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Abstract: The maximum number of internal disjoint paths between any two dis-
tinct nodes of faulty enhanced hypercube Qnx(1 < k < n — 1) are considered in
a more flexible approach. Using the structural properties of Onx(1 < k < n—1),
min(dp,,-v-(x),dg,,-v(y)} disjoint paths connecting two distinct vertices x and y
in an n—dimensional faulty enhanced hypercube Qpx —V'(n 28,k #n—-2,n—1)
are conformed when |V’| is at most n — 1. Meanwhile, it is proved that there exists
min{dp, ,-v(x), dg,,-v(y)} internal disjoint paths between x and y in Qnx—V'(n 2
8,k # n—2,n — 1), under the constraints that (1) The number of faulty vertices
is no more than 2n — 3; (2) every vertex in Qnx — V’ is incident to at least two
fault-free vertices. This results generalize the results of folded hypercube FQ,
which is a special case of Qnx, and have improved the present results with further
theoretical evidence of the fact that O, has excellent node-fault-tolerance when
used as a topology of large scale computer networks, thus remarkably improve the

performance of the interconnect networks.
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1 Introduction

Assume that G is a network with connectivity . This means that there exists a
subset F of processors in G such that k = min{|F| : G—F is disconnected}. That s,
k is the smallest number of processors such that if k nodes of F is deleted then there
does not exist any path in G to connect some pair of two vertices. There are three
kinds of internal node-disjoint paths, i.e., one-to-one, one-to-nodes, and nodes-to-
nodes which concern with the concept of connectivity of networks. One-to-one
means that there are « internal node-disjoint paths between any two distinct nodes
with Menger’s theorem [1]. Many one-to-one internal disjoint paths have been de-
signed in literature. F.Cao et al [2] has investigated the disjoint paths in Pyramid
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networks. K.Day al [3] and M.Dietzfelbinger et al [4] have proposed the one-to-
one parallel paths for Star networks. [5] discussed disjoint paths in WK-Recursive
networks. W.Yang ct al have studicd the strong Menger connectivity with condi-
tional faults of folded hypercubes [6]. One-to-many internal node-disjoint paths
means that there exist « internal disjoint pathes from one node to another « dis-
tinct nodes, which was first investigated in [7], where the Information Dispersal
Algorithm (IDA) was proposed for the hypercubes. One-to-many internal node-
disjoint paths were studied in networks such as hypercube ([7]), generalized hy-
percube ([8]), folded hypercube ([9][10]). Many-to-many internal node-disjoint
paths connect two sets of nodes in G (see [11]). Suppose that a network G has a
set V’ of fault processors, the numbers of the non-faulty neighbors of nodes x and
y are the degrees dg-v-(x) of x and dg-y(y) of y in G - V' respectively.

Usually, two models are used for fault-tolerance analysis. One is standard
fault model in which the distribution of faulty edges and faulty vertices is not
restricted. The other is the conditional fault model in which each fault-free vertex
must be adjacent to at least two fault-free nodes. This paper aims at constructing
the maximum number of internal disjoint paths between x and y under standard
and conditional fault models

The hypercube is one of the most famous interconnection network architec-
tures yet developed for multiprocessor system and large computation in industrial
because of its ideal properties. There are many attentions payed to the properties
and fault-tolerance of hypercube ([12]-[14]). To improve the performance of hy-
percubes, many variants of hypercubes have been proposed, for instance, folded
hypercube ([15]- [18]), enhanced hypercube ([19]- [23]), generalized hypercube
([8]) and so on. Folded hypercube is a special case of enhanced hypercube. This
paper focus on the enhanced hypercube.

The remainder of this paper is organized as follows. Section 2 gives the basic
definitions and existing results in literature which will be used in our discussion.
The maximum internal disjoint paths under standard and conditional fault-tolerant
enhanced hypercube are presented in Section 3. Finally, some concluding remarks
are given in Section 4.

