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Abstract. It is proven that foral v = 1 mod 3, v > 7 thereisa 2 — (v,4,2)
design whose blocks have pairwise at most two elements in common. Moreover, for
v=1,4 mod 12 we have shown that these designs can be generated by two copies of
2 —(v,4,1) designs.

1. Introduction.

At — (v, k,)) design is a pair (V, B), where V is a v-set and B is a collec-
tion of (not necessarily distinct) k-subsets of V—called blocks—such that any
t-subset of V is contained in exactly X blocks. It is well known (see Hanani
(2]) that2 — (v, 4, ) designs exist if and only if the usual necessary conditions,
namely

Mv—1) =0 mod 3,
M(v—1)=0mod 12,

are satisfied. The constructions of Hanani yield in several cases designs with re-
peated blocks. This raises the question of existence of 2 — (v, 4, ) designs with-
out repeated blocks, so called simple 2 — (v, 4, ) designs. It has been shown that
such designs exist for all admissible v (see [5]). Since asimple 2 —(v,4, \) design
is balanced according to the 2-subsets of V' only, the 3-subsets of V belonging
to the blocks can have a large range of distinct distributions. This is illustrated in
the complete enumeration of simple 2 — (8,4,3) and 2 — (8,4, 6) designs, see
Gronau and Reimer [1].

In this paper we go a step further and study super-simple 2 — (v, 4, )\) designs,
that is, designs in which the intersection of any two blocks has at most 2 elements.
Note thata 2 — (v, 3,)) design is simple iff it is super-simple. It is easy to see
that every 3 — (v,4, 1) design is a super-simple 2 — (v, 4, %) design.
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Since it is known (see Hanani [3]) that 3 — (v, 4, 1) designs exist if and only
ifv=2 or4 mod 6, we obtain series of super-simple 2 — (v,4,)) designs, but
unfortunately, with increasing \’s.

Let B[4*, A] denote the set of orders v of super-simple 2 — (v,4,)) designs.
Note that 1 € B[4*, )\]. Of special interest are super-simple 2 — (v, 4, )) designs
which are the union of ) copies of 2 — (v, 4, 1) designs. Let B[4*, A« 1] denote
the set of those orders v. Obviously, B[4*,) « 1] C B[4*,)]. Analogously, we
call transversal and group divisible designs super-simple, if their blocks have no
3-subset in common.

Transversal designs T"Dy(m, n), T D(m,n) = T Dy(m,n), pairwise balanced
designs, and group divisible designs are defined as in Hanani [4].

2. Main results.

We start with the following important

Lemma 2.1. For any super-simple 2 — (v, k, )\) design we have
v>2+ (k-2)A

Proof: Fixa2-subset P of V andlet Py, Ps,... , P, denote the blocks containing
P. Since the design is super-simple, the sets P, — PP, — P,... ,P, — P are
mutually disjoint subsets of V — P, that is,

b
Ue-P)

i=1

2
Mk=2=) |PR-P|= <|V-Pl=v-2.

i=1

Particularly for k£ = 4 and applying the necessary conditions (1) we obtain
Lemma 2.2. For any super-simple 2 — (v,4,)) design we have
2A+2if X#2 mod 3,
= { 2M+3 if X=2 mod 3.

Note that the existence of 3 — (2X + 2,4,1) designs (see above) implies
2)M+2 € B[4*,)].

Let Bbe ablockof a2 — (v, k, \) design, D. Then the intersection numbers
n; of D withrespect to B are defined to be the number of blocks of D which meet
B in exactly 1 elements.

By counting the total number of blocks and the occurrences of the elements and
pairs of elements in the block B, the following equations are obtained:

Siom=b  (where b=\ v—1)/k(k—1)
is the total number of blocks);

Ef:o in; = vk (where r = A(v — 1) /(k — 1) is the frequency
of occurrence of each element in the blocks);
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and

> (k3 2)

By imposing the condition that n; = 0 for i > 3, the intersection numbers are
determined uniquely in case of super-simple 2 — (v,4,\) designs, as is noted
below.

