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Abstract. It is known that a pair of mutually orthogonal latin squares (MOLS) of or-
der n can be embedded in a pair of MOLS of order t if ¢ > 3n. Here we discuss the
prospects of extending this result to the case when the smaller pair is only a pair of
mutually orthogonal partial latin squares (MOPLS). We obtain some conditions, anal-
ogous to those of Ryser for embedding partial latin squares in complete latin squares,
which we show are necessary for the embedding of MOPLS. We discuss also some
implications if these conditions are in fact also sufficient.

We also discuss the analogous problem for pairs of partial Kirkman triple systems
PKTS.

1. Introduction

For a number of elementary partial combinatorial structures, such as partial latin
squares, partial idempotent latin squares, or partial Steiner triple systems, it is ei-
ther known or conjectured that if the partial structure has order r, then it can be
embedded in a complete structure of order n whenever, roughly speaking,n > 2r,
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this bound being best possible (each specific problem may have its own individ-
ual slight variation on this bound). For a selection of such embedding results see
[11,[2],[4], [51,[61.[7], and [11). A number of these results were conjectured many
years ago, and have only ‘fallen’ fairly recently. A common feature of the solu-
tion of several of these problems is that the embeddings have been arrived at by
adding a point (or a row) at a time, and this has involved a detailed study of the
intermediate stages. The prototypical result here is Ryser’s theorem, which states
that an r x s latin rectangle R on n symbols can be embedded in an n x n latin
square if and only if each symbol occurs at least r + s — ntimes in R.

There is another set of embedding problems where it seems natural to speculate
that any partial structure of order = can be embedded in a complete structure of
order n whenever n > 3, this bound being best possible (again for each specific
problem this bound may be varied very slightly). Such problems have seemed to
be quite out of reach. In this note we consider two of the main problems of this
type. The first is the problem of showing that it is possible to embed any pair
of partial orthogonal latin squares of order r in a pair of orthogonal latin squares
of order n whenever n > 3r. The second is the problem of showing that it is
possible to embed a partial Kirkman triple system of order r in a Kirkman triple
system of order n whenever » > 37 and n = 3 (mod 6); we also consider the
related problem for resolvable triple systems of index ), when ) is even. We are
interested to sce if it is possible to arrive at the embedding by adding a row (or a
column) at a time in the first case, or by adding a point at a time in the second case.
We recognize that most people who are familiar with orthogonal latin squares
or Kirkman triple systems will at this point be smiling sceptically, but politely,
behind their hands. But nothing ventured, nothing gained. Here we present sets
of necessary conditions for each problem. We hope that these conditions will
eventually prove to be sufficient.

2. Pairs of Partial Orthogonal Latin Rectangles

A pair (A, B) of partial orthogonal latin rectangles of size r x s is a pair of
T X 8 matrices A = (4;;),B = (By;) such that the ordered pairs (A;j, Byj)
(i=1,...,77=1,...,s) are all distinct. If » = s = nand each ofA and B is
on the same set of n symbols, then (A, B) is a pair of orthogonal latin squares.

Let (A, B) be a pair of r x s partial orthogonal latin squares. Suppose that
the pair (A, B) either is, or is to be, embedded in a pair (C, D) of orthogonal
latin squares of order n. We may suppose that the symbols of C and D are the
integers 1,...,n Foreachi € {1,...,n}, let A(i) and B(4) be the number of
occurrences of 1 in A and B respectively.

Let X and Y be subsets of {1,...,n}. Let o(X,Y) be the set of ordered pairs
(z,y) withz € X andy € Y and such that there are i and j with A(4,7) = z and
B(4,7) = y. For1 < i < r,let R (X) be the set of elements of X which do
not occur in row ¢ of A, and let Rg) (Y") be the set of elements of Y which do not
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occur in row ¢ of B. Similarly, for1 < j < s, let f{)(]{) be the set of elements

of X which do not occur in column j of A, and let S/ )(Y) be the set of elements

of Y which do not occur in column j of B. If X = {l ., n} shorten the notation

RY(X) to RS, and define R, § and 53’ sumlarly, thus RS is simply the

set of all elements which do not occur in row 1 of A, and so IR(ol =n—s.
Finally, for1 < i < 7, let

$(X,Y) = max{|RP(X)| + |[RP(Y)| - (n—s),0}
and,forl < j < s, let
(X, Y) = max{|SP(X)| + 1S (¥)| - (n—1),0}.

