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Abstract. We consider the problem of preemptively scheduling a set of N independent
jobs with release times on m > 1 identical machines so as 1o minimize the number of
late jobs. Fora single machine, Lawler has given an O( N ) time algorithm for finding
a schedule with the minimum number of late jobs. However, for fixed m > 2, the
question of whether the problem can be shown to be solvable in polynomial time or
shown to be N P-hard remained open over the last decade. In this paper we answer this
question by showing that it is N P-hard for every fixed m > 2.

1. Introduction

A fundamental problem in deterministic scheduling theory is that of scheduling
asetJS = {J1,Jz,...,Jny} of N independent jobs with release times onm > 1
identical machines so as to minimize the number of late jobs. Each job J; has
associated with it a release time v(J;), a processing time p(J;), and a due date
d(J;). A jobcannot start until its release time and it is expected to be completed by
its due date. With respect to a schedule S, a job is said to be late if it is completed
after its due date; otherwise, it is said to be on-time. Our goal is to find a schedule
such that the number of late jobs is minimized; or equivalently, the number of
on-time jobs is maximized. This problem has received considerable interest since
Moore [10] gave an O( N log N) time algorithm, more than two decades ago, for
a special case of the problem in which m = 1 and all release times are equal. In
this paper we consider the preemptive version of this problem for m > 2.

In nonpreemptive scheduling, it is well known [2] that the problem of deciding
if a given sct of jobs is feasible on a single machine is strongly N P-complete;
i.e., each job is scheduled between its release time and its due date. This implies
that the problem of minimizing the number of late jobs is strongly N P-hard for
every fixed m > 1. However, special cases of this problem have been shown
to be solvable in polynomial time. As mentioned earlier, the special case where
m = 1 and all rclease times are equal can be solved by an O(N log N) time
algorithm due to Moore. Sidney [11] later extended Moore’s algorithm to allow
specification of certain jobs required to be on-time. Kise et al. [3] have given an
O(N?) time algorithm for the more general case where the jobs have similarly
ordered rcleasc times and due dates; i. e., there is a labeling of the jobs such that
r(J1) < r(J2) < --- < r(Jy) and d(J1) < d(J2) < -+ < d(Jw). Most
recently, Lawler [7] gave an improved algorithm for the special case studied by
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Kise et al. with a running time of O(N log N). If all release times are equal,
the problem of minimizing the number of late jobs is N P-hard for each fixed
m > 2; it becomes strongly N P-hard for arbitrary m [2). We can complicate
the problem, for example, by giving a weight to each job or adding precedence
constraints among the jobs. We refer the reader to [6,7,8] for results on these
complications.

From the above discussions, we can see that the complexity issues for nonpre-
emptive scheduling have been well solved. This is not the case for preemptive
scheduling. Unlike nonpreemptive scheduling, the feasibility problem for pre-
emptive scheduling canbe solved in polynomial time, even for an arbitrary number
of unrelated machines [9]. Thus, one would expect that more algorithmic results
exist for preemptive scheduling, and indeed this is so. For example, Lawler [7]
gave a dynamic programming algorithm with time complexity O(N?) for a sin-
gle machine. Furthermore, it is well known that for a single machine, there is no
advantage to preempt a job if the jobs have similarly ordered release times and
due dates. Thus, all of the corresponding results for nonpreemptive scheduling
mentioned above remain valid for preemptive scheduling. When all release times
are equal and weights are present, the dynamic programming algorithms due to
Lawler [5] can solve the problem for m uniform machines in O( N2W?) time for
m = 2 and in O(N3™-3W?2) time for m > 2, where W is the total weight of the
jobs. Hence, for a fixed number of uniform machines and equal release times, the
problem of minimizing the number of late jobs is solvable in polynomial time. Un-
fortunately, however, Lawler [6] also showed that the problem becomes N P-hard
for an arbitrary number of identical machines.

