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1. Introduction

It was an attempt to incorporate the imperfection of human sight into a mathe-
matical model of visual perception that induced E.C. Zeeman to define a tolerance
[190]. He defined it as a reflexive and symmetric binary relation, which gener-
alizes an equivalence by abandoning the transitivity condition. The concept of
tolerance relation is so simple that it has been rediscovered many times, each time
under a different name: compatibility relation, similarity relation ... Therefore
we can expect that many results on tolerance are hidden under different names
and contained in papers on difficult-to-predict subjects. Certainly we can expect
some overlap between tolerance theory and graph theory as a graph can be con-
sidered to be a slight modification of a tolerance. For instance all results about
cliques and maximal cliques in graphs can be considered as a part of tolerance
theory.

In spite of its apparent generality, the various aspects of a tolerance provide a
surprisingly extensive field of investigation. We are inclined to accept the opinion
that a tolerance is not so much a generalization of an equivalence as an equivalence
is a trivialization of a tolerance.

Although this paper is intended to study only some particular properties of tol-
erance, it contains a fairly extensive and self-contained exposition of tolerance
theory. The previous expositions were written as a background for particular prob-
lems (automata theory [3, 4], nontrivial topology on discrete structures [173],
finite tolerance structures [188], linguistics [169], generalization of congruence
[28, 1571) which are far from our interests. Only a few of them (mostly algebraic)
were published in readily available, strictly mathematical literature. Moreover al-
though we use the conceptual base of these expositions, ours differs essentially
from them in that it is built on the elements of dependence system theory.

We will begin with some basic notions and notation of binary relation algebras.
This will make the statements of our exposition much simpler. We will not use the
more advanced theory of relation algebras. Most of the proofs are straightforward,
and will be omitted.

Section 3 provides the preliminaries of dependence systems to the extent nec-
essary for a description of tolerance relations. Only the rudiments of the theory
are given, again without proofs.
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The fourth section contains a description of a tolerance relation and a discussion
of preclasses, classes and bases of a tolerance. We correct a major error in one of
the earlier expositions.

In Section 5 we consider a weakening of a tolerance relation in which reflexivity
is replaced by a more general condition. Then in the sixth section we compare the
notions of weak tolerance and abstract orthogonality relation. They turn out to be
complementary relations.

Section 7 contains various constructions of tolerance relations and results char-
acterizing when a given tolerance may arise via a particular construction.

Finally we provide a bibliography of tolerance relations, probably the most
comprehensive of all available, but still far from complete.

2, Basic facts about binary relation algebras

Definition 2.1: LetR(S) be the set of all binary relations on a set S, i.e. the power
set of the Cartesian square of the set S. Then R(S) can be equipped with an
algebraic structre: (R(S),V,A,0,1,%0,E,*) of type (2,2,0,0,1,2,0,1)
(the numbers in the brackets give the “arities” of the algebra operations). The
first five operations define the Boolean algebra of set operations on the subsets
of S x S, while the last three define an involutorial monoid structure, where the
binary operation is the composition of relations, the nullary operation E is the
equality relation on S, the unity for composition, and the unary operation is the
converse operation for relations, playing the role of an involution. For all relations
R,T e R(S):

() RvT = {(a,b): (a,b) € Ror(a,b) € T},

(i) RAT = {(a,d): {(a,b) € Rand {a,b) € T},

i) R = {{a,b):{a,b) & R},

(iv) 1={(a,b):a € Sandbe S},

(v) 0=9,

(vi) RT=RoT = {(a,b):3c€ S:(a,c) € Rand{c,b) € T},
(vii) E= {{a,b):a=0},
(viii) R*= {(a,b): (b,a) € R}.
As a Boolean algebra, R(S) is partially ordered by inclusion ie. R < T iff
Va,b € S, (a,b) € R = {(a,b) € T. We will use the symbol R(S) both for
the set of all binary relations and for the relation algebra defined on this set if no
confusion is likely.

Proposition 2.2: The reduct of algebra R(S) to the last three operations is an
ordered monoid with respect to the ordering of relations by inclusion. Moreover
it is a residuated lattice-monoid: VR, T € R(S), 3V, W € R(S) such that

(i) YU ER(S),TUS RIf UL V,and
i) YUER(S),UT<RIfULW.
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Indeed V and W are given by:
V=R "T={(a,b):Vz €S, (z,8) €T = (z,b) € R} = (T* R,
W=R.T={{a,b):Vz €S, (b,z) €T = (a,2) € R} = (R°T")".

Proposition 2.3: The converse operation in R(S) has the following properties:
() R*=R;
(i) (RT)*=T"R"

(iii) (RVT)*=R*VT*;

@iv) (RAT)*=R*AT™;
(V) B =R

(vi) E= E*.

Proposition 2.4: The standard properties of relations can be expressed in terms of
relation algebras in the following way: VR € R(S),
(i) Rissymmetric{f R*= R,
(ii) Ris transitive if R < R,
(iii) R isantisymmetriciff RAR*< E,
(iv) Risreflexive iff E < R,
(v) Risaquasiorder iff E < Rand R*> <R,
(vi) Risapartial orderiff RAR*= Eand R < R,
(vii) R is alinear partial order iff RA R* = E and R? < Rand R? < E°,
(viii) R isan equivalence if E< R = R*=R,
(ix) Risafunctioniff R*R< Eand F < RR*,
(x) Ris asurjective function iff R*R < E and E < RR"*,
(xi) Ris an injective function iff R*R < Eand FE = RR”,
(xii) R is a bijective function iff R*R= RR*= E,
(xiii) R is atolerancerelation iff E < R = R*.

The following proposition gives examples of properties which characterize the
operations in a relation algebra R(S), but in some cases the statements remain
true in much more general structures.

Proposition 2.5: VR, T,U € R(S):

(i) R<RR'R,

(i) (RF.TYT".U)LR.U,

(iii) (R. " T)(U.'R)<U.'T,

@iv) (R".T)*=R*.'T*,

&) (R.'T)*=R"T*,

(vij EXRiff R.R<Riff R"R<R,
(vii) R<Tiff EXT .Riff EXT.'R,
(i) R<T=>(R.T)>)<RT,

(ix) R<T=(R.T)>)<R.T,

x) (R.R) (R .R)=R .R,
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Definition 2.6: Let B € R(S). Define: Va € S, R(a) = {z € S : {a,z) € R).
Thus (a,b) € R, aRb, b € R(a), a € R*(b) are equivalent.

Proposition 2.7: The operations on relations in R(S) can be equivalently defined
in the following way: Va,b € S:

(i) a(RAT)bIff be R(a) NT(a),
@ii) a(RVI)biff be R(a) UT(a),
@iii) aR°biff b€ [R(a)I",

(iv) oRTbiff R(a) NT*(d) #90,

(v) o(R.T)biff T(b) C R(a),

(vi) a(R-T)biff T*(a) C R*(D).

