Spectral conditions of complement for some graphical properties Guidong Yu^{1,2}, Yi Fang¹, Guisheng Jiang³, Yi Xu¹ - 1. School of Mathematics and Computation Sciences, Anging Normal University, Anging 246133, China - 2. Basic Department, Hefei Preschool Education College, Hefei 230013, P. R. China - 3. School of Physics and Electronic Engineering, Anging Normal University, Anging 246011, China Abstract: In this paper, we give the sufficient conditions for a graph with large minimum degree to be s-connected, s-edge-connected, β -deficient, s-path-coverable, s-Hamiltonian and s-edge-Hamiltonian in terms of spectral radius of its complement. Keywords: Spectral radius; Minimum degree; Complement; Stability MR Subject Classifications: 05C50,15A18. ## 1 Introduction Let G = (V, E) be a simple graph of order n with vertex set $V = V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set E = E(G). The complement of G is denoted by \overline{G} . A regular graph is one whose vertices all have the same degrees, and semi-regular bipartite graph is a bipartite graph for which the vertices in the same part have the same degrees. Let K_n , O_n denote the complete graph, the empty graph on n vertices, respectively. For two disjoint graphs G_1 and G_2 , the union of G_1 and G_2 , denoted by $G_1 + G_2$, is defined as $V(G_1 + G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 + G_2) = E(G_1) \cup (G_2)$; and the join of G_1 and G_2 , denoted by $G_1 \vee G_2$, is ^{*}Email: guidongy@163.com. Supported by the Natural Science Foundation of China (11871077), the NSF of Anhui Province (1808085MA04), and the NSF of Department of Education of Anhui Province (KJ2017A362).