It is somewhat unexpected that little was known about preemptive scheduling
for fixed m > 2 and unequal release times. As noted in [4], the question of
whether the problem can be shown to be N P-hard or shown to be solvable in
polynomial time for fixed m > 2 remained open. In this paper we answer this
question by showing that the problem is N P-hard for every fixed m > 2.

We now introduce some notations and conventions that will be used throughout
the paper. Let S be a schedule. The symbol NLJ(S) denotes the number of late
jobsin S. If a job is late in S, it is clearly immaterial where it is scheduled in S.
Without loss of generality, we may assume that all late jobs are scheduled after
the latest due date. In the remainder of this paper, we will only be concerned with
how to schedule the on-time jobs, assuming that all late jobs are scheduled after
the latest due date. Also, in our discussions, we say that a machine is idle during
some time interval in S if no jobs are processed by the machine during that interval
in S.

2. N P-hardness Proof

In this section we show that the problem of finding a preemptive schedule with
the minimum number of late jobs on m identical machines is N P-hard for every
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fixed m > 2. We show this result by proving the corresponding decision problem
to be N P-complete. The decision problem with parameter m can be defined as
follows.

NLJP(m). Given aninteger K andasetJS = {J,,Jz2,...,Jn} of N indepen-
dent jobs, where each job J; has an integer release time v( J;), an integer process-
ing time p(J;) and an integer due date d( J;), is there a preemptive schedule S for
J S onm identical machines such that NLJ(S) < K?

We first show that the N LJ P(2) problem is N P-complete; the proof will then
be generalized to m > 2 at the end of the section. To show that the NLJP(2)
problem is N P-complete, we reduce to it a restricted version of the N P-complete
Even-Odd Partition problem [2]. The Even-Odd Partition problem and the Re-
stricted Even-Odd Partition problem are stated as follows.

Even-Odd Partition. GivenasetA = {a1,02,...,62,} Of 2n positive integers,
where a; < a;v1 foreach1 < i < 2n, is there a partition of A into two subsets
A1 and Ay suchthaty ., 6i = Y, e 4, and such that foreach1 < i < m, A,
(and hence A, ) contains exactly one of {a2i-1,a2;}?

Restricted Even-Odd Partition. GivenasetA = {a),a32,...,024} 0f2n pos-
itive integers, where a; < a;,1 foreach1 < i < 2nanda; > 4 E}Ll(az,- -
azj-1) foreach 1 < i < 2mn, is there a partition of A info two subsets A, and
Az suchthaty, ., 6i =Y ,.c4, ai and such that for each1 < i < n, A, (and
hence Az ) contains exactly one of {a2i-1,a2:}?

Note that the Restricted Even-Odd Partition problem differs from the Even-
Odd Partition problem in that it has one more constraint on the integers; i. e.,
a; >4 3 7 (azj — azj1) foreach 1 < i < 2m. The N P-completeness of the
Restricted Even-Odd Partition problem can be established by a simple reduction
from the Even-Odd Partition problem: see [1] for more examples of this technique.
Let A = {a1,03,...,02,} be an instance of the Even-Odd Partition problem and
let§(A) = Z?nl(“Zi —azj_1). Leth < by < --- < b, bean arbitrary sequence
of n positive integers. Consider the set A’ = {a; + b1,a2 + b1,...,a25-1 +
bi,a2; + b;,...,820-1 + by, 02, + b} Clearly, A’ has a solution if and only if A
has a solution. Furthermore, §( A') = 8(A), where §(A’) is the value of the §
function defined above when applied to the integers in A’. Thus, we can increase
the values of the integers in A without changing the solution of A and the value
of the § function. Now, if we let b; = 48(A) for each 1 < 1 < m, then the set
A’ becomes an instance of the Restricted Even-Odd Partition problem, and it has
a solution if and only if A has a solution. Thus, we have the following lemma.

Lemma 1. The Restricted Even-Odd Partition problem is N P -complete.