Theorem 1. Let (A, B) be a pair of r x s partial orthogonal latin squares. If
(A, B) can be completed to a pair (C, D) of orthogonal Iatin squares of order n
onsymbols1,...,n, then, foreachpair X C {1,...,n},Y C {1,...,n},

lo(X, )|+ Y X, V) + 3 (X, V) < |X|IY), )

i=1 j=1

Proof: We may suppose that A and B occupy the first r rows and s columns of C
and D respectively. The number of ordered pairs (z, y) withz € X andy €Y is
|X]|Y|. Foreachsi € {1,...,r}, the number of ordered pairs (z,y) of (A, B)
with z € X and y € Y which occur in cells (¢,s + 1),...,(4,n) is at least
max{|R(X)| + |[RD(Y)| — (n— 8),0} = ¢ (X,Y). Similarly, for each
7 € {1,..., s}, the number of ordered pairs (z,y) withz € X andy € Y is at
least max {|SY?(X) |+ 1S’ (V) |- (n—1),0} = $*)(X,Y). Thus the number
of ordered pairs (z,y) with z € X and y € Y which occur in the first » rows of
(C, D) and the first s columns of (C, D) is at least

lo(X, V) |+ Y 6P (X, Y) + ) (X, Y).

=1 jsl

The desired inequality (1) now follows.
|
One rather obvious necessary condition for (A, B) tobe completable to(C, D)
is as follows. Consider a particular element z € {1,...,n}, and suppose without
loss of generality that x liesin cells (1, 1),(2,2),...,(t,t) of A, and does not oc-
cur elsewhere in A, so that t = | A( a:)l Then the family (R“”) LR, S,
.+,8%") of sets must have a transversal containing no element of {y:(z,y) €
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o(z,{1,...,n})}. We show now that condition (I) does imply the existence of
such a transversal.

Let X = {z},N = {1,...,n} and Nx = {y: (z,y) € o(z,N)}. Choose sets
Wac {t+1,...,r}and W C {t + 1,...,5}. We show the existence of such
a transversal by demonstrating that if (I) holds then Hall’s condition also holds.
This means that we show that

[Wal+ [Ws| < I(( U RS’)Q( U sg>))\Nx|. @

SEW, jEWs

Let
v=( U &)u( U s).
i=€W, JEWR
Forie {1,...,7},

¢$(z,Y) = max{|R ()| + |RP (Y)]| - (n— 3),0}

has the value 1 if t + 1 < ¢ < 7 (so that z does not lie in row § of A) and
|RY(Y)| = n— s, and it has the value O otherwise. In particular, in view of the
definition of Y, it takes the value 1 if i € W,. Therefore

369z, Y) > [Wal.

i=1

Similarly

> (2, Y) > |Wal.
j=1

From the inequality (1) it now follows that

lo(z,Y)|+ |Wa| + W] < |Y|.

Consequently
. |Wal + IWs| < [Y] = |o(z,Y)|.
But
Y] lo(z,Y)| = [¥\o(z,Y)| = [V \Nx]|.
Therefore

[Wal + |Wg| < [Y\Nx|
which is the inequality (2) rewritten. Therefore the transversal does exist.



Some special cases of Theorem 1 are of particular interest. Suppose that B is
a latin square, so that r = s, and suppose that the symbols of B are the integers
1,...,r. Let z € {1,...,n} and suppose, as before, without loss of generality,
that z occupies cells (1,1), (2,2),...,(¢,t) of A, so thatt = A(z). We know by
the argument we have just gone throu%h that the inequality (1) implies that the
family (RS*Y,..., B, 85V ..., 857) has a transversal corresponding to z.
Since Bisa latin square on {1 ,'r} the 2(» — t) symbols in this transversal
do not lie in the set {1,...,7}. Therearet+ 2(r —t) = 27 — t ordered pairs
with first element z accounted for so far. Of these only ¢ have the second element
in the set {1,...,7}. Therefore the remaining n — (2r — t) ordered pairs with
first element = must include the remaining r — t ordered pairs with first element =
and second element in the set {1, ...,r}. Therefore n— (2r —t) > r —¢ so that
2t > 3r — n. Since t = A(z) and since = was chosen arbitrarily, it follows that

A(z) > %(Sr—n) (Vz e {1,...,n}). 3

If A were also a latin square and n > r then for some symbols i, A(5) = 0.
Condition (3) then reduces to
n>3r. @)

It has been shown by Heinrich and Zhu [3], following upon the work of several
other authors, that this is a sufficient condition for the embedding of (A, B) into
(C, D). Thus in this case at least, condition (1) is sufficient for the existence of
an embedding.