Lemma 2.3. The intersection numbers ng,m ... ,nq corresponding to a block
are given by

=1 m=0,n=60)-1), m=%[kv—10)‘+6],

- %[)‘vz _ 17)w + 88X — 36].

The necessary conditions and Lemma 2.2 yield

B(4*,2) C {v:v=1mod 3, v #4},
B[4*,2 x1] C{viv=10r 4 mod 12, v #4}.

The main results of this paper are:
Theorem A. B[4*,2] = {v:v=1mod 3, v #4}.
Theorem B. B(4*,2 x1] = {v:v=10r4 mod 12,v # 4}.

We will prove these theorems in Section 5, and Section 4, respectively.

3. Recursive constructions.
For recursive constructions the following is very useful.

Theorem 3.1. Let m > 3, m # 6. A super-simple TDy(4,m) exists iff
XA € {1,2,...,m}. Forany of these )\ s such a transversal design can be con-

structed as a union of X TD(4,m) designs.

Proof: Using the idea of the proof of Lemma 2.1 it follows that A < m. If
m > 3, m # 6 it is well known that there is a transversal design T' (see [4])
with A = 1, 4 groups of size m each and blocks of size 4. Let G; = {(4,7):
Jj=0,1,...,m—1},i=0,1,2,3, be the four groups. Let 7 be the cyclic per-
mutation (0 12 ... (m—1)). Weapply w to T by saying that « acts exactly on
the 3rd and 4 th group. So, T, aT' , w*T, ... ,™ T are mutually super-simple.
Indeed, assume the contrary, that is assume that 7T and 7T (& < S) have two
blocks S, and Sg, respectively, with |SaNSs| > 3. Then two elements of S,N S
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belong to the groups 1 and 2 or to the groups 3 and 4. Without loss of generality,
we assume the first case, that is,

Sa=((0,0),(1,1),(2,9),(3,d))
Sp=1((0,0),(1,0),(2,¢),(3,)

Since B8 > « our construction yields ¢ # e and d # f, that is,
[SaNSgl=2
contradicting our assumption. 1

Corollary 3.1.1. Let m >3,m #6.
1) If me B(4*,\x1], then4m € B[4*, )\ x1].
2) If m+1€B[4*,)x1],thend4m+ 1 € B[4*, ) x1].
3) If m € B[4*,)], then 4m € B[4*,)].
4) If m+1¢€B[4* )], then4m + 1 € B[4*,)].

Proof: The proof is immediate for 1) and 3). For 2) and 4), the result is obtained
by adjoining a new point, say z, to each of the groups. [ |

Theorem 3.2. Let m >4, m # 6, m # 10 and 0 < n < m be integers. Then
there exists a super-simple group divisible design with X\ = 2 with block size 4,
4 groups of size 3m and one group of size 3n. Such a design can be constructed
as the union of two group divisible designs with the same block and group sizes,
but with X = 1,

Proof: Start with a transversal design T"D(5, m) and ) = 1. Itis well known that
these designs existif m > 4, m # 6, m # 10. Assign to m — n points of the last
group weight 0, to all other points weight 3. Apply the fundamental construction
of Wilson [7] and use as the ingredient designs
(i) for the blocks of size 4 just a super-simple "D, (4, 3) of Theorem 3, which
can be constructed as the union of two T'D(4, 3) and
(ii) for the blocks of size 5 the following two group divisible designs T and
T, with A = 1, block size 4 and 5 groups of size 3 each:

T1 = {((0,0),(1,1),(2,1),(3,0)) mod (5,3)}
T = {((0,0),(1,2),(2,2),(3,0)) mod (5,3)}.

