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Abstract. In this note, we give a characterization of regular graphs which are neutral.

In this paper all graphs are finite, simple and undirected. Given a graph G =
(V,E), abinary labeling f on G is defined as follow: each vertex of the graph
is assigned O or 1. An edge joining two vertices having the same vertex label
is assigned 0, and an edge joining two vertices having opposite vertex labels is
assigned 1. For such a labeling, let v(£) and e(%) denote respectively the numbers
of vertices and edges with label 1, where ¢ = 0, 1.

Cahit [2] called a graph G cordial if there exists a binary labeling f such that
[v(0) —v(1)] < 1 and |e(0) —e(1)| < 1.

Cahit’s consideration of cordial graphs is motivated by the study of graceful
graphs. He regards cordial graphs as a weaker version of graceful graphs and har-
monious graphs, although there are cordial graphs which are not graceful. While it
is not known whether all trees are graceful, Cahit [2] gives the affirmative answer
that they are all cordial. In general, it is difficult to decide when a regular graph G
is cordial. For other results of cordial graphs, the reader can refer to [1,3,4,5,6].

Recently, the first author of this paper, K.W. Lih and Y.N. Yeh [7] consider
another labeling problem. Consider a binary labeling g on the vertices of G, such
that each vertex is assigned 0 or 1. A partial function g*: E — {0,1} can be
defined as follows:

1 ifg(a)=g(b)=0

9" ({a,b}) = { 0 ifg(a)=g(b)=1, where {a, b}cE.
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A graph is called neutral if there exists a binary labeling g and its induced la-
beling g*, such that the following inequality holds

[(e(0) + v(0)) — (e(1) + v(1))| < 1.

The labeling g is called the neutral labeling. A neutral graph is called strongly
neutral if we have e(0) + v(0) = e(1) + v(1).
We prove the following result.

THEOREM 1. An r-regular(p, q)-graph G is neutral if and only if
" (1)"p is even or
"@)"pisoddandr =2 or4.

Ifp is even, then G is strongly neutral,

Proof: For simplicity, we name the verticesof G by 1,2,...,p.
Label the first k vertices by 0 and the remaining vertices by 1. Here & can be
0,1,2,...,1p/2]. (Figure 1)

Figure 1

Define f;(0) (respectively f;(1) to be the number of edges connecting vertex i
to vertices labeled O (respectively 1). Then we see that

v(l)=p—k

v(0) =k

P
e(0) = () £i(1)/2

I=k+1

k
e(1) = () fi0) /2

i=l
If we count the number of edges of the graphs by counting the three types of
edges: (1) the end vertices of the edges with label 0, (2) the end vertices of the
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edges with undefined labels and (3) the end vertices of the edges with label 1, then
we have

k P P
pr/2= (Y £i(0)/2+ (Y FO)+( ) fi(1))/2

=1 i=k+1 i=k+1

Lets = v(1) + e(1) — v(0) — e(0), then

k P
s=p—k+ (O FON/2— k= (] £1)/2)

§=1 i=k+1
P P P
=p-2k+[pr/2— 3 HO = (D AD/DI-(Y f(D/2)
s=k+1 i=k+1 i=k+1
4 P
=p—2k+pr/2— Y fi(O+ Y fi(D)
i=k+1 f=k+1

=p—2k+ pr/2 — (p— k)r,(since all vertices have the same degreer)
=p—2k+pr/2 —pr+kr
=2k(r/2-1) —p(r/2 —-1)
=(2k—-p)(r/2 -1)

If p is even, then @ is strongly neutral. For we can let k = p/2.
If pis odd, then 2k — p # 0. We consider the following cases:

Casel. r=2.
Then G is 2-regular which is strongly neutral,

Case2. r> 2,
Then|r/2 — 1| # 0. Thus s # 0 and G is not strongly neutral.
For|(p—2k)(r/2 —1)| = 1, wemust have |p— 2k| = 1 and|r/2 — 1] = 1.
Thusk=(p—1)/2 andr = 4.
Corollary 2. Every 2-regular graph (= a disjoint union of cycles) is strongly
neutral.
Remark. It is not true that every regular graph of even order is cordial, Indeed,
the generalized Petersen graph P(m, k) wheren> 5 and 1 < k < m, has vertex
setV = {ao,01,...,80-1,b0,b1,...,bn-1} and edge set E = {{6;,0i+1}: 1 =
0,1,...,n—1}u{{as,b5}: £ =0,1,...,n—1}U{{b;, biss }:i= 0,1,...,5—1},
where all subscripts are taken modulo n is not cordial forn # 2 (mod 4) [4].
We consider a class of regular graphs which are called circulants in [2], and
which we refer to as step graphs and denoted by S(=; ay,02,...,ax), where
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S (8; 1, 3)

Figure 2. The step graph §(8; 1, 3)

@1,02,...,04 are some integers,and 1 < a1 < a3 < --- < |nf2]. We rep-
resent its vertex set by {0,1,...,n— 1}. The edge set of S(n; a;,a3,...,a)
is given by {{u,v}: u,vin V(G),v—u=a; (modm) forj = 1,2,...,k}. For
example, see Figure 2.

We have the following results which are easy consequences of Theorem 1.

Corollary 3. The step graph S(n; a1,a2,03,...,ax) is neutral for all evenn. If
n is odd then it is neutral if and only ifk < 2.

Corollary 4. Hypercube K} is strongly neutral for alln > 2.

Corollary 5. A regular complete k-partite graph K (n, n, . ..n) is strongly neu-
tral if eithern is even or k is even.
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