Definition 2.8: The left (resp. right) domain of relation R € R(S) is the set:
D(R) ={z € S: R(z) # 0} (resp. D*(R) = {z € S: R*(z) # 0}).

Definition 2.9: A relational structure (S, R) is a set S together with a binary re-
lation R on S. When R is a tolerance relation, (S, R) is called a tolerance space.

Definition 2.10: Given two relational structures (S, R;) and (S, R;,) a rela-
tional structure homomorphismisamap ¢ : S} — S suchthatVz,y € S,
zR1y = ¢(z) R2¢(y). If in addition, ¢ is a bijection and ¢! is also a relational
structure homomorphism, it is called a relational structure isomorphism. If Ry and
R, are tolerances, ¢ is called a tolerance homomorphism (resp. isomorphism).

Definition2.11 [R9]: Givena relational structure (S, R), there is an induced equiv-
alence relation N on S defined by: Vx,y € S, zNy iff R(z) = R(y) and
R*(z) = R*(y). Foreach z € S, let [z] denote the equivalence class of z;
let S/N denote the set of equivalence classes. The quotient relational structure
(S/N, R) is defined by: V[z),[y] € S/N, [z)Rly] iff zRy. Note that R is
well defined. When R is a tolerance relation on S, the quotient relational struc-
ture will be called the reduced tolerance space. If (Si,R;) and {S2,R,) are
relational structures and ¢ : §; — S is a relational structure homomorphism,
the relational structure induced by $ is (S1, Ry,) where Vz,y € Sy, zRyy iff
$(x)Ra¢(y). Clearly, R < Ry. Moreover, if R, is a tolerance relation (resp.
equivalence relation), then Ry is also a tolerance relation (resp. equivalence rela-
tion); in this case, ¢ is a tolerance homomorphism of (S1, R3) — (S2, R2.)
Proposition 2.12: Let (S}, R1) and (S,, Ry) be relational structures and

¢ : 81 — S, asurjective relational structure homomorphism. Let (S, R;) be
the relational structure induced by ¢ and Ny the equivalence relation induced by
R. Define ¢ : (SI/Néo Ré) - (SZ/NZ) RZ) by ¢([$]N‘) = [¢(x)]Nz' Then &
is a well-defined relational isomorphism.

Proof: First we verify that ¢ is well-defined. Suppose zNsy. Then Ry(z)
Ry(y) and Ry(z) = R3(y). Since ¢ is surjective, this implies Rz (¢(z))
R2(4(y)) and R3(¢(x)) = R3(¢(v)), ie., ¢(z) N2g(y).
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Next, suppose [zln,R¢[y]~, Then zRyy, hence ¢(z) R2¢(y) and
(¢(z)In, R2[$(y)1n,. Thus ¢ is a relational structure homomorphism. Triv-
ially, since ¢ is surjective, § is also. If $([zln,) = ¢([ylw,). then [$(z)1n, =
[¢(9)],, ie., R2($(2)) = Ra(é(y)) and Rq(¢(z)) = Ra(rﬁ(y)) This im-
plies Rg(z) = Ry(y) and R‘(z) = (y) Hence ¢ is bijective. Trivially, ¢!
is also a relational structure homomorplusm

3. Basic concepts of dependence system theory

There are some similarities in the formal structures of different mathematical the-
ories such as topology, combinatorics, logical consequence theory, general alge-
bra. In all these theories we find, as one of the fundamental notions, some closure
operation, which in each case differs in its secondary properties and which some-
times goes by a different name. But no matter what is its name: closure, matroid,
consequence operator, generating operator of an algebra, a closure operator can
be defined as a mapping f of the power set of some set S into itself satisfying the
three fundamental conditions: foreach A,B C S:

(i) A C f(A) (f is extensive),

(i) ACB= f(A) C f(B) (fismonotone),
(i) fLf(A)] = f(A) (fistransitive).
Any structure defined by the first and second conditions alone is called a depen-
dence system. In that case, f is called an operator.

It is a well-known fact that in topology there is a bijective correspondence be-
tween transitive closure operators on a given set S and Moore families (families of
subsets of S with S as identity element and closed under arbitrary intersections).
The Moore family associated with a given closure operator f is just the set of f-
closed subsets of S : f-Cl= {A C S : A= f(A)}. Conversely, given a Moore
family, for each A C S, f(A) is the intersection of all members of this family
containing A as a subset.

In what follows, | A| denotes the cardinality of set A, |A] < w means that A is
of a finite cardinality, A° = S\ A where S is the universe of the discourse set.

Let f be an operator on a set. We define some distinctive classes of subsets of
S:

i AefInd C2%5if Vz € A, = & f(A\{z)}) and we say: A is f-
independent or simply independent if no confusion is likely.
(i) A € f-Gen C 25iff f(A) = S and we call A an f-generating set or

simply a generating set.

(iii) A€ f-ClC25if f(A) = Aandwecall Aan f-closed set or simply a
closed set.

(iv) A € f-Base C 25 iff A € f-IndNf-Gen and we call A an f-base or
simply a base.
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Suppose M C S. Define the restriction of an operator f to M by: VA C M,
fu(A) = f(A) N M. Certainly fy is an operator. Moreover if f(M) = M,
thenVA C M, fu(A) = f(A). Therefore for closed M : fy-Cl=f-CIN2¥,
fm-Gen = {A C M : f(A) = M}, fy-Ind = f-Ind N 2¥, and fyy-Base =
fm-IndNfy-Gen={AC M :Vz €A, z¢ f(A\{z}) and f(4) = M}.

Every f -Base (i.e. element of f -Base) is a maximal f-independent set (i.e. a
maximal element of f -Ind with respect to inclusion), and also it is a minimal f-
generating set (i.e. a minimal element of f -Gen with respect to inclusion). How-
ever, in general it is not true that a maximal f-independent set is an f -Base, or
that a minimal f-generating set is a base.

4. Tolerance relations

Throughout this section, if not explicitly stated otherwise, T' denotes a tolerance
relation, i.e. E < T = T*. Originally the reflexivity and symmetry properties of
a tolerance relation were abstracted from the simple example of points in the Eu-
clidean plane which are less then e apart (e > 0). This example can be generalized
to any metric space (M,d) : Vz,y € M, zTy if d(z,y) < e. This explains the
name tolerance borrowed from the vocabulary of engineering, where it is used to
express the inaccuracy of measurement or a negligible difference in size.

Equivalence relations (i.e. relations satisfying E < R? = R* = R) form the
most familiar class of tolerance relations, distinguished by the transitivity property
(R? < R). There are some well-known alternative ways to define an equivalence
relation R on a set S. One is based on the fact that there is a bijective correspon-
dence between the set of partitions of the set S and the set of all equivalence
relations on S. Another correspondence (in this case surjective only) connects
equivalence relations on S with functions with domain S and range an arbitrary
set X. For such a function ¢ : S — X, define zRy iff ¢(z) = ¢(y). Analogs
for tolerance relations will be explored later in this section.