Another special case of interest is when the symbols of C each occur [ﬁj or
[Z] times in A. Thus A(i) = l_%j or| 'n | for each i. Condition (3) then becomes
|Z| > $(3r — ). This implies that = > +(3r — n). This is equivalent to
{(n~27)(n—17r) > 0. Since n > r it follows that

n>2r &)

This suggests some exciting speculations. If (1) were sufficient in this case also,
it would follow that if A(§) = &= = Z(Vi) then (A, B) could be embedded in
(C, D), where C and D have order2r If it is true that to any r x r latin square
B there exists a partial r x r latin square A on 27 symbols such that A and B
are orthogonal, and if also (1) is sufficient in this case, then it would follow that
any r x r latin square can be embedded in a latin square of order 2 r which has an
orthogonal mate.

3. Partial Kirkman triple systems

An edge-colouring of a graph H is a map ¢: E(H) — C, where E(H) is the
set of edges of H and C is a set of colours. A partial Kirkman triple system on r
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points is an edge-colouring of K, in which each colour class consists of (vertex)
disjoint K> ’s and K3's (i.e. (vertex) disoint triangles and edges). If r = 3 (mod
6) and each colour class consists of %'r K3’s and no K s, then the edge-coloured
K, is a Kirkman triple system.

A proper edge-colouring of a graph H is an edge-colouring in which no vertex
of G is incident with more than one edge of each colour. H is called h-edge-
colourable if it has a proper edge-colouring with h colours.

Define { L3rl3(r=1D]] forr # 5 (mod 6),
[3r[3(r—1)]] -1 forr = 5(mod6).

It was shown by Schinheim [12] that the number of triples in a partial Kirkman
triple system on r elements is at most u(r).

Given a partial Kirkman triple system of order r, let G be the missing-edge
graph, i.e., the graph whose vertex set is the set of points of the partial Kirkman
triple system, and whose edge set is the set of all edges which are not in triples.

Inthe case when a fixed integer nis given, and the partial Kirkman triple system
of order r either is, or is to be, embedded in a Kirkman triple system of order n,
let G° be the regular graph of degree n — r obtained from G by adding +(n —
T — dg(r)) loops at each vertex r € V(G) (here a loop counts two towards the
degree), and it is not hard to see that if the partial system of order r is embedded
in a complete system of order n then -2‘-( n— 71— de(r)) is even,

We are now in a position to state our main result on partial Kirkman triple sys-
tems.

Theorem 2. Letn = 6t + 3 and let K, be edge-coloured with 3t + 1 colours
C1,...,C3t+1. Let the i-th colour class be C;, and let C; consist of t; K ’s and e
K3 ’s, the K3 's and K, ’s all being mutually vertex disjoint. If the edge-colouring
of K, can be extended to an edge-colouring of K, in which each colour class isa
2-factor consisting of disjoint K4 ’s then

(i) 6t;+3e; >37r—n, )
(i 0N+ () —3(r—Dn-3 3"t < 3u(n—1),

(iii) G is (n— r)-edge-colourable,

(iv) G® has no components of even order with two loops.

Speaking loosely, we can say that the fact that the edge-coloured K, is a Steiner
triple system implies Conditions (ii), (iii) and (iv), and the fact that the Steiner
triple system is resolvable, i.e., is a Kirkman triple system, implies Condition ).

Let N(v) denote the number of triangles in the edge-coloured K, which contain
v. We remark that the further condition

V) N(v) 23@2r—n-1) (Yv € V(Ky,)),

which the observant reader might suspect has been overlooked, is an easy conse-
quence of Condition (iii).
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Proof: Conditions (ii), (iii), and (iv) follow whenever the edge-coloured K, is a
Steiner triple system; they are proved in [5]. It remains to prove Condition (i).

For each 1 there are r — 3¢; — 2e; vertices in the K, which are in triangles
with an edge disoint from the K, (i.e., the edge has no vertex in common with
the K,) These r — 3t; — 2e; vertices in the K, are therefore in triangles with
2(r — 3t; — 2¢;) vertices not in the K. There are a further e; vertices not in the
K, corresponding to the independent edges of C; in the K. There are therefore
atleast2(r — 3t; — 2¢;) + ¢; = 27 — 61; — 3¢; vertices not in the K. But there
are n— r vertices not in the K. Therefore

2r—6t; — 3¢, <n—r,

so that
3r—n<K 6% + 3e;.

This proves Theorem 2.

A special case of interest is when » = 1 or 3 (mod 6), the edge-coloured K,
. . . : r(r—1 r{r—1
is a Steiner triple system, and each colour class consists of l;%m;-J or [g{m}-l
triangles. Then Condition (i) becomes

6 lHJ >@Br—m).

This implies that 2»(r — 1) /(n — 1) > (3r — n), which is equivalent to
(n—2r—-1)(n—17) > 0. Since n > r it follows that

n>2r+1. )

Under these conditions, Conditions (ii), (iii) and (iv) are all satisfied.

