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1. Introduction

A gray code is a sequence of all 2 * binary k-tuples (code words) arranged in order

so that successive code words differ only in a single coordinate. The name “gray
codes” is assigned to this arrangement of the codewords [8] but the idea of these
code words is very old and goes back at least to Cardano in 1550.

Gray codes are used to minimize the number of bit errors in transmitted signals
[3]. The single change in consecutive code words helps detect some multiple er-
rors when they occur. The code also provides a solution to a type of combination
lock [14] as well as appearing in a number of ways to provide combinatorial ob-
jects [4], [6], [13). Finally, gray codes provide the theory for solution of a variety
of mathematical puzzles [7]. In sections 2 and 3 of this paper we further describe
the gray code and methods of its construction as well as a sequence definable from
the gray code called the change sequence.

In section 4 we define another sequence called the Thue - Morse - Hedlund se-
quence [9]. This sequence appears in the study of almost periodic sequences in
symbolic dynamics [2]). Another sequence derived from the Thue - Morse - Hed-
lund sequence has interesting properties in its own right. In section 5 we describe
arelationship which exists between this sequence and the change sequence of the
gray code. This interesting relationship is the major contribution of the current

paper.

2. The Reflected Gray Code

A gray code of order & is a permutation of the integers, 0,1,--. ,2% — 1 each
written in binary. The properties that apply on the permutation require that con-
secutive images, 7(¢) and w(i+ 1), differ in exactly one coordinate. The number
of different gray codes which exist for a given order k is not known. Related
questions also go by the name snake-in-the-box codes [10].

We consider a specific gray code called the reflected gray code. For the reflected
gray code of order k, w(0) = 0 and the rest of the code can be determined recur-
sively from the gray code of order k& — 1 as described by the following procedure:

Procedure Gray (k).

1. To the code, Gray (k — 1), append a column of 0’s to the left of the k — 1
columns of the code.
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2. Copy the rows of Gray (k — 1), in reverse order, starting with row 2%-1 — 1
and ending with row 0.
3. Tothelast2*~! rows append acolumn of 1°s to the left of the k— 1 columns.

If Gray (1) is defined as the 2 long column vector containing 0 and 1, then we
illustrate the procedure to generate G(2), G(3) and G(4) in figure 1, [4].
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Figure 1. Reflected Gray Codes, G(k),k=1,2,3,4.

As the last vector of G( k) also differs from the first vector in exactly one coor-
dinate, the gray code is circular. Traversing the vectors of the code in order forms
a Hamiltonian circuit of the points of binary k-space, [8].

An alternate way of defining the reflected gray code is by explicitly showing
the particular permutation associated with the reflected gray code. We represent
the integer 1 as the binary vector bgbs_; - - - by. Then, the permutation w(i) of i
that represents ith gray code vector is represented as ’

(1) = GkGk-1 -1
where the g; are defined as
gk = bi

and
Gi=gm®g forl=k-1k-2,...,1

and where @ represents modulo 2 addition. Also, 7~!(g) can be described as the
binary vector bibi_; - - -b; where

by = gk
and

k
=0 g forl=k—1,k-2,-..,1
t=l
and again the summation is modulo 2 on the bits of g .



3. The Change Sequence

The definition of the gray code states that only one bit coordinate of a codeword
changes to produce the next word in the code. Fom the recursive definition of the
code it is easy to see that the sequence of coordinates that change, as Gray (k) is
developed, is a palindrome of length 2 #=! with the 2 ¥~! th position of the sequence
equal to k . Thus, for small values of k, the change sequences are as given in table
1 for the respective reflected gray codes, [6].

k=1 1

k=2 121

k=3 1213121

k=4 121312141213121

k=5 1213121412131215121312141213121
Table 1 The change sequences fork=1,2,3,4,5

The change sequence for the refiected gray code of order k appears frequently
in mathematical puzzles, such as the Towers of Hanoi and the Chinese Rings [7].
In the former case, the complete cycle is exhausted, while in the latter, a “solution”
is found after |2%*! /3 | moves [14].