Definition4.1: A set L C § is a preclass of tolerance T (T-compatibility class in
[176))if Vz,y € S, {z,y} C L = zTy. The set of all preclasses of T will be
written: £(T’).

It is an immediate consequence of the Definition thatV z,y € S, zTy iff 3L €
L(T),{z,y} C L.

Definition 4.2.: A maximal preclass of tolerance T is called a class of T' (clique
induced by T in [176]). The set of all classes of T will be written (T .

By astraightforward application of Zorn’s Lemma, every preclass of a tolerance
T is contained in some class of T. ClearlyVz,y € S, Ty iff 3K € K(T),
{z,y} C K. We also note that the family of all classes (resp. preclasses) forms a
(not necessarily disjoint) covering of S. The main difference between equivalence
classes for an equivalence relation and tolerance classes for a tolerance relation is
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that the former form a pairwise disjoint covering of S. Also note that the set £(T)
(resp. K(T)) of all preclasses (resp. classes) of T' determines T" uniquely.
Proposition 4.3: Let R, T be binary relations on aset S and Ty = RR*. Then:
(i) Ty is a symmetric relation,
(i) Vz,y € 8,sTry iff R(z) NR(y)#9,
(iii) Tp is a tolerance iff R is everywhere defined (E < RR*),
(iv) Risafunction(E < RR*and R*R < E) = Tj is an equivalence relation,
but the reverse implication is not necessarily true,
(v) T is an equivalence relation iff 3R € R(S),T = Tg and E < RR* and
R*R < E (i.e.R is a function),
(vi) Let E < T. ThenT is an equivalence relation iff T = Tr.

Proof: i)-iii) and vi) are obvious.

For iv) we have: R*R < E = T3 = RR'RR' < RR* = Ty. The fol-
lowing shows that the reverse implication is false. Let S = {a,b,c,d}, T =
E U {{a,b), (b,a), {c,d), {(d,c)}. Then for R = {{a,a), {(a,d), {b,a), {c,c)
(d,c), (c,d)} wehave E < T = T* < T*, T = Tp = RR*,but Risnota
function.

(<) of v) follows from iv).

For (=), by the Axiom of Choice we can define a selector function ¢ : K(T") —

S, such that ¢(K) € K. Now define R = {(z,y) : 3K € K(T),z € K and
y=¢(K)}. ThenT = Ty and R is a function.
Remark 4.4: Proposition 4.3 provides us with a rich source of examples of toler-
ances: any everywhere defined relation R defines atolerance T’ = RR*. However,
different relations can define the same tolerance. For example, let S = {a, b, c},
T = EU {{(a,c), {c,a), {b,c), {c,b)}, R = {{c,a), {c,}), {a,a), (b,B)}, U =
{{a,b), {b,c), {c,}), (c,c)}. ThenT = RR* =UU"*,but R# U.

The next natural question is: what properties of a family £ of subsets of S
ensure that £ is L(T) for some tolerance relation T'? As noted above, £ must be
acovering of S.

Definition 4.5 [176]: Let A be a family of subsets of S. Then B C S is induced
byAifvVz,ye BIA€ A, {z,y} C A.
Definition 4.6 [176]: Let A be a family of subsets of S. We say A is complete if
VB C S, (Bisinduced by A) = (B € A). The completion of A is defined to be
A={BCS: Bisinduced by A}.
Proposition 4.7: Completion of families of subsets of a set S, regarded as an op-
eration A — A, is a transitive closure operation on the power set of S; in other
words, VA C 25:

i) ACA, _

(i) ACB=ACBE,
(i) A= A.
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Proof: i) and ii) are obvious.

jii) SupposeIA € A, A ¢ A,ie.3z,y € A,VBC S,{z,y}JCB=>B¢A.
ButVz,y € 4,3C € A4, {z,y} C C. This implies 3B € A, {z,y} C B,
contradiction.

The following two definitions follow the concepts of Section 3, when S is re-
placed by 25 and f(A) = A.

Definition 4.8: A family A of subsets of S is independent (A € Ind) ifVA € A,
A¢gA\{4},ie.VA€A,3{z,y} CAVB€EA,{z,y})CB=>B=A.

Definition4.9: A family A C 2 is generating for acomplete family 8= B C 25
ifA=RB.

Proposition 4.10: A family £ C 2 is the set L(T') of all preclasses of some
tolerance relation T" iff

(i) Lisacovering, and
(ii) £= Lie. L iscomplete.

Proof: =) It is easily verified that L(T') is a covering of S. Let B C S and
Vz,y€ B,3A€ L(T),{z,y} C A ThenVz,y € B,zTy,i.e. B € L(T) and
L(T) is complete.

<) Let £ C 25 be a complete covering of S. Define a relation T' by: Vz,y €
S, 2Ty ifJA € L, {z,y} C A. L is acovering of S, hence T is reflexive
ie. E < T. Symmetry is obvious, so T is a tolerance relation. Now we have to
show £ = L(T). By the definition of T" we have L C L(T'), so we need to show
the reverse inclusion only. Suppose A € L(T'). ThenVz,y € A, zTy. By the
Definition of T,3B € L, {z,y} C B,hence Ac L= L.

Corollary 4.11 (for S countable [176]). There is a bijective correspondence be-
tween the set of all complete coverings of aset S (i.e. all closed families that cover
S) and the set of all tolerance relations on S.

Corollary 4.12. Forevery covering A of S there exists a unique tolerance relation
T on S such that:

() YVACS,AcAiff Vz,y € A, zTy,
(i) Yz,y € S,zTyiff JA€ A, {z,y} C A.

Remark 4.13: In the following we will write f(A) for the closure A. According
to the content of Section 3, we can consider a restriction of the closure f to every
closed A = f(A). By Proposition 4.10 there is a unique corresponding tolerance
T such that A = L(T), therefore the restriction can be written fp. Certainly
VBC A, fr(B) = f(BYNA = f(B). If A =25 thenVB C 25, fr(B) =
f(B)and T = S x S, the full relation on S. If A = {{z} : z € S}, then
T=EandVBC A: fg(B) = B. To avoid a confusion observe that although
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VB C A = f(A), fr(B) = f(B), the domain of fr is L(T) = A, while the
domain of f is 25,

Consider the families: fy-Cl = £-ClN 257, frdnd = f-Ind N 26T,
fr-Gen = {BC L(T) : f(B) = L(T)}.fr-Base = {BC L(T) : VB € B,
B ¢ f(B\{B}) and f(B) = L(T)}. For elements of fr -Ind and fy -Gen we can
apply simply Definition 4.8 and 4.9 respectively to subsets of £L(T'). In the case
of the family of bases we can formulate the Definition the following way:

Definition 4.14: By a base of tolerance T" we mean any element of fr-Base,
i.e. any family of preclasses B which satisfies the conditions:

() Vz,y€ S, zTyiff 3B € B,{=z,y} C B,
(i) vBeB,3{z,y} CB,VAEB,{z,y} CA=>A=B.