2 Preliminaries

A network is usually modeled by a connected graph G = (V, E), where V de-
notes the set of processors and E denotes the set of communication links between
processors, Two vertices x,y € V are adjacent if they are incident with a common
edge. The set of vertices Ng(v) = {u : uv € E} is called the neighbor set of vertex
vin G, that is, the set of adjacent nodes of v. d(v) = |Ng(v)| is called the degree
of vertex v in G when no loop occurs. Let A C V, Ng(A) denotes the vertex set
Uvea Ng(v) \ A and Cg(A) = Ng(A)U A. Let 65(m) denote the minimum num-
ber of vertices that are adjacent to a vertex set of m vertices in G. If each vertex
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is adjacent to k vertices, the graph G is called k-regular. A path is a sequence
of adjacent vertices, with the original vertex vp and end vertex v, represented
as P(vo,Vm) = voviVa2...V,, where all the vertices vg,vy,v2,...,Vn are distinct
except the case that the path is a cycle where vo = v,,. Two paths are internal
node-disjoint (or node disjoint) if and only if they don’t have any vertices in com-
mon except their ends. The length of a path P is defined as the number of edges
contained in P. The distance dg(x, y) between any two nodes x and y is the length
of a shortest path of joining x and y. The length of a shortest cycle is defined as
the girth of graph G, denoted by g(G). A graph G is connected if and only if any
two vertices of G can be joined by a path. G is bipartite if the vertex set V can be
partitioned into two subsets V; and V;, such that every edge in G joins a vertex
in V| with a vertex in V,. A graph G is bipartite if and only if G contains no odd
cycle. Two graphs G, and G, are isomorphic, denoted as G| = Gy, if there is a
one to one mapping f from V(G)) to V(G>) such that xy € E(G)) if and only if
f)f) € E(Gy).

An n-dimensional hypercube, denoted by Q,, has 2" vertices represented by
the vertex set V(Q,) = {x1x2--x,: x;=0o0r 1,1 <i < n}, where two vertices
X)Xz +++ X, and y;y, - - - y, are adjacent if and only if 327, |x;—y;| = 1. Letx,y € Q,,
it is easy to see that there is a shortest routing from x to y if and only if at each step
of the routing one bit of x’s strings is complemented to match the corresponding
bit in y’s strings. The Hamming distance between x and y, denoted by A(x,y) =
iy |xi = yil, is the number of different bits between the corresponding strings of
x and y. Obviously, dp, (x,y) = h(x,y). The weight of a vertex x is defined as
w(x) = Xj-, X; (or the number of 1’s in x).

Definition. Enhanced hypercube Qnx = (V,E) for2 < k < n—1is an
undirected simple graph with the vertices set V ( or V(Qxy))and the edge set of E
(or E(Qni)). V = {x1x2---x, : x; =00r 1,1 <i < n}, in fact, V(Q,) = V(Qnx).
Two vertices x = x;x3 -+ - X, and y are connected by an edge of E if and only if y
satisfies one of the following two conditions:

1) y= X =xyXp e Xio1 XX e Xy 1 < i< 1,01

(2) y=X=x1X2++* Xg-1 4 Xpa1 « - « Xy, Where X; =*1 ='x;.

Denote E. = {xX : x € V] the set of complementary edges, E; = {xx' : x € V}
the set of all i—dimensional edges. Thus we have E(Q,x) = E(Q,) UV E..

According to the above definition, O, is (n + 1)-regular and has 2" vertices
and (n + 1)2""! edges, and it contains Q, as its subgraph. It has 2"-! more links
than Q,. If k = 1, Qnyx is the well-known folded hypercube denoted by FQ,. If
k = n, Qnx is reduced as Q,. This paper mainly consider2 <k <n- 1.

When n and k have the same parity, O, is a bipartite graph with containing
no odd cycle , for example, Q4> is a bipartite graph with bipartition V| = {x :
w(x) is even} and V, = {x : w(x) is odd}. When n and k have different parity, Onx
is not bipartite graph.