It can be noted that the change sequence for the reflected gray code of order &
can be generated by a set of k finite automata each of which is capable of counting
to 2 and writing a digit. We imagine a blank tape along which the automata are
to march. They read the contents of the cells they encounter and the automaton
numbered ;j prints a j in the first blank space it encounters and again prints a j in
each alternate blank space it encounters. The various automata print the digits on
the blank tape as shown in figure 2.

Positions —»

1 2 3
1234567890123456789012345678901
Automatal 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Automata 2 2 2 2 2 2 2 2 2
Automata 3 3 3 3 3
Automata 4 4 4
Automata 5 5

Final tape 1213121412131215121312141213121

Figure 2. The positions numbered by the automata.

Obviously, the same approach can number an infinite tape if an infinite number
of automata are available. It is not hard to see how a single automata can number
atape of length 2 ¥-! if it is capable of counting as high as 2*~! and can recognize
integers as large as k.



In fact, the changed coordinate of the ith gray code vector can be computed as
the number j + 1 where 2/||i. That is, i is of the form i = 2/ . [ and ! is odd,
so that 1 is divisible exactly j times by 2. Thus all the odd vectors are divisible
by 2°, every 4th vector, starting with the second, is divisible by 2!, etc. This is
evidenced by the example of figure 2.

4. Thue - Morse - Hedluad Sequence

The Thue - Morse - Hedlund (TMH) sequence is an infinite length binary se-
quence which can be used to prove the existence of “recurrent” non-periodic geo-
desics [11] on certain surfaces of negative curvature. It also is a solution to a
problem [12] concerning a drawing rule in a variant of chess. The sequence has
interesting properties. For example, TMH has the BBb property, i.e. the subse-
quence by ba - - -byb1 b2 - - - baby does not appear in the sequence for any positive
integer value of n [11]. Subsequent investigations [S] have resulted in classes
of sequences which do not contain the blocks Bn(B), where B is any block of
length n and =( B) is any permutation of that block, whose elements come from
the alphabet A = {1,2,--- ,k}.

The TMH sequence can be generated in a variety of ways. A recursive method
[9] proceeds as follows:

(A Ti=t,=0 and
Ton =Tow1r Toe forn=1,2,...

where T is the binary complement of T'.
An equivalent method to generate the sequence is:

(B) Th=t,=0 and
Toe = Thu17(Thet) fornodd
T2e = Toa17(T3e1) formeven.

where r(T') reverses the bits of vector T'.
Finally, the TMH sequence can be generated by making a computation on the
bits of an appropriate vector.

(C) Ifi= Y b;27, then the bit t; of the TMH sequence T" can be expressed as
the modulo 2 sum ¢; = @ Ebj.

It is shown in (2] that TMH can be self-generated in the sense that bits of T°
determine subsequent bits. Thus when a bit 0 is read, the bits 01 are appended
to the end of the sequence and when 1 is read, 10 is written. Getting started with
t1 = 0 is tricky as we read 0 and overwrite that 0 and the next 1. It is also
shown [2]), that if TMH is viewed as a fraction preceeded by a binary point, that
the TMH sequence is a solution of a quadratic equation. Thus, according to the
theory developed in [9], the TMH sequence is almost periodic.



5. The Delta Thue Sequence
We define the delta-j Thue sequence {8§’ ) } of the TMH sequence as
5§j)'= 1 © tivj 1=0,1,2,....

From the previous section, by following any of the generation rules. we produce
and display in figure 3, the TMH sequence and the sequences 5 and §? as
defined above.

T™H 01101001100101101001011001101001
£ 1011101010111011101110101011101
5 110011111100110011001111110011

Figure 3. The TMH sequence and its first two delta sequences.

We establish the following property of the sequence §V. For simplicity we
refer to 5V as 5.

Theorem 1. §; is equal to 1 if and only if i+ 1 = (1+ 25)2%F for some non-
negative integers j, k.
Proof: By the description (C) of the TMH sequence, the bit ¢; differs from the bit
t:+1 when i is even, since then its binary representation terminates in a 0. In this
casek=0.

