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Abstract

We use heuristic algorithms to find terraces for small groups.
We show that Bailey’s Conjecture (that all groups other than the
non-cyclic elementary abelian 2-groups are terraced) holds up to
order 511, except possibly at orders 256 and 384. We also show
that Keedwell’s Conjecture (that all non-abelian groups of order at
least 10 are sequenceable) holds up to order 255, and for the groups
As, S, PSL(2,q1) and PGL(2, g2) where g and g, are prime powers
with 3 < 1 <11 and 3 < ¢2 < 8. A sequencing for a group of a
given order implies the existence of a complete latin square at that
order. We show that there is a sequenceable group for each odd or-
der up to 555 at which there is a non-abelian group. This gives 31
new orders at which complete latin squares are now known to exist,
the smallest of which is 63. In addition, we consider terraces with
some special properties, including constructing a directed T>-terrace
for the non-abelian group of order 21 and hence a Roman-2 square
of order 21 (the first known such square of odd order). Finally we
report the total number terraces and directed terraces for groups of

order at most 15.
MSC: 20D60, 20B15.
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1 Introduction

Let G be a group of order n. Let a = (a1,a2,--.,a,) be an arrangement
of the elements of G and define b = (b1, b2,...,0n—1) by b; = ai‘laiﬂ for
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each i with 1 < i < n — 1. If the clements of b are distinct then a is a
directed terrace for G and b is a sequencing. A group that has a directed
terrace and sequencing is called sequenceable.

Gordon [19] introduced the concept as a tool for constructing “complete
Latin squares”; the same ideas had been used earlier in cyclic groups (34],
A Latin square of order n is an n x n array of n symbols with each symbo]
appearing once in each row and once in each column. A Latin square ig
row-complete, and is also known as a Roman square, if each ordered pair
of symbols appears in consecutive positions within rows exactly once. If
the transpose is also row-complete, the square is complete. Gordon showed
that if (a1, a2,...,a,) is a directed terrace for a group of order n then the
Latin square with (i, j) entry a; laj is complete.

A binary group is defined to be a group with a single involution. An
abelian group is sequenceable if and only if it is a binary group and the three
non-abelian groups of orders 6 and 8 are not sequenceable [19]. Many non-
abelian groups and families of non-abelian groups have since been shown
to have directed terraces, for example the dihedral and dicyclic groups of
order at least 10. No further exceptions are known. See [24] for a survey
of the current state of affairs.

Keedwell’s Conjecture is that all non-abelian groups of order at least 10
are sequenceable. In the next section we show that it holds up to order 255
and that for each odd order of at most 555 at which there is a non-abelian
group there is at least one sequenceable group.

Bailey [15] generalised the notion of a sequencing (and introduced the
terrace terminology) for use in constructing “quasi-complete Latin squares”.
A Latin square is row quasi-complete if each pair of symbols appears twice
(in either order) in adjacent cells within rows of the square. If the transpose
of a row quasi-complete square is also row quasi-complete then the square
is quasi-complete.

With the arrangement a and associated list b as above, if each involution
occurs exactly once in b and if for each z € G with 22 # e the sequence
b contains z and z~! twice in total then a is a terrace for G and b is its
associated 2-sequencing. If (a1,a2,...,ay) is a terrace for a group of order
n then the Latin square with (4, 7) entry a] 'a; is quasi-complete [15].

Non-cyclic elementary abelian 2-groups are not terraced [15] and Bai-
ley’s Conjecture is that these are the only groups that do not have a terrace.
As with the directed case, many families of groups are known to be terraced,
see [24]. For example, Bailey’s Conjecture holds for abelian groups [31]. In
the next section we show that the conjecture is true up to order 511, with
the possible exceptions of 256 and 384, and this and the results of Section 3
imply the existence of terraces for new infinite families of groups.

A sequence remains a terrace (or directed terrace) if we left-multiply
all of its elements by any fixed group element. Taking the element to be
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al"‘ gives a terrace that starts with e; such terraces are called basie. Two
terraces are essentially different if, after making them both basic by left-
multiplying by a group element, there is not an automorphism of the group
that sends one to the other.

Example 1.1 Let Zy denote the additively written cyclic group of order n
on the symbol set {0,1,...,n—1}. The sequence

0,1,n-1,2,n-2,3,n-3...)

is a terrace for Z,. When n is even it is directed. The earliest publications
of this construction seem to be [23] for even n, where credit is given lo

Walecki, and [34] for odd n.