Remark 4.15: As was mentioned in Section 3, in a dependence system every base
is a maximal, independent subset and also a minimal generating subset. In par-
ticular, given a tolerance T, any base B is simultaneously a maximal independent
subset and a minimal generating subset of L(T"). This can explain the excep-
tional role played by bases. They are minimal coverings defining a given toler-
ance T'. Every tolerance T has a base: e.g. {{z,y} C S : zTyand (z # y if
Jw,z € §: zTwand yTzand z # w and z # y) } is one. However, this base
can have cardinality greater than that of XC(T'), the set of all classes of T". So we
can expect that those bases which consist of classes (not preclasses only) have rel-
atively small cardinalities. Certainly XC(T") is a covering that generates T. When

S is finite and n = | S|, Sperner’s Lemma shows that |C(T") | < ( [;] ) .

Definition 4.16: A base B of tolerance T is a class base if B C K(T).

Proposition4.17: Let T be a tolerance on a set S such that X(T') is finite. Then T
has a class base. Moreover, if A is any generating family for T, then there exists
a class base B(T) satisfying |B(T)| < |A|.

Proof: In a finite number of steps we can reduce the generating family X(T") toa
class base, in each step removing one class and checking if the remaining family
is still generating. Now let A C L(T') be any generating family for T'. For each
A € A, by the Axiom of Choice, we may select a fixed class K4 in X(T) such
that A C K4. LetK(A) = {K e K(T) : 3A€ A, K = K4}. Then K(A) is
a finite generating family for T°, so removing classes one by one from X(.A), we
obtain a class base B(T') such that |B(T)| < |C(A)| = |A|.

Remark 4.18: Two (class) bases of a tolerance T" can have different cardinalities,
as shown by the following modification of an example from {169]): Let S =
{1,2,3,4,6,8,9,12,16,18,24,27,36,54,81} and T = U UU* U E, where
U is defined by: Vz,y € S : zUy iff (y = 2z 0ory = 3z ory = (3/2)z).
Then: K(T) = {{z,9,2} CS:z € Sandy =2z € Sandz = 3z €
S}u{{z,9,2} CS:z2€Sandy=(3/2)z € Sand z = 3z € S}. There
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are exactly two bases: B; = {z,y,z2} C S:z € Sandy = 2z € S and
2=3z€ 8}, By ={{z,y,2}) CS:z€Sandy=2zxc Sandz=3z€ S
andz #6}U{{z,9,2} CS:z€{4,6,12}andy = (3/2)z and z = 3z}.
|B1] = 10 and |B;| = 12.

Example 4.19: Inone of the most extensive expositions [169], it is claimed (with-
out proof) that for every tolerance, even if its set of classes is infinite, there exists
aclass base (called a base in the original terminology of [169]). We will show that
this statement is false. There exists a tolerance (on an infinite set) which does not
have a class base. First, let us refer to another rich source of examples of tolerance
relations. For any partially ordered set (S, < ), define a comparability relation T
by:Vz,y € §,2Tyifz < yory < z,ie, T = (L) U(L)*. This relation
is certainly reflexive and symmetric. Not every tolerance can be represented this
way (the conditions for this can be inferred from those given in [78] for a slightly
modified structure); nevertheless, there are many interesting examples. For acom-
parability relation T', L(T) is the set of all chains in the poset (S, < ), while (T
is the set of all maximal chains.

We shall now describe a tolerance relation on the set of natural numbers N
which has no class base. Leta,b € N,andae = qiq2 ...qc and b = 17y ... 7,
be factorizations of a and b into primes. We will always assume without loss of
generality that ) < g2 < ... < gk, Tesp. 11 £ 12 < ... < T Define a < b if
a=bor3dne N,3p,...,p, primes in N, each p; equal to or greater than g,
(the greatest factor of a) so that b = ap; p; ... p,. For illustration we can describe
the ordering by its covering relation: a natural number with the prime factorization
9192 .- gk is covered by an infinite number of elements of the form q,q; ...q:p,
where p is prime and for every i, ¢; < p.

Now let T be the comparability relation for <, i.e. T = (&) U (L)*. Then
K(T) contains all maximal chains of (N, <.) As in every tolerance, C(T") gen-
erates T". Now suppose that A C K(T') is a class base. Pick any A € A. Then
by independence of A there exists a pair a, b, such that {a,5} C AandV B € A,
{a,b} C B = B = A. W.log. assume a < b (at least one of the inequalities
a K borb < aistrue as A is generating for T"). Pick two distinct primes g1, g2
greater than the largest prime factor of b. Then, using the fact that A is gener-
ating, pick A; € A containing {a, bg: } and A; € A containing {a, g2 }. Then
{a,b} C A1NA; and A; # A3, so one of them is different from A, contradiction.
Definition 4.20: Let T be a tolerance on a set S. We define the dimension of T
tobedim T = inf {|B(T)| : B(T) is a base of T'}. Certainly dim T < |S x S,
and for an infinite set T, dim T < |S].

Proposition 4.21: Let A be a generating family for T and dim T < w. Then
]A| =dim T = A is a base of T'.

Proof: Suppose A is not a base. Since A is generating, it is not independent, i.e.,
JA € A, Vz,y € A, 3 A, € A\{A}, {z,y} C A;. Butthen, A\{A}isa
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generating family with cardinality less than dim 7", contradiction.

Remark 4.22: Note that a generating family of cardinality dim T" need not be
a class base. Indeed, let S = {2,3,6,10,15} and let T be defined by zTy
if  and y are NOT relatively prime. Then dimT = 3, but the family B =
{{2,6,10},{3,6,15},{10,15}} is not a class base, because {10, 15} is not
aclass.

Recall from Proposition 4.10 that a family A C 25 is £(T") for some tolerance
T if A is a covering of S and it is closed with respect to the closure f. We now
characterize a family of tolerance classes.

Proposition 4.23 [188]: Let A bea covering of aset S. Then A C X(T') for some
tolerance Ton S iff VA€ A,YAo CA,ACU{BC S:B€ A} =>nN{BC
S:BeAo}CA

Proof: <) LetT be the tolerance induced by A. Thus, f(.A) = L(T"). Suppose
A € A\K(T). Then A € L(T),s03z € S\A,Vy € A, zTy,iedz € S\A,
Vy € A,3By € A, {z,y} C By,. Therefore A C U{B, € A : y € A} but
z € N{By € A : y € A}\A, contradiction. Hence A C K(T).

=) Suppose A € A,Ap C Aand A CU{B C S : B € Ao}, but there
issomez € N{B C S: B € AJ\A. ThenVy € A,zTyandz ¢ A, so
A ¢ K(T) as A is not a maximal preclass, contradiction.

Proposition 4.24: Let T be a tolerance on S, A C K(T) and f(A) = L(T).
ThenA=K(T) iff VAC S,(Vz,ye Awithz #y,AB € A,{z,y} C B) >
(3BeA,ACB).
Proof: =) IfVz,y € Awithz # y,3B € A, {z,y} C B, then A € L(T).
HencedB e K(T)=A,ACB.