If 1 is odd, and the binary representation of 1 terminates with 2 k ones, then i + 1
will have a different parity of ones in its binary representation. Thus §; = 1 for
such an {. If { terminates with 2 k + 1 ones, then the number of ones in i + 1 will
have the same parity as does 1 and §; = O in this case. 1
Corollary. Corresponding to the positions where is even, 6; = 1. Wherei =2
(mod 4),8=0. Wherei = 4( mod 8),5; =1, etc.

Thus & can be constructed by following the procedure below.

(D) Write a 1 in every other position of a blank tape. In every other of the blank
spaces remaining, write a 0. In the remaining blank spaces write a 1 in every
alternate space, etc.

The procedure (D) should sound familiar. The sequence displayed in figure 2,
when written in modulo 2 notation, is the sequence of procedure (D) Thus we
have established a relationship between the reflected gray code change sequence
and the sequence of the TMH sequence.

There is also a recursive procedure to generate § which proceeds as follows:

(B) Dyp=6=1 and
Dz-:Dz.—l(Dz-—l)“ forn= 0,1
where D2 is the same m-tuple as D, except the last bit is comple-
mented.
In figure 3, evidently 5? is a dilated version of 6 with every bit of 5§
appearing twice. We verify this in the following theorem.



Theorem 2. The sequence 5 is the dilated by two version of the sequence §V

Proof: In theorem 1 we showed that 5{" was equal to 1 if and only if (i + 1) =
(1+2;)22k for some integers k, j. We show that the bits of 5! in position { are
the same bits in 5® for positions 21 and 2{ + 1. We proceed by considering the
separate cases.

From theorem 1, the bi: 6" is 1 if i is even or if  is of the form z; - -- Thj
011 ... 1 and the number of terminal 1’s is even. If { is even then 21 ends in at
least two zeros so 24 + 2 has one more 1 than 21 does in their respective binary
representations. Similarly 24+ 1 and 21+ 3 have a different parity of ones in their
respective binary representations. Thus 62 = 1 for ! = 24 and 21 + 1 where § is
even.

If i is of the form zzx - - - z011 - - - 1 with an even, positive number of terminal
I’s,then2{and21+2 arercpresentedas zz ---z011 -.- 10 and zg - - - 2100 - . - 0
respectively and have a different parity of 1’s in their binary representations. In a
like manner, 24 + 1 and 21 + 3 are represented as zxz - - - z011 - .. 11 and
zz--- 210 - - 01, respectively, to satisfy the claim for the case 5{" = 1.

The case for 8,(" = 0 is handled exactly similarly where now i is represented
as zz---z011-..-1 ending in an odd, positive number of 1’s. The rest of the
argument follows precisely as before, mutatis mutandis. 1

When one considers the sequence §“ it is evident that each respective bit of
&V is dilated 4 times in 5§, Examining the various cases for the bits 5{", the
same arguments as above on §{* forl = 41,44+ 1,44i+2 and 44+ 3 show that the
observed behavior always occurs. We are led to make the following conjecture.

Conjecture. The delta sequence §)) is the dilated by two sequence of the delta
sequence §7,

In section 4 it was stated that TMH has the BBb property. Here we give an
alternate proof of this fact by operating on the § sequence.

Theorem 3. The subsequenceee; - - - eqeye; - - - e, does not appear as 2 n con-
secutive bits in the sequence § if @Y ., e; = 0.

Note. The restriction on® Y e; = 0 is necessary to ensure we do not have the
case BBb in the TMH sequence.

Proof: Suppose dodid; - - - is the delta sequence of the TMH sequence. Suppose
further that dpdps1 - - - dpin-1 = dpsndprut1 - dpr2n-1 is an n-long repeat and

pn—1

® ), d=0.

i=p



Let dp.q be the first 0 in dpdpe1 - - - dpen~1. Then dp, g4 = 0 by assumption. So,
by theorem 1 we must have

1+p+g=(1+2j)2%k"
and
14 p+g+n=(1+2j)2%k!