We begin by showing how to construct a set of jobs from an instance of the
Restricted Even-Odd Partition problem; an instance of the NLJP(2) problem
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will be obtained by adding one more job to the set, as we shall see later. Let
A = {a1,az,...,62,} be an instance of the Restricted Even-Odd Partition prob-
lem, and let B = (23:, 61)/2,8; = a3 —az;_y foreach1 < i< n A =
max{8;,62,...,6,} and 8 = Y, &. Since a; < a4 foreach1 < i < 2n,
we have §; > O and hence §; < §foreach 1 < i < n. We construct a
set JS' of 4n jobs from A, consisting of the following three sub-sets of jobs:
X= {X],XZ,-..,X;;},Y = {1,1 )Y'Zt -”:Yn} and Q = {QI:QZ:"-QZn}- We
call the first group of n jobs the X jobs, the second group of n jobs the Y jobs and
the third group of 2 n jobs the partition jobs. The processing times, release times
and due dates of the 47 jobs in JS' are defined as follows; see Figure 1 for the
pattern of release times and due dates of the jobs in JS' .

p(X,') = Q2i-1 — 25,'+ 2A + 25,',1
{ (X)) =Yjmaz 1 +2i-1DA+28 1<i<n—1
d(X;) = r(Xi) + p(Xi) + 26
r(Xa) = Y501 02701+ 2n— 1)A + 26,
d(X,) = r(Xn) + p(X;) +36/2

{ oY) =24

{ P(X5) = 6201 — 28,4+ 2A

(Y =Y a1+2i- DA 1<i<n
d(Y;) = r(Y3) + p(Y3)

P(Q2i1) = @241
{ (Q2i-1) =m(X;)) 1<i<n
d(Q2i-1) = 1(Q2i-1) + p(Q2i-1)

p(Q2:) = az;
{ r(Q2:) = 7(Q2i-1) — 26; 1<i<n
d(Q2:) = 7(Q2;) + p(Q2i)

A job J is said to be an urgent job if d(J) = r(J) + p(J); otherwise it is
called a non-urgent job. For an urgent job to be on-time, it has to be scheduled
continuously from its release time to its due date without any delay. Observe that
in JS', the Y jobs and the partition jobs are urgent jobs and the X jobs are non-
urgent jobs. Foreach 1 < 1 < n, we let GRP(4) = {X;,Y;,Q2i-1,Q2:}. In
the next four lemmas, we will characterize an optimal schedule for JS' on two
machines. First, we will characterize the jobs in GRP(4) in the next lemma.

Lemma 2. Let S be a schedule for JS' on two machines. Foreachl < i < n,
at most three out of the four jobs in GRP(1) can be on-time in S. Furthermore,
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if exactly three jobs in GRP(i) are on-time in S, then one of {Q2, Q2i—1} must
be late.

Proof: As can be seen from Figure 1, only one of the jobs in GRP(4) is avail-
able for processing in the time intervals [ 7(Q2;), 7(Q2;-1)] and {d(Y}), d( X;)].
Thus, only one of the machines can be used to process the jobs in G RP(1) in these
two intervals. Hence, the total processing power that can be used to process the
jobs in GRP(4) is r(Q2i-1) —r(Q2:) + 2(d(Y3) —r(Q2:-1)) +d(X;) —d(Y5)=
2a2i-1 —28;+4A + 28+ 2841 (= 2201 — 26, +4A +36/2 ifi =n). On
the other hand, the total processing time of the jobs in GRP(1) is 2a2i-1 + a2; —
26;+4A+26;4 (=2az9-1 + azn+4A =285, ifi= n). Since a; > 46 for each
1 < k < 2, the total processing time of the jobs in GRP(s) is larger than the
total processing power, and hence it is impossible to have all four jobs in GRP( 1)
to be on-time. If both Q2;_; and Q; are on-time, then Y; must be late since all
three of them are urgent jobs. Furthermore, X; must also be late since it cannot
start until d(Q2;) and d(Q2;) + p(X;) > d(X5). |

Lemma 3. LetS be aschedule for J S' on two machines such that Qy is on-time
in8. Then, there is a schedule S' such that Q, is on-time inS' and NLJ(S) >
NLJ(S").