<) Suppose 3K € K(T)\A. ThenVz,y € K withz # y,3A € L(T),
{z,y} C A hence,3B € A, {z,y} C B. Thisimplies that 3B € A C K(T),
K C B, contradiction.
Corollary 4.25 [41]: Let A be a covering of a set S. Then A = K(T') for some
tolerance T iff

(i) VA€ A, VAo C A, (A CUAp) = (NAg C A),and

(i) VAC S,(Vz,ye Awithz # y,IB € A, {z,y} C B) = (3B €

A, AC B).

This gives a bijective correspondence between coverings of S satisfying i) and ii)
and tolerances on S.

Example 4.26: Proposition 4.24 is not true if we do not assume f(A) = L(T),
i.e. if A does not generate T'. For again, let S = {2,3,5,6,10,15}, and 2Ty
iff = and y are not relatively prime and A = {{5,10,15},{3,6,15}}. Then
A CK(T), A +# K(T) but the condition from Proposmon 4.24 is satisfied. This
is possible because f(A) # L(T).
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The following result is due to Gilmore (see [9]). It was originally phrased in the
language of hypergraphs. A hypergraph consists of a nonempty set S together with
acovering A of nonempty sets. It should be pointed out that different hypergraphs
may give rise to the same tolerance relation.

Proposition 4.27: Let S be a finite set. Foranyn € N, let A;,... , A, be subsets
of S; let A; denote [ A;. For a tolerance T induced by a covering A of S, the
L
following are equivarénl:
(i) X(T) C A. N .
(i) 3n>3,VAy,... ,An€A,3DEA A U...UA, CD.
(i) Yn>3,Y4;,..., 4, €A,3D€ A, A U...UA, CD.

Proof: i)=>iii) Letn > 3 and Ay,...,A, € A. Then A;U...UA, isapreclass,
hence is contained in some class, D.

iii) = ii) Trivially.

ii) => i) We will show that each preclass of T is contained in some member
of A. Let C be a preclass. If |C| < 2, this follows from the Definition of the
tolerance induced by A. Assume that [C] = k£ > 3 and that every preclass of
smaller cardinality is contained in some member of A. Let z;, 15,23 € C and
C: = C\{z;}. By the induction hypothesis, there exists a set A; € A such that
C; C A;. By the given condition, there exists D € A suchthatC = (C; N C) U
(G2 NGHU(C NG C(AI N A2)U(A2 N A3)U(4As N A) CD.
Corollary 4.28: Let T be the tolerance induced by .A, a covering of a finite set S.
Then A = K(T) iff

(i) VA€EAVACAACUBCS:BeA}=>nN{BCS:Be

Ao} C A
(i) VA,B,CeA,ADeA,(ANBYU(BNC)U(CNA) CD.

Now we can ask about the analog for tolerance relations of the definition of
equivalence via functions.

Remark 4.29: If we consider binary relations between a st S and some other set
M (i.e. certain binary relations in the extended set SU M), then for every tolerance
TonS,thereisaset M andarelation RC S x M suchthatVz,y € S, Ty iff
R(z) N R(y) # 0. Indeed, if M = K(T) and R is defined by: zRK iff = € K,
thenVz,y € S, zTy iff R(z) N R(y) # 9. Recall that every function with
domain S defines some equivalence relation on S, and the conditions defining a
function distinguish equivalences within the class of tolerances. Indeed, the rela-
tion R described above is a function iff T is an equivalence relation. However, for
every lolerance T on S, we can define a function¢ : § - A= {K: K C K(T)},
whereVz € S, ¢(z) = {K € K(T) : z € K}. Since ¢ is a function defined
on S, it defines an equivalence relation: Ny iff ¢(x) = ¢(y). Equivalently,
zNyiff (VK e K(T),z € K iff y € K) iff T(z) = T(y). Note that this is
consistent with Definition 2.11.
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Definition 4.30: Given a tolerance relation T on a set S, the equivalence relation
N(T) (if noconfusion is likely we will write just N'), definedby: zNy iff T(x) =
T(y) is called the nuclear equivalence of tolerance T'. Its equivalence classes are
called nuclei of the tolerance T'. If all nuclei of a given tolerance T are one-
element subsets, we say T is non-nuclear: (Nuclei are called by some authors
kernels or cores, but both these terms already have a different established meaning
in mathematics). N(T") denotes the family of all nuclei of T'.

Proposition 4.31: T is an equivalence relation iff N =T.

Proposition 4.32: If K(T') in Remark 4.29 is replaced by any generating family
A of classes for T, and A denotes the power set of A, then the equivalence relation
induced by ¢ : S — A, where ¢(z) = {A € A : z € A} is identical with N(T).
In particular, A can be any class base of T'.

Proposition 4.33: Let T be a tolerance on a set S, A C K(T) be a generating
family for T. ThenVB C S, Bisanucleusof T iff AIBC A, B=N{M CS:
M € Bor M° € A\B}.

Proof: =») Suppose B is a nucleus, i.e. i) Vz,y € B, T(x) = T(y) and ii)
Vz ¢ B,Yz € B,T(z) # T(z). LetB= {M € A: B C M}. Wemust
showthat B=N{M C § : M € Bor M° € A\B}. Certainly, B C NB. B
is a nucleus, soif D € Aand BN D # §, then B C D, hence B C - n{M C
S : M*¢ € A\B}. Therefore, B C N"{M C S: M € Bor M° € A\B}. Now
supposez € {M C S: M € Bor M° € A\B}. Letbec B.Foreach A € A,
if b € A, then by definition of a nucleus, B C A. Hence A € Bandz € A. If
bg A then BN A =0,s0B C A°and A = A~ € A\B; thus z € A°. Hence,
VAeA,z€ Aiff be A,ie,zNb,soz € B.

«) Giventhat BC Aand B=nN{M C S: M € Bor M° € A\B}, then for
each z,y € B we have zT'z iff yT'z, since z and y belong to exactly the same
clements of the generating family A.

Applying Proposition 4.33 to the special cases when A = K(T) or A is some
class base B(T), we get:

Corollary 4.34 [169]: B is a nucleus for tolerance T iff 3B C K(T), B =
N{KCS:KeBorK° e K(T\B}iff 3A C B(T),B = n{K cS:
K e Aor K¢ € B(T)\A}.

Corollary 4.35: Let N(T) be the family of all nuclei of a tolerance T" and let
B(T) be any class base for T. Then [N(T)| < |2BD)|.

Corollary 4.36 [169]: If T has a finite class base, then also the family of all toler-
ance classes of T is finite. '

Remark 4.37: In the process of generalizing equivalence to tolerance, the notion
of equivalence class splits into two distinct notions: tolerance class and nucleus.