Q. x can be partitioned into two subgraphs along some component i(1 < i < n).
We use QF | and QI |, to denote the two subgraphs respectively. For conve-
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nience, Q4 can be expressed as Q"?-l ) 5] Q:"I_l I From the definition of the partj-
tion, we can conclude that when i < k, Q7 |, and Qi | are isomorphic to (n — 1)
dimensional enhanced hypercube; when i 2 k, QY |, and Q]! |, are isomorphic
to (n — 1)-dimensional hypercube. A vertex x = x1x2 - - - X, belong to Q,‘?_, X if and
only if the i-th position x; = 0; Similarly, x belongs to Q! |  if and only if the i-th
position x; = 1.

3 Main Results

The following lemmas are benefit for us.
Lemma 1 ([24], [25]) Let S be a vsubset of V(Q,) with |S| = m, then

1
m2+(n—§)m+1, 1<m<n+1,

—D |

bo,(m) = 3
—§m2+(2n—§)m—n2+2. n+2<mg<2n.

Lemma 2 ([26]) Letn > 4 and F C V(Q,). Then the following holds.

(i) If |[F] < 8g,(m) and 1 <m < n - 3, then Q, — F contains exactly one large
component of order at least 2" — |F| — (m — 1).

(i) If |[F| < 8p,(m)and n —2 < m < n + 1, then Q, — F contains exactly one
large component of order at least 2" — |F| — (n + 1).

(iii) If |F| < 8g,(m) and n + 2 < m < 2n - 4, then O, — F contains exactly one
large component of order at least 2" — |F| - (m = 1). -

Lemma 3 ([27]) Q. is a bipartite graph if and only if n, k have the same
parity.

Lemma 4 ([27]) When n, k have different parity, O, contains odd cycle, and
the smallest odd cycle contains exactly one complementary edge and the length
ofn—k+2.

Lemma 3 and lemma 4 lead to lemma 5.

Lemma 5 The girth of Qny is g(Qnx) = 4 forn > 3,2 < k < n-2, and

8(Qnn-1) = 3.

Lemma 6 Let x,y be any two vertices in Qnx for n > 4, then one of the
following holds.

(i) x,y € V(Qux) for 2 < k < n - 4, then x and y have exact two common
neighbors if they have.

(i) x,y € V(Qna-3)
If X € Np,,_,(x) N Ng...,(»), then x, y have exact two common neighbors.
If X ¢ Ng,,,(x)( Ng,.,(), then x and y have exact two common neighbors

if they have.
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(iii) x,y € V(Qnp-2)

{x:xl-..xi...xj-..xn’

Y # Xp 0t X XiXig] * 0 Xjo1 XjXjy -+ Xy

where {i, j} € {n —2,n — 1,n}, then x and y have exact two common neighbors if
they have.
(iv) x,y € V(Qnn-2)

{xle"’x""'.x}""xn,

y=Xx- .-x‘-_l-f,:x”l "'xj—lx_jxjﬂ o bl

where {i, j} € {n —2,n — 1,n}, then x and y have exact four common neighbors
el i B

(V) X,y € V(Qnn-1)

If y ¢ {x*"!, x"}, then x, y have exact two common neighbors if they have.

If y € {x"!, x"}, then x, y have exact two common neighbors {X, 7}.

Proof: Let x = Xp-+Xj-++Xj***Xn, ¥ = Xy == Xj21 XiXig] * = * Xj-1XjXju] * * * X
Then x,y have some common neighbors.

(i) xand y have exact two common neighbors x' = x; -+ xj_1 XjXi41 *** X jo e Xn
and x/ = X ---xi-ij_{x_jxjH am X

(ii) %,y € V(Qun-3)

If X € Ng,,,(xX)( Ng,,,(), by lemma 4, there exists a smallest odd cycle
with length 5 passing through vertices x and y. Now x, y have exact two common
neighbors X and y.

If X ¢ Nog,,,(x)( Ng,,. (), then x and y have exact two common neighbors
if they have, the proof is similar to (i).

(iii) The proof is similar to (i).