Proof: By Lemma 2, Q2 can not be on-time in S and therefore both machines
are idle in the time interval [7(Q2),7(Q1)]. Note that at the time r(Q);), the
remaining processing time of Q; is less than the processing time of Q) if we were
to start Q; at the time v( Q3 ). Hence, completing Q2 on time, instead of Q, leads
to a schedule no worse than S. | |

By Lemma 3, we may assume that Q; is always late in any schedule for J.§' on
two machines.

Lemma 4. IfQ2;1,2 < i < m, is on-time in a schedule S, then at least one
machine is idle at any time instant in the time interval [ v(Q3;),7(Q2s-1)] in S.

Proof: Since Q2;_; is on-time in S, Q2; must be late in S, by Lemma 2. There-
fore, only one job, namely X;_, can possibly be scheduled in the time interval
[7(Q2:),7(Q2;-1)] in S. Since there are two machines, at least one machine is
idle in the interval. [ |

Corollary 1. If S is a schedule such that Q; € {Q2i-1,Q2;} is on-time in S
foreach1 < i < nand Q] = Qa, then the lotal idle time in the time interval
[7(Q1),d(Y,)) inS isatleast§ + 2(B — 3 1., p(Q%)). _

Proof: By Lemma 4, the total idle time in the time interval [7(Q1),d(Y3)] in §

is at least
1= ) 26

Q=Q2i-1
15ign
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It is easy to see that [ can be written as I = 2 Y 1., (p(Q2:) — p(Q})). Since

jal

T, p(Q2:) = B +8/2, wehave L= §+2(B — Yy p(Q)). "
Lemma 5. LetS be a schedule for JS' on two machines such that Q} € {Q2i-1,
Q2:} ison-timeinS foreachl < i < nandQj = Q2. Then, wehave NLJ(S) =
n if and only if %, /(Q)) > B.

Proof: IfY%; p(Q%) > B, then wecan constructa schedule S as follows: Sched-
ule all the urgent jobs in {Y;,Y2,...,Y,} U{Q},Q5,...,Q%} nonpreemptively
as soon as they are released, and schedule all the X jobs in ascending order of their
release times so that they can be completed as early as possible. Figure 2 shows
how the jobs in GRP(3) are scheduled in S. By a simple calculation, it is easy
to verify that all the X jobs are completed no later than their due dates. Clearly,
NLJ(S)=n

To complete the proof, we will show that 3"1-, p(Q}) < B implies there is no
schedule S with NLJ(S) = n. We prove this by contradiction, assuming there is
aschedule § with NLJ(S) = n. By Lemma 2, in order to have 3 non-time jobs in
S, X;,Y; and Q! in GRP(i) must be on-time in S. Therefore, the total processing
time of the 3non-time jobs in Sisly =4nA + Y 1 6241 + Y oy P(Q)) — 26,
By Corollary 1, the total idle time in the time interval [v(Q,),d(Y,)] inSisl; =
§+2(B-Y %, (Q})). Inaddition, there are at least 26, and 36/2 idle times in
the time intervals [(Q2), (Q1)] and [d(Y,,)d(X,)], respectively, in S. Thus,
in order to have 37 on-time jobs in S, the total processing power needed before
the last due date d( X,) isatleastls = [} + h +28, +38/2 =4nA + ) 1., a2i1
+ 30, p(Q) +56/2+2(B-Y 1., p(Q))). Since B= Y"1, a1 + §/2, we
havels = 4nA +2 Y 1 a2i-1 +#386+ (B — Y 1, p(Q))). Since I3 > 2d(X,)
=4nA +2 Y%, azi1 + 38, itis impossible to have 3n on-time jobs in S. Thus,
NLJ(S) >n |

Using the above lemmas, we can easily show that the N L.J P(2) problem is
N P-complete.