In [1}, Anderson introduces a hill-climbing algorithm for finding directed
terraces and he uses a variant of it in [9] to look for terraces. We describe
our similar algorithms in the next section and report on which groups for
which we were able to find terraces and sequencings. The algorithms are
implemented in GAP [18] and are available at the following website:

http://cs.marlboro.edu/courses/matt/terraces

In Section 3 we consider terraces that have special properties that let
them be used for general constructions of terraces for larger groups, for
constructing combinatorial objects, or are of interest for their own sake.
Finally, in Section 4 we report on exhaustive searches that give complete
enumerations of essentially different terraces and directed terraces for all
groups up to order 15.

Some groups we use: Day, is the dihedral group of order 2m; Q4p, is
the dicyclic group of order 4m, which is the quaternion group when m = 2
and the generalised quaternion group when m is a larger power of 2; A,
and S, are alternating and symmetric groups respectively; and PSL(n, q)
and PGL(n, q), where ¢ is a prime power, are the projective special and
projective linear groups respectively.

For other groups when there is no commonly used name we use the
notation Gy, ; for the group of order n in position ¢ of GAP’s Small Group
Library [18]. We use two such groups in examples and so give presentations

for them here. The first is the unique-up-to-isomorphism non-abelian group
of order 21:

Ga11 = (u,v:u’ = e =03, vu=ulv).
This is the smallest non-abelian group of odd order. The second is one of
the two non-abelian groups of order 27:

9 3 7).

Gora= (u,v:u’ =e=v,vu=u"v
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The proofs consist almost entirely of reports that the appropriate com-
puter programs have run successfully. As such they are omitted except for
occasional “proof notes” that contain some commentary.

2 Keedwell’s and Bailey’s Conjectures

We first consider directed terraces and Keedwell’s Conjecture.

For a hill-climbing algorithm we need three ingredients: a search space
through which we shall move, a neighbourhood that can be constructed
for any element of the search space to give the potential next steps of our
movement and a measure of our altitude (including knowing what altitude
is sufficiently “high” to be a solution to the problem). We also include a
“teleport” function that moves us a significant distance across the search
space without too much loss of altitude as a means for escaping local max-
ima.

For an arrangement a = (a;,a2,...,a,) of the elements of a group G
of order n, define b = (by, b, ...,b,—1) as usual by b; = a;lai“ for each i
with 1 <7 < n —1. The search space is the set of all arrangements of the
group elements and the altitude of such an arrangement a is the number
of distinct elements of b. The sequence a is a directed terrace if and only
if its altitude is n — 1.

For movement we cut the sequence into a small number of pieces and
reassemble them in any order. For example, if we cut (a1,az,...a,) at
position 7 and change the order of the two subsequences we reach the se-
quence

(@iy1,ai42,...,0n,01,02,...0;).

With two cuts there are five possible places to move that are different to
our starting sequence.

These moves correspond well with our altitude measure as the portions
of b generated by the subsequences do not change. Using a move with k
cuts, the altitude can be reduced at most k and increased by up to 2k. This
means we have a fairly smooth landscape.

The teleport function takes a random element of the sequence and moves
it to the end. This reduces the altitude by at most 2.

The algorithm is now straightforward to describe.

1. Begin with a random arrangement of the elements of G.

2. If the altitude is » — 1 then we have a directed terrace; return it.
Otherwise continue to Step 3.

3. Look through the neighbours of the arrangement one at a time and
as soon as we see a higher one take that to be our new position and

234



return to Step 2. If there are no higher neighbours, continue to Step
4.

4. Teleport and return to Step 2.

The number of cuts was limited to 2. Experiments with 3 cuts suggested
that the reduction in the number of steps to a solution was outweighed by
the time taken to search for a beneficial 3-cut move.

Here is the collected outcome of the searches. Anderson (1, 2] has al-
ready shown that it is true up to order 32 and for As and S using a similar
algorithm.

Theorem 2.1 All non-abelian groups of order n with 10 < n < 255 are
sequenceable. Also, the groups Ag, Ss, PSL(2,q1) and PGL(2,q2) are
sequenceable where q1 and gz are prime powers with 3 < ¢ < 11 and
3<¢q2<8.

As a directed terrace for a group of order n can be used to construct a
complete Latin square of order n and there are many odd orders for which
these are unknown, the program was pushed further on groups of odd order.

Theorem 2.2 For all odd orders n < 555 for which there is a non-abelian
group of order n there is at least one sequenceable group of order n.

Proof note. Although theoretical constructions are known for several odd
orders [22, 27, 33] the program was run and found directed terraces at these
orders in any case.