It is easy to check that these two designs have the desired properties. 1

Corollary 3.2.2. Letm >4, m#6, m#10 and0 < n< m.
1) f3m+ 1 € B[4*,2 1] and 3n+ 1 € B[4*,2 x 1], then
12m+ 3n+1 € B(4*,2 %1]
2) If 3m + 1 € B[4%2) and 3n + 1 € B[4* 2], then
12m+ 3n+ 1 € B[4*,2].
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4. Proof of Theorem B.
In this section, we examine B[4*,2 % 1].

Lemma 4.1. {13,16,25,28,37,40} C B[4*,2 *1].

Proof: For these values, we display two 1 — (v,4, 2) designs T} and T3, which
have the property that each block of T1 meets any block of 7> in at most two
points.

v Designs
13 T, = {(0,1,3,0) mod 13},
T» = {(0,1,5,11) mod 13}

16 T = {(1,2,3,4),(1,5,10,14),(1,6,12,13),(1,7,9,15),(1,8,11,16),
(5,6,7,8),(2,6,11,15),(2,5,9,16),(2,8,12,14),(2,7,10,13),
(9,10,11,12),(3,7,12,16),(3,8,10,15),(3,5,11,13),(3,6,9, 14),
(13,14,15,16),(4,8,9,13),(4,7,11,14),(4,6,10,16),(4,5,12,15)}.
T,=T1(041214313869)(152107 11)

25 X =GF(25,r2=2z+2)
Ty = {0,z°,2*,2'),(0, z%,z', z'®) mod 25}
T = {(0’_zo’_zs'_116)’(0,_12’_210’_1.18) mod 25}

28 X = 2(3,2) x GF(9,z* = 2z + 1) U {00}
T = {((0,3%),(0,2%),(0,2?),(0,2°)),
((0,2'),(0,2°),(1,2),(1,27)) mod (3,9)}
U{((O)O)i(l;o)l(zto)aoo) mod (_)9)}
Th=T1(0511141619424 1812822103 13727159126 17)
(2 23 25)(20 21),
where these numbers correspond to the elements as follows
elements | (0,0) | (0,1) [(0,2) [(0, ) [ (0, z+1) | (0, 2+2) [(0,22) ] (0,22+1) | (0,22+2) | 00
nnmber|0|l|2|3|4|5|6|7|8,|28
the elements (1, y) resp. (2,y) correspond to the
(number of (0, y) +9 resp. (number of (0,y)) +18; y € GF(9).

37 Ty = {(0, 1,13,30), (0, 2,23,34),(0,4, 10, 19) mod 37}
T, ={0,1,8,25),(0,2,5, 16),(0,4,22,31) mod 37}

40 T; = {0, 10,20, 30) (one-quarter orbit), (0, 1,26, 32), (0,7, 19, 36),
(0,3,16,38) mod 40}
T2 =T1(0 33 8 12524 17 9 32)(2 19 35 27 11)(3 26 18 10 34)
(4 13, 28 20 36)(7 30)(12 37)(14 31 39 22 23 15)

The check of the super-simple property was done by a computer program. [
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Lemma 4.2, If v=1o0or4 (mod 12) and 49 < v < 205, then v € B[4,
2 x1].

Proof: Forv € {52,64,100, 148} we use Corollary 3.1.1, part 1), that is, v =
4w where w € B[4*,2 x1].

For v € {49,61,73,76,97,109,112,121,124,133,136, 145,157, 160,
169, 172, 181,184, 193, 196,205} we use Corollary 3.2.2 part 1) according
to the following table,

v m n v m n
49 4 0 145 12 0
61 5 0 157 12 4
73 5 4 160 12 5
76 5 5 169 12 8
97 8 0 172 12 9
109 8 4 181 12 12
112 8 5 184 13 9
121 8 8 193 13 12
124 9 L] 196 13 13
133 9 8 205 16 4
136 9 9