We proceed by assuming that there is an n-long repeat in the § sequence of the
TMH sequence and then find a contradiction. We actually exhibit a position that
is 0 in one half of the 2 n-tuple and is 1 in the corresponding bit of the other half.

Case 1. (kl = kz).

We write 1+2 7 and 1+ 2 7, inbinary as a,a,-1 - - -ag and b,b,— - - - bo, respec-
tively. We find the smallest ¢ such that a; # b; and definem = @;_1@¢—2 - --To+ 1.
Note, m < n. Then if we form 1+ 2j; + m and 1+ 2j, + m we see that exactly
one of these is exactly divisible by an even power of 2 and the other is divisible
by an odd power of 2. Thus, by theorem 1, the first of these is a 0 in the sequence
and the second of these is a 1. This is a contradiction and case 1 is proved.

Case 2. k; # ka.

Let ky = max(k;, k) and k, = min(ky, k») and associate j, and j, with the
appropriate values of j; and j;. Then the bitd, = 0 wherez = 1+p+ g+ (2) +
22%+2 where by the notation (§) we mean take the value a if k, = k) and take
the value b if k, = k3.

Case 2a. n> 22k*2,

By assumption, d,, = 0 where y isdefinedasy = 1+ p+ g+ (§) + 22%*2 as
these positions, y and z, differ by n and the two n-tuples are supposed to agree.
Then

must be exactly divisible by an odd power of 2 since d;, = 0 . But,
y=22541((14 252U k=R 4 2y = 22k1 (444 2)

which yields a contradiction and case 2 a is established.
Case 2b. n < 22k*2,

Then, the number n can be expressed as the absolute difference

[(1+251)228% — (14 2j)2%k%1| < 2242,



Dividing through by 224+ yields
[(1+27)2%k=k) _ (1425,)2%k—k)| <2,

But &, has to equal one of k; and k». Thus one of these numbers is odd and the
other is even. It follows that

[(1+25;)2%k=k) _ (14 2j5,)2%k-k))| =
and therefore
I(l+ 2jl)22k1+1 _ (l"" 2j2)22k14~1| = 22k.+l

so thatif n < 22%+2 then n= 22k*1,

Now we follow the (E) construction of the delta sequence of the sequence TMH.
It follows that every initial block D, of length 2™ contains an odd number of 1°s.
Now, if p = 0(modulo 225*! = p), then the initial subsequence D, DD, D,
contains the subsequences dpdps) - - « dpsn—1 and dpsy - - - dpe24-1 and each of the
two subsequences as one of either D, or D3. But at most one of these, D¥, con-
tains an odd number of 1’s to lead to a contradiction.

Finally, the last case to consider is when p is not a multiple of n. Then the
subsequence dpdp+1 - - - dpe2s-1 Overlaps one of the divisions between the blocks
D;, and DY, or D3, and D,,, or Dy, and D,,. We consider only the first of
these possibilities and leave the other two possibilities to the reader.

| D2a Dgn

2 3 4 5

In the diagram there are five regions to be considered, defined by the division
between D,,, and D3, and also by the location of d, . If region 1 has an odd
{even) number of ones, then region 2 must have an even (odd) number of ones
since || D2,|| is odd where ||z|| denotes the number of ones in the vector z . Then
also region 3 has an even (odd) number of ones, since ||dp - - - dp+n-1 || is Supposed
tobeeven. Also ||dpsy, « - - dpr2n-1 ]| is supposed to be even so region 4 has an even
number of ones. But since || D4, || is even, region 5 has an even (odd) number of
ones. But D, and D3, agree, except for the last bit. Now since n= 1/2(2n),
region 5 must have the opposite parity from region 2 so is therefore odd (even).
The contradiction completes this subcase. The other two possibilities are handled
the same, mutatis mutandis.

6. Conclusions

‘We have described the generation of gray codes, their change sequence, the Thue—
Morse—Hedlund sequence and the delta sequence of this sequence. We show that
the change sequence of the reflected gray code and the delta sequence of the TMH
sequence are intimately connected. Perhaps other interesting applications can be
found for these sequences when this relationship is completely exploited.
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