(iv) x,y € V(Qnnp-2), then X = X)X - - * Xp—3Xp-2Xn-1X,. X and y have exact four
common neighbors x*~2, x*~!, x" and X.

If y = xy---Xp-2Xn-1Xn, there are four internal disjoint paths of length two
between x and y as follows.

- 1}1—2 = X|*** Xn-2Xn-1Xn = X1 ** «Xp-2Xn-1Xpn = Yy
= X = Xy X2 K1 Xy = Xy o X2 X1 X =Y

S X =X Xp2Xp—1Xn D X = X| * Xp=2Xn-1Xn =Y

= = X 0w

=X=X° Xn-3Xn-2Xp-1%n = (X)" = X1+ Xp-2Xn-1Xa =y
If y = Xy -+ * Xp-2Xn-1%n, the four paths of length two as:

- "2 = Xy o Xp-2Xn—1Xn = X2 = X Xp2Xn-1Xn =Y

= xX"=x Xn-2Xn-1Xp = X| *** Xp-2Xp-1Xn =Y

X

Xaj=? .lﬂ—l =Xy * Xn-2Xn-1Xp = Xy ° * Xp-2Xn-1Xpn =Y

X

X X=X - Xp-3Xn-2Xn-1%Xp — (36)"_2 =X+ Xn-2Xn-1Xp =y
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Figure 1: The illustration for the proof of lemma 6 (iv)

by

~|

Figure 2: The illustration for y = x*~! or y = x" in lemma 6 (v)

If y = Xy +++ X,_2Xn-1 Xy, the four paths with length two as:

X

= o= =

S X=Xy Xy g Xy Xy = Xy e Xn2 X1 Xy =
=X =x-- * Xn-2Xn1 Xy =P XN = Xy Xy X1 Xy = : J
—x= Xy -x,,-zx,,-lf,, =X * Xn-2Xn-1Xn = 8

- o/ e ol E =
D X=X X3 g2 X1 X > (X)) =Xy K2 X Xy =Y

(V) X,y € V(Qn.n—l), thenx = XjXpeee x,,-gfn_lfn.
If y ¢ {x*1, x"}, the proof is similar to (i) and x,y have exact two common

neighbors.

fy=x"!=x - xp2Xp1Xp (Ory=x"= Xy x,-1%, ), then § = x" (or
y = x*1), Therefore x, y have exact two common neighbors (x,y).

Fig.2 illustrates the relationship between x, X!, x" and X in Qp,-1.

The proof is finished.

Lemma 6 means that if two vertices x, y have some common neighbors, then
number of common neighbors is two or four when k = n - 2, otherwise number

of common neighbors is two.
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Lemma 7 Let Oy be an enhanced hypercube withn > 4,2 <k < n - 1, and
X be a subset of vertices with |X| = 2. Then

(i) Whenk #n-2,n-1,|Ng,,(X)| > 2n.

(i) Whenk=n—-2,n—1|Ng, ,(X)| > 2n-2.

Proof: Suppose X = {x,y} € V(Qyx). The proof will be given according to
the distance between x and y.

Case 1. d(x,y) =1

Case 1.1 2<k<n-2,then|Ng, (X)|=2(n+1)-2=2n.

Case 1.2 k=n—-1,y¢ (x",x"}, then [Ny, (X)| =2(n+1)-2=2n.

Case 1.3 k=n—-1,y€ ("', x"

By lemma 6 (v), X € Ng,,_,(x) N\ Ng,,...(x"") N Ng,,,(¥") and x,y have two
common adjacent vertices, therefore [Ng,,  (X)| =2(n + 1) -2 = 2n.

Case 2. d(x,y) =2

Case 2.1 k2 2,k +n—2,then|Ng, (X)|=2(n+1)-2=2n.

Case2.2 k=n-2

X = XpoorXioo o Xjro o Xny Y = X100 Xim XiXip) ¢+ Xjo1 XjXja1 -+ X and {i, j} &
{n —2,n - 1,n}. Then by lemma 6 (ii), [Ng,, ,(X)| = 2(n + 1) = 2 = 2n.

