the proof of Lemina 2.9, we have
Lemma 2.10. Let 7} = Tk +Tigj42 = 2,Tipj42 > 2, for 1,5 > 1,

2(9(0’ 1’ > ogei 1r21 (ERE 21ri+j+21 v 7rk—l1rk))
i j
> i(9(0, j IENE 1 NCERE | Titj+3y--s 7'k-137';¢))-
o g’ N et
i j+1
Remark: In order to find the lower bound on Merrifield-Simmons index
of graphs in ©%, hy (2.4), lemmas 2.9 and 2.10, it suffices to determnine
min{i(6(0,2,...,2,n — 2k + 2)),i(6(0,1,2,...,2,n — 2k + 3)),:--
i(6(0,1,1,...,1,n — k — 1)),i(6(0,1,1,...,1,1,n — k))}.



Lemma 2.11. For & > 5, i(6(0,1,...,1,2,...,2,n = 2k + i 4+ 3)) >
N N, e
i1 k=i=3

(80, 1,..., 1,2,...,2,n=2k+i+2), fori=0,1,2...,k =3,
' ‘-2

Proof. By Lemma 1.1, we have

1(0(0,1,...,1,2,...,2,n =2k +i + 2))
N, N, et

i k=i-2
2igk = =2 p akpies + 2R, o tisa. (2.5)
In view of (2.5), we have
1(6(0,1,..., 1,2,...,2,n—=2k+i+43)) -

N, s e,
i+1 k—i-3
S(0(0, 1 152,000 2 0 Ok e 2) )= (2'3F 0 Q== b s
S N s’
i k—i-2
Note that n > 2k — 1, hence F},_ok4; > 0. In order to complete the proof
of Lemma 2.11, it suffices to show that 2'3%—i-2 — 2k=i=2 > 0 which is

equivalent to
3 (In3—-2In2)+3In3—-2In2

£ In3 — In2 ,
for i >0, i.e, k > 3In3=21n2 _ 4 7095 Namely, & > 5. O

Proof of Theorem 1.2. Here we only prove (ii) and (iii) of Theorem
1.2

(ii) When k = 4, for any 8(ry,72,73,74) € Gﬁ, in view of lemmas 2.6, 2.7
and 2.8, we have i(6(r1,7r2,73,74)) 2 1(0(0,72,73,74+71)) > (6(0, 2,73, 74+
ry+r2—4)) > i(6(0,2,2,n —6)). On the other hand, by direct computing,

we have
1(6(0,2,2,n — 6)) = i(6(0,1,2,n — 5)) < i(6(0,1,1,n — 4)).
By Lemmas 2.4 and 2.5, we have
i(6(r1,72,73,74)) < i(0(1,72,73,74 + 71 = 3)) <i(6(1,1,1,n - 5)),

the first equality holds if and only if 7y =1 and the second equality holds
if and only if ro =73 = 1.
Therefore, by direct computing, for any 6(ry,72,73,74) € O3, we have

IOF"_E) + 7Fn—6 S i(0(7'1,7'2,7'3,7'4)) S (23 + 1)EI—4 + Fll—-5'
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The equality holds on the left if and only if 8(ry,r,73,74) = 0(0,2,2, 11 -
6), or £(0,1,2,n = 5). The equality holds on the right if and only if
B(ry,ra,r3,rq) = 0(1,1,1,n = 5).

(iii) When k > 5, for any 8(ry,72,...,7%) € OX, in view of lemnmas 2.6,
2.7 and 2.8, we have

1(0(r1,72,..., 7)) 1(0(0,72, ..., Tk +17))
i(0(0,2,T3,... T Tri+rg~= 4))

i(0(0,2,...,2,n — 2k — 4)). (2.6)

v IV IV

The first equality in (2.6) holds if r;y = 0, and the i-th equality in (2.6)
holds if only if r; = 2,i = 2,3,...,k — 1. By lemmas 2.4 and 2.5, we have
1(0(ry, 12,73, ., k) S U(O(1, 79,73, ...y Th=1, TR+ —1)) < 3(0(1,...,1,n—
5)), the first equality holds if and only if r; = 1 and the second equality
holdsifand onlyif ro =r3 =-.. =11 = 1.
Therefore, by direct computing, for any 0(ry,7,...,7) € ©%, we have
2.3 2F, _ok43 + 25 F o yn < i(0(r1, T,y mi)) S (25T + 1) Py +
—k-1. The equality holds on the left if and only if 6(ry,7rs,..., 1) =
6(0,2,2,...,2,n — 2k — 4). The equality holds on the right if and only if
8(r1,72,--- k) = 6(1,1,1,...,1,n — k — 1). This completes the proof.
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