We now explore the relationships between arbitrary tolerance spaces, non-nuclear
tolerance spaces and equivalence relations. First, we will show that an arbitrary

135



tolerance space (S, T') can be constructed in a natural way from a non-nuclear
tolerance space and an equivalence relation on S. By the convention adopted in
Def. 4.30, given a tolerance space (S, T), the tolerance space, (S/N, T'), reduced
by the nuclear equivalence N' may be denoted by (M(T),T). Let (S, T) be a tol-
erance space and (N(T") ,’.f') the reduced tolerance space. Then Ty = T, where
¢ : S — N(T) is defined by ¢(z) = N(z) = {y € § : zNy}. Clearly,
¢ is a tolerance homomorphism from (S, T) to a non-nuclear tolerance space.
Proposition 2.12 states that a surjective tolerance homomorphism between tol-
erance spaces induces a tolerance isomorphism between their reduced tolerance
spaces. The latter are, of course, non-nuclear.

Example 4.38: In Proposition 4.3, we considered tolerances constructed by com-
posing an everywhere defined relation B (E < RR*) with its converse: Tg =
RR*. The following example shows that not every tolerance arises this way. Let
§ = {a,b,c,d, e} and let T be the tolerance defined by the following graph (zT'y
iff ==y orthereis an edge joining z and y).

/c.\

.\a. d
e

Suppose T' = RR*. Then zTy iff R(z) N R(y) # @. Therefore: R(b) N R(d) =
@, also R(a), R(c), R(e) are mutually disjoint, but R(b) intersects R(a), R(c)
and R(e); and R(d) intersects R(a), R(c),and R(e). Hence we need at least six
different elements: z; € R(b) N R(a), z2 € R(b) N R(c), z3 € R(b) N R(e),
z4 € R(d) N R(a),zs € R(d) N R(c), zs € R(d) N R(e). But the set S has
only 5 elements, contradiction.
Proposition 4.39: Let T be a tolerance on a set S, B C 25, f(B) = L(T) and
[Bl < |S|. Let¢ : B — S be any fixed injective function. Define a relation
RCSxSby:Ya€ S,R(a) ={z€S:3L €B,aecLand¢(l) = z}.
ThenT = RR*. Conversely, if T' factors as T = RR* for some relation R on S,
then T has a generating family B C 25 such that |B| < |S].
Proof: =) Va,b€ S, R(e) NR(b) # 0 iff 3z € S,z € R(a) and = € R(b)
ff 3z € S,[AL1 € B,a€ Lyand ¢(L)) = z)and[IL, € B,b € L, and
$(L2) = 2] iff 3z € S,3L € B, $(L) = z and {a,b} C L (as ¢ is injective
i.e. Ly = L2) iff aTb.

<) Conversely, consider B= {R*(a) : a € S}. Certainly |[B| < |S|. Vz,y €
S, 2Ty iff R(z)NR(y) # 0iff 32 € S,z € R(z) N R(y) iff 3z € S,
{z,v} C R*(2).

b
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Proposition 4.40 Let T C S x S be a tolerance relation on S, B(T') be a base
of T. Then |B(T)| < |T|.
Proof: B(T) is a base of T so it is independent. Hence for every B € B(T) we
can choose (by Axiom of Choice) a fixed ordered pair (z,y) € T such thatV A €
B(T), {z,y} C A = A = B. This defines an injective function ¢ : B(T) — T,
and therefore |B(T)| < [T-

Corollary 4.41: LetT be a tolerance relation on an infinite set S. Then there exists
arelation R on set S, such that T = RR*.

Proof: By Remark 4.15, for every tolerance T there exists a base B(T) of T'.
By Proposition 4.40 we have |B(T)| < |T| < |S x 8| < |S], where the last
equality is valid if S is infinite. Now by Proposition 4.39 we get the statement of
the corollary.

Remark 4.42: The problem of characterizing factorizable tolerances on a finite set
is still open. There are several facts known about it, like: there is no “forbidden
subtolerance” characterization. For example the nonfactorizable tolerance T" from
Example 4.38 can be extended to a factorizable one. Indeed, Let Sy = SU{f,g} =
{a,b,c,d,e, f,g} and Ty = T U {(f, f),{f.9),{9, 1), {9,9)}. Now T} = RR*,
for R defined by R(a) = {c,d}, R(b) = {a,c,e}, R(c) = {e,f}, R(d) =
{b,d, £}, R(e) = {a,b}, R(f) = R(g) = {g}-

We also know that such a factorization, if it exists, is in general non-unique.
One example was given in Remark 44. Also, if T = RR* and WW* = E
and U = RW, then T = UU?*. This follows from: UU* = (RW)(RW)* =
RWW*R* = RR* = T. In particular, if T’ = RR* and W is a permutation
(bijective function W*W = WW* = E), then T = (RW)(RW)"*.

5. Weak tolerance relations

There is a bijective correspondence between partitions (disjoint coverings) of a set
S and equivalence relations on S. There is a surjective correspondence between
(not necessarily disjoint) coverings of a set S and tolerances on S. What relations
correspond to arbitrary families of subsets of a set S?

In Section 4 we considered a closure f. We found a bijective correspondence
between f-closed coverings of S and tolerances on S. What are the relations
which correspond to arbitrary f-closed families of subsets? The answer to these
(and some other) questions will be provided in this section. First we define a
generalization of a tolerance relation.

Definition 5.1: A relation T € R(S) is a weak tolerance relation if:

(i) T =T° (symmetry),
(i) Vz€ S, zTz=>Vy € S, zT.

Certainly every tolerance is a weak tolerance as the second condiﬁon is satisfied
by defauit.
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Most of the results of Section4 can be obtained for weak tolerance relations with
only the difference that a weak tolerance is not necessarily reflexive. Whereas for
a tolerance we have a covering of the set by preclasses, for a weak tolerance, the
preclasses need not form a covering. Also, if T is a weak tolerance with left and
right domain D (T is symmetric so they are equal), then T|pxp = TND x D (the
restriction of T" to set D) is a tolerance relation on D, and T|pexpe = TNDx D¢ =
@. Therefore elements of D° do not play an important role in the properties of a
weak tolerance T'. Almost all definitions for weak tolerance are the same as for
tolerances. Also almost all propositions about tolerances which remain true under
generalization to weak tolerances have similar or identical proofs. Therefore in
most cases the proofs are omitted.

Definition 5.2: i)y L C § is a preclass of a weak tolerance T if Vz,y € S,
{z,y} C L = xTy. The set of all preclasses of T is denoted by L(T).

ii) A maximal preclass of a weak tolerance T is called class of T'. The set of
all classes of T" is denoted by X(T").

Proposition 5.3: Let T be a weak tolerance on a set S.

(1) Every preclass of T is contained in some class.

(@) Vz,y€ S, zTyiff 3L € L(T),{z,y} C L.

) Vz,y€ S, 2Ty iff 3K € K(T),{z,y} C K.

(4) If R is any binary relation on a set S, then RR* and R*R are both weak
tolerance relations. Moreover D(RR*) = D(R) = D*(RR*) = D*(R*),
D(R*R) = D(R*) = D*(R*R) = D*(R), where D and D* are the left
and right domains of R respectively (Definition 2.8).