Case 2.3 k=n-2

X=X XprooXjoooXny Y = X100 Xim1 XX+ Xj-1 XjXjs1 *+ - X and {i, j} C
{n—2,n—1,n}. Then by lemma 6 (iv), INg,, ,(X)| =2(n+ 1) -4 = 2n - 2.

Case 3. d(x,y) > 2

Now [Ng,,(X)| = 2(n + 1).

The proof is complete.

From the proof of lemma 7, the number of neighbors of any two vertices is at
least 2n — 2.

Lemma 8 Forn > 3, let x,y,z € V(Quyx) with d(x,y) = d(x,2) = d(y,2) = 2,
then

(i) When & = n — 2, there are exact four vertices, say s, «, v, w, such that
{s,u,v,w} = Ng,,(x) (N Ng,,») N Ng,, @)

(ii) When k # n — 2, there are exact four vertices, say s,u,v,w, such that
{s,u,v,w} C Ng,,({x,y,2}) and each of {s,u, v, w} is adjacent to at least two ver-
tices of {x,y,z} and there is exact one of {s,u,v,w} is a common neighbor of
{x,y,2}.

Proof: Because Q,; is vertex symmetrically, without loss of generality, we
could use some vertices to verify the results

(1) k = n — 2, assume that

y=00---011 (ory=(x""1)")

{x=00---0
2=00---0110 (orz=(x"2y*! = (y»2)y)
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Then d(x,y) = d(x,2) = d(y,z) = 2, and

s=00---0l11 (ors=X=y"2=7")

w=00---0100 (oru=x2=5=7")
v=00-.-010 (orv=x""=y =72)
w=00---001 (orw=x"=y"!=7)

Therefore (s, u, v, w} = Np, ,(x) (| No,, %) N No,, 2).
(ii) k # n -2, assume that

x=00---0
y=0---010---010---0 (ory=(x')/)
2=0---010---010---0 (orz=(¥)f = (¢¥)%)

Then d(x,y) = d(x,2) = d(y,z) = 2, and

+++010--+0 (ors=x')
--010---0 (oru=x/)
«+:010---0 (orv=xt)
+++010---010+--010---0 (orw = ((¥)))*)

T <R o
T [
oo o

Hence
5 € Ng,,(x) N No,, )

u € Ny, (x) No,,0) N No,, (@)
v € Np,,(x)No,,(2)
w € Ng,, () N Ng,, @)

The proof is complete.

Lemma 9 Let O, be an enhanced hypercube withn > 5,2 <k <n -1, and
X be a subset of vertices with |X| = 3. Then

(i) Whenk#n-2,n-1,|Ng, (X)|23n-2.

(i) Whenk=n-2,n~-1|Np,,(X)| 2 3n-5.

Proof: Suppose X = {x,y,2} C V(Qn4). Because Qnx is vertex symmetry, the
proof will be given according to the distance between x,y and z.

Case 1. d(x,y)=d(x,2) =d(y,2) = 1

Since (x,y,z} forms a triangle, lemma 4 and lemma 5 leads to k = n — 1.
By lemma 6 (v), x,%,2 € Qua-1, {x,,2} = {x, ", X} or {x,3,2} = {x,x",%).
Therefore INg,, (X)| =3(n+1)-2-2-2-2=3n-5.

Case 2. d(x,y)=d(x,2) = 1,d(y,7) =2

Case2.l k#n-2

By lemma 6, [Ng,,(X)| =3(n+1)-2-2-1=3n-2.

Case22 k=n-2

If y, z have exact two common neighbors, then [Ng, , ,(X)| = 3(n+1)-2-2-1 =
3n-2.

If y,z have exact four common neighbors, by lemma 6 (iv), |Ng,,,(X)| =
n+1)-4=1-1=3-3.

106



Case 3. d(x,y) =1,d(x,2) = d(y,2) = 2

There exists a 5-cycle passing through x,y,z, Q4 contains odd cycle, so k =
n-3ork=n-1.