Theorem 1. The N LJ P(2) problem is N P-complete.

Proof: The N LJ P(2) problem is clearly in N P since a nondeterministic Turing
machine can guess a subset of on-time jobs and verify in polynomial time that the
subset of jobs is feasible. To complete the proof, we reduce the Restricted Even-
Odd Partition problem to the N L J P(2) problem as follows. Let J S = JS'U{ E},
where J S’ is defined at the beginning of the section and E is a newly added job.
Weletp(E) = 26, + 56/2,7(E) = 0 and d(E) = d(X,). Finally, we choose
K 1o be n. Clearly, the reduction can be done in polynomial time.

By Lemma 2, there can be at most 3 n+ 1 on-time jobs in any schedule S for J S
on two machines, and hence NLJ(S) > K. By Lemma 5,if 3 1, p(Q}) < B
in a schedule S, where Q!, 1 < 1 < =, is as defined in Lemma 5, then more than
K jobs will be late in S. On the other hand, if Y1, p(Q;) > B in S, then by
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Corollary 1, there are less than § available processing time in the time interval
[7(Q1),d(Y,)] for the processing of E, and hence E will be late in S. Conse-
quently, more than K jobs will be late in both cases. If } I, p(Q}) = Bin S,
then by Lemma 5, there are 37 on-time jobs in J§'. Furthermore, by Lemma 4
and Corollary 1, there is a total of § available processing time in the time interval
[7(Q1),d(Y3)] for the processing of E. Since there are 26, and 35/2 available
processing times in the time intervals [7(Q2),r(Q1)] and [d(Y,), d(X,)]1, re-
spectively, in S, E can also be completed on time. Thus, NLJ(S) < K if and
only if "2, p(Q}) = B, or equivalently, the instance of the Restricted Even-
Odd Partition problem has a solution if and only if the constructed instance of the
NLJP(2) problem has a solution. [ |

Corollary 2. The NLJ P(m) problem is N P-complete forevery fixedm > 2.

Proof: For m > 3, we simply create a set of 2n additional jobs {Fj,, Fjz,...,
Fj 24} for each additional machine, where 1 < 7 < m—2. The processing times,
release times and due dates of these new jobs are defined as follows.

(Fjzi1)  =1(Q2i),
d(Fj2i-1) = r(Fj2i-1) + p(Fj2i-1),

{ p(Fj2:) =(a2i-1 —2§)/2+2A,

{ P(Fj2i-1) = (a2i-1 +26)/2,

r(Fj2i) = d(Fj2i-1),
d(Fj2:) = 1(Fj2:) + p(Fjai),
wherel1 <i<nand1 < j<m~-2.

Observe that the 2 n(m — 2) new jobs are all urgent jobs and d( Fj2;) = d(Y;)
foreachl < 1 < mnand1 < j < m — 2. We now redefine GRP(i) to be the
setof 4 + 2(m — 2) jobs {X;,Y;,Q2i—1,Q2i, F1 2i-1, F124, 2 2i-1, F2 2y -0
Fn22i-1, Fm-22;} foreach 1 < i < n. Figure 3 shows how the jobs in GRP(%)
are related to one another in terms of release times and due dates. Using the same
argument as given before, we can show that there is a schedule with no more
than z late jobs if and only if the instance A of the Restricted Even-Odd Partition
problem has a solution. |

3. Concluding Remarks

In this paper we have shown that the problem of minimizing the number of late
jobs on m identical machines is N P-hard for every fixed m > 2. To further
delineate the boundary of the complexity of this problem, it will be interesting
to answer the following question: Can the problem be shown to be solvable in
pseudopolynomial time or shown to be strongly N P-hard on a fixed number of
machines ? on an arbitrary number of machines ?
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Figure 1. The Pattern of Release Times and Due Dates of the Jobs in JS'.
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Figure 2. llustrating How to Schedule 3 Jobs in GRP({) on Time.
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