This leaves the cases of v = 85 and v = 88: For the case of v = 85, we
use a pairwise balanced design on 22 points which contains one block of size
7 and all other blocks of size 4, which we will denote by PBD[ {4,7*}, 22].
(Such a design is easily constructed by adjoining 7 “new” points to a resolvable
2 —(15,3,1) design.) Delete a point which occurs on the block of size 7 to
obtain a group divisible design, say D, with 5 groups of size 3, and one group of
size 6, that is, group type 336 !, and all blocks of size 4 . Form two group divisible
designs D, and D, of group type 12524 ! by inflating each point by a factor of
4 (in accordance with Wilson’s Fundamental Construction [7]), as in the proof of
Theorem 3.2,

Adjoin a new point w to each group of both D; and D, to obtain D and Dj.
Now let E; and E; be a pair of mutually super-simple 2 — (25,4 ,1) designs.
Replace B , the block of size 25 in D} by a copy of E; on the points of B;. Since
Bj is also in D,, we can replace it by a copy of E, on the same set of points.
Since there is also a pair of mutually super-simple 2 — (13,4, 1) designs, we
can similarly “break up” the blocks of size 13 in D] and Dj, to obtain a pair of
mutually super-simple 2 — (85,4, 1) designs. Therefore, 85 € B[4*,2 % 1].

For v = 88, we proceed as follows. An examination of the 2 — (28,4, 1) de-
sign exhibited in [6, page 7(v)] shows that this design admits two resolution classes
which meet precisely inablock. Let Ry : By, Ba,... ,B;and Ry: By, B3,... ,B}
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be these resolution classes. Adjoin a new point [ oo] to every block of Ry. Then
B U{oo}, B2, Bs,... , By can be viewed as groups of a group divisible design,
say D, with group type 5'46 and blocks of size 4 and 5. Form two group divisi-
ble designs D; and D, of group type 15! 12¢ by inflating each point by a factor
of 3 (in accordance with Wilson’s Fundamental Construction), as in the proof of
Theorem 3.2. Adjoin a new point to the groups in each of D, and D, and sub-
stitute pairs of super-simple designs of sizes 13 and 16 for these blocks as in the
previous case, [ |

‘We now prove the second main theorem.
Theorem B. If v=10r4 mod 12, andif v # 4, then v € B[4*,2 x1].

Proof: If v < 2085, the result follows from Lemma 4.1 and Lemma 4.2. For
v > 205, we proceed as follows.

Letw = 1 or4 mod 12, w > 49, then, by Corollary 3.2.2, part 1, we can
construct the desired designs (at least) of the orders belonging to W(w) = {4(w—
1)+13,4(w—-1)+16,... ,4(w—1)+49}, which are just 7 consecutive numbers
of the type 1 or4 mod 12. Since4(w—1) +49=4 ((w+9) - 1) + 13 and
the maximal gap between two consecutive numbers of type 1 or 4 mod 12 has
length 9, U, 549 W(w) covers all remaining orders. |

5. Proof of Theorem A.

For v = 1 or4 mod 12, Theorem B implies Theorem A. Therefore, it is only
necessary to prove the result for v = 7 or 10 mod 12.

Lemma5.1. Ifv € {7,10,19,22,31,34,43,46,79,82}, thenv € B[4*,2].
Proof: For these values, we use direct constructions for super-simple designs.

v Design

7 {(0,1,2,4) mod 7}

10 Every 2-(10,4,2) design is a solution, since the intersection numbers in-
cludealwaysns = 0, forexample, {((0,0),(0,1),(0,2),(1,4)),((0,0),
(1,0),(1,1),(1,3)).((0,0),(0,2),(1,1),(1,2)) mod (—,5)}

19 {(o0,1,2,6),(0,2,8,11),(0,3,7,12) mod 19}
22 {((0,0),(0,3),(0,9).(0,10)),((0,0),(1,0),(1,2),(1,7),((0,0),
(1,0, (1,9), (1,10)), ((0,0), (0,2), (1,5), (1,8)), ((0,0), (0,3),