Case 3.1 k=n-3

By lemma 6 (ii), say X = N, ,(x) (" Ng,,,(z), Without loss of generality, let

x=00---0
y=00---01 (= x")
2=00---0111

Then X = 00---01111(= z"3) is the only common neighbor of x and z. "' =
00---0101(= y"?) and 2%~ = 00---011 = (y*"!) are exact two common neigh-
bors of y and z. Therefore [Ng,, ,(X)| =3(n+1)-2-2-2=3n-2.

Case3.2 k=n-1

By lemma 6 (v), x,y are on a triangle, certainly, there is a 5-cycle containing
x,y and z. Without loss of generality, set

x=00---0
{ y=00---01 (= x")
z=10---011

Thenx* ! =0---010(=y)and X = 0--- 11 (= y*!) are the exact two common
neighbors of x and y. x! = 10---0(=72)and X = 0---11 (= ') are the exact two
common neighbors of xand z. y! = 10---01 (=" and y*' =0--- 11 (=2' =
x) are the exact two common neighbors of y and z. That is X is a common neighbor
of x,y and z. Therefore [Ny, (X)|=3(n+1)-1-3-2=3n-3.

Case 4. d(x,y)=1,d(x,2) =2,d(y,2) >2

Cased.l k=n-1

If xyis on a triangle, by lemma 6, [Ng,, ,(X)| = 3(n+1)-2-2-1-1=3n-3.
Otherwise, [Ng,, (X)| =3(n+1)-2=3n+1.

Cased4.2 k=n-2,

By lemma 6 (iii) (iv), [Ng,,,(X)| 2 3(n+1)-2-4=3n -3,

Case 4.3 k#n—-2,n—-1then|Ng,(X)| >23(n+1)-2-2=3n-1.

Case 5. d(x,y)=1,d(x,2) > 2,d(y,2) > 2

By lemma 6, [N, ,(X)| 23(n+1)-2=3n+1.

Case 6. d(x,y) =d(x,2) =d(y,2) =2

Case 6.1 k=n—2, by lemma 6 (iv), there are three vertices {x, ¥, 2} such that
|NQM(X)| =3n+1)-4-4=3n-5.

Case 6.2 k#n—2,bylemmas8, |[No, . (X)| =3(n+1)-3-2=3n-2.

Case 7. d(x,y) =d(x,2) =2,d(y,2) > 2

Case 7.1 k=n-2,|Ng,,,(X)| 23(n+1)-4=3n-1.

Case 7.2 k#+n-2,|Ng, (X)) 23(n+1)-2-2=3n-1.

Case 8. d(x,y) =2,d(x,2) > 2,d(y,z) > 2
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With Temma O, [No, (L2 Ynb D)= d = In= |

Case VO, (v, V) > 2,d(x,2) > 2,d(v,2) > 2

With lemma 6, no common neighbors between any two vertices among (x, v, 2).
Then [N, (N = Mot 1)y = 3ng 3,

The proof is finished,

trom the proof of lemma 9, the number of neighbors of any three vertices is
at least In = §,

Lemmn 10 Let Q4 be an enhanced hypercube withn 2 6,k # n=2,n -1,
and # € V(Qu0) With [1] £ 2n = 1, then there exists a connected component W in
Qat = Fsuch that [V(W)| 2 2" = |F] = 1.

Proof: Suppose F € V(Qpa) With [F] £ 2n = 1, Then with lemma |, |F| <
2n=1 <0y, (N=1=3In=6forn 2 6,and with lemma 2, Q,, has a large component
W sueh that |W] 2 2" < |F| = 2. Since Q,, is a spanning subgraph of Q4. then W is
a component of Q. Therefore Q4 = F induces at most three components, and
IV(Qna) = F = V(W) € 2. BY lemma 7, |V(Qua) = F = V(W)| = 2 is not true,
because the neighbors of the two vertices are contained in F, which means Q4 = F
has a large component W, such that |V(W)| 2 2" = |F| = 1. The proof is complete,