(5) A family A C 25 is the set L(T") of all preclasses of some weak tolerance
relation T iff A = f(A),i.e. A is complete.

Corollary 5.4: There is a bijective correspondence between the set of all complete
families of subsets of a set S and the set of all weak tolerance relations on S.

Proposition 5.5: For every family A of subsets of S, there exists a weak tolerance
relation T on S such that:

() Vz,ye S, zTyiff 3A€ A, {=z,y} C A.

(i) VACS,[A€ f(A) iff Vz,y € A, zTyl,

Definition 5.6: Let T be a weak tolerance relation on aset S, B C 25. In the
same way as for tolerances we define the restriction fr of an operator f. By a
base of weak tolerance T we mean any element of fr-Base, i.c., any family B of
preclasses satisfying the conditions:

() Vz,y€ S,zTyiff 3B € B, {z,y} C B.

(i) VBeB,3{z,y} CB,YAEB, {7,y CA=>A=B.

As for tolerances, every weak tolerance T on a set S has a base. A class base
is a base which consists only of weak tolerance classes. If X(T") is finite, then
there exists a class base for T. In particular, if S is finite, then T has a class base.
Also all results concerning factorization of tolerances can be extended to weak
tolerances without any changes.
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6. Orthogonality relations which define syllogistics

There is a close connection between weak tolerances and abstract orthogonality
relations (see [R9]). Some orthogonality problems have a much simpler formula-
tion in terms of weak tolerance.

Definition 6.1: Define a quasi (sometimes called abstract) orthogonality as a bi-
nary relation L on set S satisfying the following conditions:

(@) Vz,y€ S,z ly=ylz(symmety)ie. (L)*=(1),

(i) VzeS,z Lz=>[VzeS,z12]
If in addition to conditions i), ii) the relation also satisfies the condition:

(i) Vz,y€ S, z=yiff L(z)=L(1),

then we call L partial orthogonality.

The adjectives quasi and partial used above are not accidental.
Proposition 6.2: Let L be a quasi orthogonality on a set S. Then the binary rela-
tion< on S givenby: Vz,y € S,z <y iff L (y) CL (=) is a quasi-order on
S. If L is a partial orthogonality, then < is a partial order on S.
Proposition 6.3: Let R be a binary relation onaset S. Then the relationT = B'.R
is a quasi-order. Moreover, if [Vz,y € S, R(z) = R(y) iff z=yl,thenT isa
partial order and conversely.

In view of Proposition 6.3, for any binary relation R on a set S, we adopt the

notation: <g= R".R.

Proposition 6.4: If R is a quasi-order, then <g= R.

In the following we show that we can also construct a quasi-orthogonality start-
ing from any relation R.
Proposition 6.5: Let R be any binary relation on a set S. Then the relation R'.R°
is a quasi-orthogonality on S.

In light of Proposition 6.5, we will adopt the notation: R*.R° = L.

R
Definition 6.6: Let R be a relation on a set S. The relational structure: (S, <g, L)
is called the left syllogistic generated by R on S, where <p= R’.R and #R=
R .R°.

By Proposition 6.3, the left syllogistic generated by any relation R on S is a
quasi-ordered set.
Definition 6.7: The left syllogistic (S, <g, L) generated by R € R(S) is proper
if < is a partial order. Certainly this is th€case when R satisfies: Vz,y € S :
R(x)=R(y) =>z=y.
Proposition 6.8: .Le R(S) is a quasi-orthogonality on a set S iff L° is a weak
tolerance on S.
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Remark 6.9: For every orthogonality relation L. on a set S, if there exists a binary
relation B on S such that | = L, then there exists a syllogistic

(S,<m,L =L).Isit possible"lo find such a relation R? This question can be
formularfid in terms of a weak tolerance relation as: given a weak tolerance relation
T on §, can we find a relation R on S such that T = RR*? These questions are
equivalent as: L = R'.R° = (R°R*)¢, 50 (1)¢ = R°(R°)* = UU* where
Us=R.SoLl% BR= Liff T=1° UUP forU = R*. We have already
seen (Example 4.38) that evell if T is a tolerance on S (not just a weak tolerance)
it can happen that for every binary relation Ron S, T # RR*. However Section 4
essentially shows that a weak tolerance with an infinite (left or right) domain D
does factor in this way.

7. Constructions of tolerance spaces

We have already seen several ways to construct a tolerance on a set S. We have
considered tolerances defined on pseudometric spaces, tolerances defined by cov-
erings of a set, tolerances defined by composing an everywhere-defined relation
with its converse, and tolerances defined via comparability relations. In this sec-
tion we shall first consider various “intersection tolerances”, generalizing an idea
used extensively in graph theory.

Definition 7.1: Let A be a family of subsets of a set S. Then we define the inter-
section tolerance on A, Tin(, by: VA, B € A, ATy Bif ANB # 0.

It is a well-known fact that every tolerance is isomorphic to the intersection
tolerance of some family of sets. Indeed, let (S, T) be a tolerance space. For each

T €S, letM(z)={Le€L(T):z€L}andlet A= {M(z) : z € S}. Then
(8,T) is isomorphic to (A, Tjp,)

Several constructions in graph theory can be reformulated in terms of intersec-
tion tolerances in subfamilies of £(T"). Some particular cases have been studied
by Shreider and Yakubovich [169]. Two interesting cases occur when one consid-
ers the set of all two-element subsets of L(T') or the subfamily (T CL(T).

Definition7.2: Let (S, T') beatolerance space. The line tolerance for T is (A, Tiny),
where A = {A € L(T) : |A| = 2}. The class intersection tolerance for T is
(K(T), Tiy)

The following is essentially [94, Theorem 8.4]. Note that the set S need not be
finite.
Proposition 7.3: The following are equivalent for a tolerance space (5,T)

(1) (S,T) is aline tolerance.
(2) There exists a family A C L(T) such that
i) each element of S belongs to at most two members of A;
ii) eachtwo-element preclass in C(T") is contained in exactly one member
of A.
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Proposition 7.4 ([157]): Let (S, T) be a tolerance space. Then (S, T') is isomor-
phic to the class intersection tolerance for some tolerance space iff 3.4 € L(T),
A is generating for T and VB C A, if no two members of B are disjoint then
NB# .

Example 7.5: Not every tolerance is isomorphic to a class intersection tolerance.
The following example is due to Hamelinck. Let T' be the common prime factor
relationon § = {2,3,5,6,10,15}:

7N
/N N\
2 10 5

We now tumn to a different type of construction of a tolerance. Denote the sym-
metric difference of two sets A and B by A < B = (A\B) U(B\A).