(1,4, (1,7), ((0,0), (0,4), (1,3), (1,9), ((0,0), (0,5), (1,2),
(1,6)) mod (—,11)}
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31 {(0,1,2,4),(0,3,8,18), (0,4,13,20), (0,5,12,22), (0,6,12,20)
mod 31}

34 {(e0,(0,0),(0,1), (0,2)) (0,(0,0), (1,1), (2,2)) ((0,0), (1,0),
(2,1, (9,1)) ((0,0), (1,0, (3,1), (0,1)) ((0,0), (2,0), (5,1,
(6,1)) ((0,0),(2,0),(7,1),(9,D) (0,0, (4,0), (8,1, (10, 1))
((0,1), (3,1), (0,2, (6,2)) ((0,1), (4,1), (1,2),(2,2)) ((0,1),
(5,1),(3,2),(4,2) ((0,1),(5,1),(7,2), (10,2)) ((0,1),(10,1),
(4,2), (6,2)) ((6,0), (10,0), (0,2), (3;2)) ((0,0), (5,0, (0,2),
(4,2)) ((2,0), (8,0, (0,2), (4,2)) ((2,0, (10,0, (0,2), (5,2))
((1:0)!(410)9(012)r(9;2)) mod (ll)—)}

43 {(0,1,6,36),(0,1,7,17),(0,2,14,34), (0,2,16,33), (0, 3,8,27),
(0,3,18,22),(0,4,23,32) mod 43}

46 Delete a point from a 2 — (16,4, 1) design to obtain a group divisible
design with five groups of size 3. Use Wilson’s Fundamental Construction
{71 to inflate by a factor of 3 using a super-simple T"D; (4, 3) to obtain
a super-simple GDD with five groups of size 9. To each group G adjoin
a new point oo, and replace G' U {oo} with the blocks of a super-simple
2-(10,4,2)design.T heresultistherequiredsuper — simple2—(46,4,2)
design.

79 {(0,1,23,55),(0,1,24,61),(0,2,31,46),(0,2,43,48),(0,3,7,69),
(0,3,25,72),(0,4,13,62),(0,5,16,43),(0,6,14,59),(0,6,50,65),
(0,8,26,45),(0,9,21,49),(0,12,28,39) mod 79}

82 Proceed as follows. Delete one point from a 2 — (28,4, 1) design to ob-
tain a group divisible design with nine groups of size 3, and blocks of size
4. Use Wilson’s Fundamental Construction [7] to inflate the above group
divisible design by a factor of 3 using a super-simple T"D; (4, 3) to ob-
tain a super-simple GDD with nine groups of size nine. Adjoin a new point
oo to each group G, and replace G U {oo} with the blocks of super-simple
2-(10,4,2) design. The result is the required super-simple 2 —(82,4,2)
design. 1

Lemma5.2. If v € {55,58,67,70,91,94,103,106, 115, 118,127,130,139},
then v € B[4*,2].
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Proof: Employ Corollary 3.2.2 part 2) in accordance with the following table

v m n v m n
55 4 2 106 8 3
58 4 3 115 8 6
67 5 2 118 8 7
70 5 3 127 9 6
91 7 2 130 9 7
94 7 3 139 11 2
103 7 6
This completes the lemma, |

We now prove the first main theorem.
Theorem A. If v=1mod 3,and v # 4, then v € B[4*,2].

Proof: If v < 139, the result follows from Lemma 5.1 and Lemma 5.2. For v >
139, we proceed as follows. Let w = 1 mod 3, w > 34. Then by Corollary
3.2.2, part 2), we can construct the desired designs of the orders belonging to
W(w)={4(w—-1)+7,4(w—1) + 10, ... ,4(w — 1) + 19}, which are just 5
consecutive numbers of type 1 mod 3. Since4(w—1)+19=4((w+3)-1)+7
and the gap between two consecutive numbers of type 1 mod 3 has length 3,
Uws3 Wiw) covers all of the remaining orders. |
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