Theorem 11 Let O, be an enhanced hypercube withn 2 6,k #n=2,n- 1,
and V' € V(Q,a) with |V’] € n = 1, then each pair of vertices x and y in Q,, 4 = V'
are connected by min(d,,-v:(x), dg,,-v(»)} internal disjoint paths,

Proof: Suppose x and y are vertices in O, — V', Without loss of generality,
assume that dg, -y (x) € do,-v+(¥), thus min{do, ,-v(x), do,,-v: )} = dg,,-v+(x).
1t should be proved that x and y are connected even if dp,,-v(x) = | vertices are
deleted in @y = V',

By contradiction, suppose that x and y is not connected when deleting a vertex
set U with |U| € d,,-v(x) = 1. Hence |U| < n because of dg,,-v/(x) < dg, ,(x) S
n+ 1, Therefore [V UU| € 2n -1, Let F = V' U U, then by lemma 10, there exists
a connected component C € Q4 = F such that |V(C)| 2 2" =|F] = 1. This implies
that Q,, — F is either connected or has exact two components, one of which is a
single vertex, If Q4 — F is connected, then it contradicts to the fact that x and y
is not connected. Otherwise, Qux — F has exact two components, onc of which is
a single vertex, say z. Because x and y is not connected, so z € (x,y}, say z = x.
That is, Ng,,-v(x) € U. But |U| £ dg,,-v(x) = 1, a contradiction. Therefore x
and y are connected even if dp,,-y(x) = | vertices are deleted in Q,x — V', This
completes the proof,

Consequently, the following corollary is true because FQ, is a special case of
Qui whenk =1,

Corollary 12 Let Q, be a folded hypercube with n > 6, and V' C V(FQy)
with [V’| £ n = 1, then each pair of vertices x and y in FQ, ~ V' are connected by
min{dgg,-v(x), drg,-v(y)} internal disjoint paths.

Next, it focus on the conditional fault tolerance, that is, when fault occurs,
each vertex is adjacent to at leats two faut-free vertices. Under the conditional
fault-tolerance assumption, it will be proved that for any two vertices x,y € Qnx —
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V' (n 2 8,k # n-2,n-1) with |V’| < 2n-3 are connected by min{dg,,-v(x),dg, ,_v(y)}
internal disjoint paths. In order to obtain the result, the following lemma is need-
ed.

Lemma 13 Let @, be an enhanced hypercube withn 2 8, k #n—-2,n-1,
and F € V(Q,) with |F| < 3n - 3, then there exists a connected component W in
QOnx = F such that |[V(W)| 2 2" - |F| - 2.

Proof: Suppose F C V(Qny) with |F| < 3n = 3. Then with lemma 1, |F| <
3n -3 < 6p,(4) -1 = 4n - 10 for n > 8, and with lemma 2, Q, has a large
component W such that |[W| > 2" — |F| — 3. Because Q, is a spanning subgraph
of Qnx, then W is a component of Qpx. Therefore Qnx — F has some components
with at most three vertices except for component W, |V(Q,x) — F — V(W)| < 3. By
lemma 9, |V(Qnx) — F = V(W)| = 3 is not true because the neighbors of the three
vertices are contained in F, which means O, — F has a large component W, such
that |[V(W)| 2 2" — |F| = 2. The proof is complete.

Theorem 14 Let O, x be an enhanced hypercube withn > 8,k #n—-2,n- 1,
V' € V(Qnx) with |[V'| < 2n - 3, and each vertex in V(Q,x) — V' is adjacent to at
least two vertices of V(Q,x) — V', then each pair of vertices x and y in Qnx — V’
are connected by min{dp,,_v/(x), dg,,-v(¥)} internal disjoint paths.

Proof: Suppose x and y are vertices in Q,; — V’. Without loss of generality,
let dg,,-v'(x) < do,,-v(y), hence min{dg,,v/(x),dp,,-v' )} = dg,,-v(x). Tt is
needed to prove that x and y are connected even if dQM_Vr(x) — 1 vertices are
deleted in Qnx — V.