At some values of n there are several non-abelian groups. In these

instances we found a sequencing for the first one in the ordering given by
GAP’s Small Group Library. O

We collect the orders new to this work in the following result:

Corollary 2.3 There is at least one sequenceable group at each of the or-
ders

63,105,117, 135, 165, 171, 189, 195, 225, 231, 273, 275, 279, 285, 297, 315,
333,351, 357, 385, 387, 405, 429, 459, 465, 483, 495, 513, 525, 549, 555.

Hence there is a complete latin square of each of these orders.

For Bailey’s Conjecture, where the sequences have more freedom, we
use more-or-less the same algorithm and are able to push to higher orders.

The changes to the algorithm are to the definition of altitude and the
possible movement.
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Given a and b with the usual notation, the altitude of a is now defined
to be the sum of number of distinct involutions in b and the number of
occurrences of each element g € G with g? # e up to a maximum of two
from g and g~! combined. The altitude is n—1 if and only if a is a terrace.

The idea of cutting and regluing remains the key to movement, but
we now take advantage of the fact that if we reverse a subsequence of
a then the elements of the portion of b that is generated are switched for
their inverses. This does not affect the altitude (for not-necessarily-directed
terraces) and so after making one or two cuts as before we allow reversing
the subsequences before re-assembly of the pieces. For example, we might
make one cut, at position %, and reverse the second portion and glue the
subsequences in the original order, to get:

(al,az, vy @iyQp,0n—1,.. .ai+1).

As in the directed case, making k cuts can make the altitude at most k
lower or at most 2k higher, and we use the same teleport function that
reduces the altitude by at most 2. The algorithm is now essentially the
same as the one given earlier.

Although constructions of directed terraces are available for infinitely
many groups, they are not sufficiently dense to be worth factoring into
the programs. However, for terraces, we have the following very powerful
result:

Theorem 2.4 [10, 11] Let G be a group and let N be a normal subgroup
of G. If N has odd order and G/N is terraced or if N has odd index and
N is terraced, then G is terraced.

This implies, for instance, that all groups of odd order are terraced.
Unfortunately, it does not help with 2-groups, which are by far the most
abundant groups in the range we are considering. However, among the
33,080 non-abelian non-2-groups of order at most 511 there are just 782
that cannot be terraced by using Theorem 2.4 provided Bailey’s Conjecture
holds at all proper divisors of the order. Further, 29 of these 782 are
dihedral groups of order 4p, for p an odd prime, and these groups are
known to be terraced [21].

Factoring in Theorem 2.1 as well (a directed terrace is a terrace), we
have 597 groups of order between 257 and 511 (inclusive) to examine. Of
these, 540 have order 384. The program successfully worked through the
others to give:

Theorem 2.5 All non-abelian groups of order n < 511, except possibly
n € {256,384}, are terraced.
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Proof note. In fact, in many cases the overhead of tracking the more
complicated terrace conditions outweighed the more general nature of a
terrace compared to a directed terraces and so often the directed terrace
program was used. O

The result up to order 87, except for order 64, is in [9).

3 Special terraces

Recall that a binary group is a group that has a single involution. Let G be
a binary group of order 2m with involution 2. Let a = (a;,as,...,a2m) be
a directed terrace for G with associated sequencing b = (by, b2, ...,bam-1).
If by, = 2z and b; = bym—; for 1 < i <m — 1 then both the directed terrace
and the sequencing are symmetric. The directed terraces found by Gordon
[19] for abelian binary groups are symmetric. Anderson’s Conjecture is that
all binary groups except the quaternion group of order 8 have symmetric
sequencings.

In a series of papers [3, 4, 6, 11, 13], Anderson, Ihrig and Leonard
extended Gordon’s result to show that all soluble binary groups, except
the quaternion group of order 8, have symmetric sequencings. In [12] it is
shown that given an insoluble binary group G with involution z, the group
G/(z) has a subnormal series

{e} G2 2G1 2G/(2)

such that |G2| and |(G/(z))/G1]| are odd and G1/G> is isomorphic to one
of A7, PSL(2,q) or PGL(2,q) for odd prime powers ¢ > 3. Call G1/G>
the group associated with G. It is also shown that to find a symmetric
sequencing for a binary group G it is sufficient to find a terrace for the
group associated with G. For each possible associated group, there are
infinitely many insoluble binary groups that have it as their associated

group [12].
It is already known that PSL(2,5) £ As is terraced [2]. Theorem 2.1

gives:

Corollary 3.1 If G is an tnsoluble binary group whose associated group is
one of

PSL(2,7),PSL(2,9),PSL(2,11),PGL(2,5), PGL(2,7)
then G has a symmetric sequencing.