This suggests some further interesting speculations. If (i), (ii), (iii), and (iv) are
sufficient in this case, then it follows thatif » = 6 p+ 1, n = 12 p+3 and each colour
class consists of p triples, then the Steiner triple system of order r can be extended
to a Kirkman triple system of order n in which, foreachi € {1,2,...,6p+ 1},
the i-th colour class C; becomes part of the i-th parallel class of the Kirkman triple
system,

There is a very natural way of associating with a Steiner triple system A of
order 6p + 1 contained in a Kirkman triple system B of order 12p + 3 a pair
(C, D) of orthogonal 1-factorizations of order 6p + 2; such pairs of orthogonal
1-factorizations are well-known to be equivalent to Room squares. Thus if the
conditions of Theorem 2 are sufficient, and if a proof of Theorem 2 is devised
which constructs the Kirkman triple system by adding a point at a time, then we
would obiain incidentally a method for ‘growing’ Room squares a row and column
at a time.
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The pair (C, D) arises as follows. Let the vertices of the Steiner triple sys-
tem be vy,. .., vgp1; the colour classes (or parallel classes) of the Kirkman triple
system are Cy, ..., Cep+1. Let the points of the Kirkman triple system other than
V1,...,V6pe1 DE W1, ..., Wepr2. L&t W = {w1, ..., wep2 }. Notice that no three
points of W form a triangle of the Kirkman triple system. One of the two 1-
factorizations of the Kgpe2 OR wy, ..., wepe2 has as its j-th 1-factor the set of
those edges in the K¢p.2 which form a triangle in the Kirkman triple system with
the vertex vj. The second of the two 1-factorizations has as the i-th 1-factor G;
the edges of the K¢p.+2 which are in a triangle of the s-th colour class C;. It is easy
to see that at most one edge of Fj is in G}, i.e., the 1-factorizations are orthogonal.
The Room square is indexed by W x W, and the (4, j)-th element is 0 if G; and
F; do not have a vertex in common, and the set {w;, wg} if G;; and F; have the
edge W W, in common. We remark that this construction goes back to Kirkman
[9], and is discussed by Mullin and Vanstone in [10].

Finally we consider the analogous problem of embedding partial resolvable
triple systems of index A when ) is even.

The necessary conditions in this case are simpler, and it seems likely to be a
good deal easier to show that these necessary conditions are sufficient (if that is
in fact the case). At the time of writing, the problem of embedding partial Steiner
triple systems has not been completely solved, whereas the problem of embedding
partial triple systems of index X has been solved when 4 |\ (see [7]).

Let MK, be the graph on n vertices in which each two vertices are joined by
X edges. A partial resolvable triple system of index ) is an edge-colouring of
MK, in which each colour class consists of (vertex) disjoint K3's and Kj’s. If
r = 0 (mod 3) and each colour class consists of {r K3’s and no K3 s, then the
edge-coloured )\ K, is a resolvable triple system of index \.

Given a partial resolvable triple system of index )\ and order r, let G be the
graph whose vertex set is the set of points of the partial resolvable triple system,
and whose edge set is the set of all edges which are not in triples.

When a fixed integer nis given, and the partial resolvable triple system of order
T is, or is to be, embedded in a resolvable triple system of order n, let G° be the
regular graph of degree A(n—r) obtained from G by adding %{A(n— r)—dg(r)}
loops at each vertex v € V(G).

Theorem 3. Letn= 6t or6t+ 3. Let) beeven. Letr < nandlet \K, be
edge-coloured with i—>\( n — 1) colours. Let the i-th colour class be C; and let
C; consist of t; Ky 'sand e; K s, the K3 's and K, s all being mutually (vertex)
disjoint. If the edge-colouring of A K, can be extended to an edge-colouring of
MK, in which each colour class is a 2-factor consisting of disjoint K3 ’s (so the
edge-colouring gives a resolvable triple system of index ), then

@) 6t+3e;>3r—n  (Vi),
@ 3%t <M(7) + @) - ir(n—-n}
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(iii) A(@) <A(n—1),and
(iv) G° contains no component with exactly one loop; and ifn —r = 2,
G® contains no component with an odd number of loops.

Let N(v) denote the number of triangles in the edge-coloured )\ K, which con-
tain v. We remark that condition (iii) is equivalent to the condition
) N(v) 2 32r—-n—-1)  (Vv).
Proof: Conditions (ii), (iii) and (iv) follow whenever the edge-coloured A K, is
a triple system of index ); they are proved in [7]. The proof of Condition (i) is
the same as in the proof of Theorem 2, and follows because the triple system is
resolvable. This proves Theorem 3.
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