By contradiction. suppose that x and y is disjoint by any path when a vertex set
W is deleted, where |W| < dg,,-v/(x) = 1. Hence |W| < n because of dg,,-v+(x) <
dg,.(x) < n+ 1. Therefore [V' U W| < 3n—3. Let F = V' U W, then by lemma 13,
there exists a connected component C C Q, — F such that |V(C)| = 2" — |F| - 2.
This implies that except for the component C € Q,, — F, there are at most two
vertices. There are three cases needed to be considered.

Case 1. |V(C)| = 2" - |F|.

In this case, Q,x — F is connected, contradict to the assumption that x and y is
not connected.

Case 2. |V(C)| =2" - |F| - 1.

There is only one vertex except for the component C in Qnx — V’. x and y can
not be the only vertex because of |W| < dg,,-v'(x) = 1 < dg,,-v(y)- 1. Itis a
contradiction.

Case 3. |[V(C)| =2" - |F| - 2.

Letu,v € V(Qux — F) and {u, v} N V(C) = 0. Two cases are needed to discuss.

Case3.1.x€C

If y € V(C), then x and y is connected, it is a contradiction.

Ify € {u,v}, when |W| =dp,,_v(x) -1 =dp,,-v(y) = 1,u=yand y € N(v),
then y is not adjacent to any vertex of C, but if W C Ng,,_v(y), then v is not
adjacent to any vertex of W because of lemma 5, otherwise there exits a triangle.
By the assumption of dg,,-v(v) > 2, v is adjacent to some vertex of C, hence
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y is joined to some vertex of C through v. If W is not contained in the neighbo,
set of y in Qnx = V’, then y is joined to some vertex of C by lemma 5. Whep,
|W| < dp,,-v(¥) = 2, y is joined to a vertex of C, then x and y is connected, it is a
contradiction.

Case 3.2. x € {u,v), say x = u.

Case 3.2.1. u ¢ N(v). Then Ng,,-v(x) € W. |W| < dg,,-v(x) = 1 and
INg..-v(X)] = dg,,-v+(x) > |[W], it is a contradiction.

Case 3.2.2. u € N(v). The assumption leads to Ny, ,-v+(x) — v € W. According
to the conditional fault-tolerance, any vertex of Q,x—V’ has at least two neighbors,
Since uv € Oy — V' and lemma 5, they have no any common neighbors, therefore
[W| > dg,,-v(x) = 1 + 1, it is a contradiction.

Consequently, x and y is connected by some path although dg, ,-v/(x) — 1 ver-
tices are deleted. This completes the proof.

Corollary 15 There are min{drg,,-v+(x),drg,,-v(y)) internal disjoint paths
joining vertices xand yin FQ, -V’ withn > 8,k # n-2,n—1,and |[V’| £ 2n-3
if each vertex in FQ,x — V' is adjacent to at least two vertices of FQ,; — V',

4 Conclusion

This paper has performed the structural analysis of Q,x and identified a num-
ber of good features, which then has proved that any two vertices x and y in Q,  —
V' are connected by min(dg,,-v(x), dg,,-v+(y)} internal disjoint paths when n > 8,
k#n-2,n=1,V’' C V(Qyy) with |V’| £ n—1, which generalize the results of fold-
ed hypercube FQ,. We also proved that there exists min{dg,,-v(x),dp, ,-v(¥)}
internally-disjoint paths between two any distinct vertices x and y in conditional
fault-tolerance Qs = V' withn 28,k #n-2,n- 1, V' C V(Qnx), IV'| £ 2n -3,
under the condition that each vertex of Q,; — V’ ia adjacent to at least two ver-
tices of Qnx — V’, that is, for any u € Qnx — V', dp,,-v(u) > 2. These good
properties imply that the reliability and fault-tolerance of Q, is more strong than
hypercube Q,. There exists more message transmitting routs in fault O, than Q,.
Thus we think that interconnection networks modelled by enhanced hypercube
are extremely robust.
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