For undirected terraces a recent approach that allows the construction
of terraces given a normal subgroup that has both even order and index in
some cases is to use “extendable terraces”.
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Let a = (a1,az, . -.,an) be a basic terrace for a group of order n. Then
a is extendable if an, = a2 and @j_1a;41 = a;j = aj418-1 for some j > 5,
The following result does not include the full power of the machinery (which
requires some fiddly notation and conditions) but gives a good sense of what,

is possible:

Theorem 3.2 (28, 30] Let K be a group with an eztendable terrace. Sup-
pose that G has one of the following forms:

o Hyx Hy x -+ x Hy x Zt x K wheret =0 ort > 1 and each H; €
{ZG X Z2aD81 D12)A4}:

o A x K where A is an abelian 2-group that has a normal series with
each factor isomorphic to Z2,

o Zo XLy x K and |K| is congruent to 1,2,3, or 4 (mod 7).
Then G has an extendable terrace.

Proof note. The third part of the statement is not explicitly stated else-
where. However, it follows immediately from Theorem 4 and the proof of
Theorem 2 of [28]. O

It is known that groups of order congruent to 2 modulo 4 cannot have
an extendable terrace and that groups of order 6 or less or the non-abelian
groups of order 8 do not have extendable terraces. Conversely, several
families of groups—including cyclic groups not ruled out in the previous
sentence, dihedral groups of order a non-trivial multiple of 8, and each
of the non-abelian groups of orders 12, 16 and 20—do have extendable
terraces, see [28].

Rather than designing a new algorithm to attempt to look directly for
extendable terraces we used a method to generate lots of terraces from a
given one.

Given a terrace, there are multiple ways to cut it into two pieces and
reassemble into a new terrace (this is similar to the process of the terrace-
finding algorithm, except here the goal is to maintain the perfect altitude
rather than to climb). If we forbid reversing either of the pieces but include
reversing the whole terrace (which always gives a new terrace) we get an
orbit of terraces. The number of essentially different terraces in an orbit
must divide either 4 or 6 [15].

By allowing moves that reverse one piece, we can form a chain of terraces
that, often, encompasses many essentially different ones. For example,
of the 138,066 essentially different terraces for Z3, 137,592 are mutually
reachable from each other via these moves [25]. It is perhaps better to
think of the landscape in which the heuristic algorithms are operating as
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containing many connected ridges of the desired altitude rather than hills
with distinct peaks.

The strategy for finding an extendable terrace was to find a terrace
using one of the algorithms from the previous section and then quickly
generate lots of terraces for the group using these moves. The property
of being extendable is sufficiently common that we were able to reach this

result:

Theorem 3.3 Every group of order n with 12 < n < 96 and n # 2
(mod 4) has an extendable terrace.

In conjunction with Theorem 3.2 (or the more general results of [28])
this gives more infinite families of groups that are known to be terraced.
Although this is the most effective method known to date for terracing
large numbers of 2-groups, it barely scratches the surface of, for example,
the 10,494,213 groups of order 512.

We now consider a stronger property than completeness that Latin
squares may possess and what group theoretic structures allow us to con-
struct such squares.

A Roman-k square is a Latin square with the property that for each
pair of distinct symbols = and y and for each integer m with 1 <m < k we
have y appearing m cells to the right of x at most once. A Roman-1 square
is simply a Roman square. A Roman-(n — 1) square is called a Vatican
square. If both a square and its transpose are Roman-k then then it is
called k-complete.

Vatican squares are known to exist only of order one less than a prime.
In addition, Roman-2 squares exist for orders 2p, where p is a prime con-
gruent to 5, 7 or 19 modulo 24, and k = 2, and for orders n = 2m with
5 <m < 25, see [17].

Let a = (a1,as2,...,a,) be a terrace for a group G of order n. For
each m with 1 < m < n — 1, define b™) = (b(m) b(m) b(m) ') by
b(m) =a; 1g;+m. Fix k < n— 1. If for each m < k there are no repeats
w1th1n b(m) then a is a directed Ti-terrace. A directed T)-terrace is a
directed terrace and b(®) is its sequencing.

If (a1, as,...,a,) is a directed Tj-terrace for a group of order n then the
Latin square with (i, j)-entry a; 'a; is k-complete [7). Each of the known
Vatican and Roman-2 squares listed above is constructed in this way from
a directed T-terrace for a cyclic group.

As there was no known Roman-2 square of odd order, the non-abelian
group of order 21—the smallest group of odd order that might admit a
directed T,-terrace—is of particular interest. The heuristic algorithm was
unsuccessful and so a backtracking approach was used. Here is a directed

T>,-terrace for Goy 1:
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3.8
(e, v, u, v2,u4, u?v, u?, ubv?, uv, ud, ud?,

u?, u®, ubv, u2v?, uv?, udv?, ulv, udv, ubv, ud).
Hence there is a Roman-2 square of order 21.

We were also able to find the first directed Th-terraces for non-cyclic
groups of even order. The following theorem collects the results:

Theorem 3.4 The groups A4, le, le, G16,6, G16,13 and all non-abelian
groups of orders n with 18 < n < 22 have a directed Ty-terrace. Other non-
abelian groups of order at most 22 do not have a directed T>-terrace. Also,
Ze x Z3 and Sy have directed To-terraces.

The only groups of order less than 20 that have a directed T3-terrace are
the cyclic groups of order p — 1 for prime p.

Proof note. The terraces that prove this are available at the website asso-
ciated with this paper, the link for which is given in the introduction. As
an example, here is the directed T,-terrace for Ay4:

(0),(2,3,4),(1,2)(3,4), (1,3)(2,4),(1,3,4),(1,4,3),

(1,2,4),(1,4,2),(1,3,2),(1,2,3),(2,4,3),(1,4)(2,3)). O

The final type of terrace that has attracted interest that we consider here
is the half-and-half terrace and the stronger narcissistic terrace introduced
in [14].

Let a = (a3, a2,...,a,) be a terrace for a group G of odd order n and
b = (by,bs,...,bn—1) be its 2-sequencing. If there is one occurrence of
from each set {g,g7' : g* # e} in (b1,b2,...,b(n-1)/2), and hence also
one occurrence from that set in (bn41)/2,---,bn), then a is a half-and-half
terrace. If b is equal to its reverse then b is reflective and a is narcissistic.
Narcissistic terraces are necessarily half-and-half.

It is known that all abelian groups of odd order have a narcissistic ter-
race and that Gg;,; has a directed half-and-half terrace and a narcissistic
terrace [29]. For non-abelian groups, the following result enables the con-
struction of infinite families of examples of half-and-half and narcissistic
terraces:

Theorem 3.5 [29] Let G and H be groups of odd order. If G and H have
half-and-half terraces then G x H has a half-and-half terrace. If G and H
have narcissistic terraces then G X H has a narcissistic terrace.

Similarly to the case with directed T-terraces, a backtracking approach
was more successful than the heuristic algorithm.
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—@_ H0) d0) TUPTY T () ()
3 §

Ty 0 A 4,116 0
Zg 11 2 Ly 40,722 004
Dg B .o 8D Ly % 2y b, H28 0
s 58 8 Dyy 1,380 266
Za % 2y 100 0 Q12 13,470 372
Ds 6 0 Aq 3,610 06
Qs 6 0 Ly 138, 066 0
Ty 234 0 Zya 1,458,038 14,888
ZaxZy 35 0 Dy 25,608 2,700
Zio 1,617 T2 Zys 10,910,262 0

Do 76 16

fuby |

Table 1: Enumerations for 5 < |G| < 1

Theorem 3.8 Each of the two non-abelian groups of order 27 has both a
narcissistic and a directed half-and-half terrace. The non-abelian group Gag 1
of order 39 has a directed half-and-half terrace.

Proof note. The terraces that prove the result are available at the website
associated with this paper, the link for which is given in the introduction.
We include here a narcissistic terrace and a directed half-and-half terrace
for Ga7 4:

64,2 278032 58,2 742218 024y 56

(e,v, 4, v2, utv?, ubv, ut, uPv? w802 udv?, uv? U8, vy, 0,

w2, u?, ubv, uTv, utv, ubv, ub, u?v?, udv, w, v, w2, u")

2 70 2,802 02 3,2 .5 5,8 ,3 ,8

(e,v,u, v?, utv?, u"v, ubv?, u?, udv? ubv, uv, u®, ub, ud, ubv,

ul, u?, ubv?, v, uto, 4?02, wv, ubv, udv, uBe?, w2, u8) O

4 Very small groups

In this section we report on enumerations of terraces and directed terraces
in groups of order up to 15. Let t(G) denoted the number of essentially
different terraces of G and d(G) denote the number of essentially different
directed terraces of G.

For groups of order at most 13 the values of ¢(G) and, for some cases,
d(G) have already been computed, sometimes by hand [15, 16, 25, 32].
There are two known errors in these computations: [32] gives t(Zs) = 2
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rather than 3 and [15] gives t(Z2) = 32 rather than 35. Other than those,
the new computation matched these results. We give the results of the
computation for 5 < |G| < 15 in Table 1. Each of Z2, Z3 and Z4 has
exactly one terrace, which is directed for Z; and Z,. Elementary abelian
2-groups have no terraces.
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