Definition 7.6: Let S be any set and M C 25 a posetideal (i.e.,if BC A € M,
then B € M). Let A C 2°. Define the symmetric difference tolerance T,z on A
by:VA,BE A, AT4Biff A~BeM.
Proposition 7.7: With notation as above, let T = T4, the symmetric difference.
Then T is an equivalence iff VA,B € M,AUB € M.
Proof: <=) Certainly T is a tolerance. Suppose AT B and BT'C, where A, B,C C
S. Since M is an ideal and (A\C) U (C\A) C (A\B) U(B\4) U(B\C) U
(C\B) € M, wehave A = C € M, so ATC.
=) Let A,B € M. LetC = (B\A). Then C € M and AT9 and §TC, so
ATC;hence AUB=AUC=A+CeM.
Proposition 7.8: With the notation as above, let A, B C S and AT B. Then
(i) VCCS,AUCTBUC.
(i) VCCS,ANCTBNC
(i) VCC 8,(A\C) T (B\O)

Proof:

() [(AUCI\(BUC)IUI(BUC)\(AUQ)]=
[(AUC)N(B*NCHIU(BUC) N(A°NCI)] =
[ANB°NCIUIBNANCIC A+BEM.

@ (ANC)\(BNC)U(BNC)\(ANC) =
[ANCN(B°UC)IUIBNCN(AUCH] =
[ANCNBJU[BNCNAJCA+-BeM.

(iii) follows immediately from (ii).
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Proposition 7.9: Every tolerance is isomorphic to some symmetric difference tol-
erance.

Proof: Let (S, T) be a tolerance space. Let A = {{z} : z € S} and M = {§} U
AU{{z,y}:zTyandz # y}. Thenforall z,y € S, zTy iff {z} +{y} € M.
Thus z + {z} is a tolerance isomorphism of (S, T) to (A, T\q.)

The following is a generalization of the “common prime factor tolerance” con-
sidered in Example 4.26. Let S be a countable set and A a covering of S such
thatVz € S, |{A € A: = € A} < w. Let I denote the set of primes in N,
Lety : A — II be an injection, and foreach A € A,letay : A — N bean

injection. Define ¢ : S — N by ¢(z) = H{z/;(A)“A"’ iz € A}. Then ¢

is a well-defined injection. Define a tolerance T on S by: Vz,y € S, zTy iff
¢(z) = ¢(y).

In [120], two sets A and B are called almost disjoint if [ANB| < min{|A|, |B|}.
The complementary relation, which we call almost comparable, may be defined
on any subfamily A C 25 by: ATB if [AN B| > min{|A|,|B]|}. Trivially, almost
comparability is a tolerance relation.

8. Comparison between graph theory and tolerance theory

There is a close relation between graph theory and tolerance space theory. We can
even say that these theories deal with the same structure using slightly different
conceptual apparatus. However, there are some alternative ways to establish the
connection between a tolerance space and the graph related to it. The following
diagram shows our choice of the connection between these two structures.

Compl Simpl
Colornes T /(S ﬂ\ of teriea
oSmpgeat, oSN 5 D ot g
tolerance T* (5.1 tolerance T*

In the diagram, the “simple graph of tolerance T has V = S and E = {{z, y} :
zTy and x # y}; the “complement graph of tolerance 7 has V = S and edges
E? = {{z,y} : zT°y}. The “complementary tolerance T*” is defined on S via:
=Ty iff zTyorz = y.
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The standard graphic representation of a symmetric relation R on a set S is
realized by the assignment of points of a plane to elements of S and joining pairs
of those points by lines if the corresponding elements are related by R. Reflexivity
of a tolerance relation means that every element should have a loop attached in
this representation. This may suggest the choice of the graphs which admit loops.
However the majority of the literature in graph theory concerns simple graphs,
i.. those without loops and multiple edges. This justifies our choice of the simple
graph Gr(V, E) (we will call it just the graph of T').

The connections illustrated by the diagram above are bijective, hence (S, T)
and G7(V, E) can be viewed as cryptomorphic structures.

T*# is not the complement of T of T' in the relation algebra on S, as T is not
reflexive. T* is the complement of T in the lattice of all tolerance relations on a
given set S.

Tolerance space theory and graph theory have different terminology. The fol-
lowing dictionary of the concepts which occur in both theories under different
names may be helpful to the reader.

The standard terminology of graph theory is given without references, except
where the same term has two or more non-equivalent definitions (standard defini-
tions can be found in [94, R2]). In the case of differences in the terminology of
papers on topics related to tolerance theory we will provide appropriate references.

We will assume that set S is finite to simplify the comparison with finite graphs.

(S,T) < > Gr(V,E)

8=V
{Lel(T):|L|=2}=E

1. Family of preclasses of T : Family of all complete subgraphs
L(T) of graph G (Family of cliques of
G in [146] as well as in [14, 67,
83, 147, 148, 149, 150])
2.  Family of classes of Family of cliques of G (maximal
T:K(T) cliques in [146])
3. T* is an equivalence relation G is a complete p-chromatic
with p classes of cardinalities graph K(m,... ,m;,) (complete

m,... ,Mp p'panite graph in [94])
4, (S,T*) admits a disjoint G is p-colorable

covering of S of cardinality p

by preclasses
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5.  The minimal cardinality of The chromatic number x(G) is

a disjoint covering of S by equal to n
preclasses of T* is n
6. Asin 5, for the line The line chromatic number
tolerance Ty of T instead of X (@) =x(I(G)) =n
T

The following concepts will simplify the notation of the next few comparisons.
The set of separated points in a tolerance space (S,T)isSp = {z € §: Vy €
S : zTy = z = y}. Let us call S\Sp the support of (S, T.) anfi (Ss,Ts) =
(S\So, T'|s\s,) the supporting tolerance space of (S, T). Centainly if (S, T) does
not have separated points, then (Sg, Ts) = (S, T).

7. A is a generating family in A is a covering of edges by

{Ss,Ts) complete subgraphs (clique
covering in [146])

8. A is a generating family A is a clique partition [146]

in (Ss,Ts) such that:
VABEA:|ANB|< 1

(Observe that this condition is stronger than that defining a base)

9. A is a generating family of A is a maximal-clique partition
classes in {Sg, T’s) such that [150]
VA, BEA:|ANB|L 1
10. (By Propositions 4.17, 4.21) cc(G), the minimum cardinality
dim {Sg, Ts) of a clique covering cc(G) +|Sy|
dim (S,T)

One of the main streams of graph theory is connected with cc(Q) and its upper
bounds for a set V of given cardinality and given specific properties of the graph
G. The following items in the bibliography belong to classical graph theory, but
are also of great interest for the study of tolerance: [12, 14, 58, 60, 67,68,69,71,
72,74, 83, 88, 89, 113, 121, 122, 124, 140, 141, 142, 146, 147, 148, 149, 150,
152, 161, 182, 183].

In this paper we studied only one of the dependence systems connected with
a tolerance space (S, T"). Almost all the concepts in the previous sections were
defined in terms of the dependence system defined by the closure fr on L(T).
However, there are some other dependence systems related to a tolerance space.
In Section 2 we introduced the image of an element by the relation R, R(a) =

{z € S : aRz}. We can extend this operation to subsets of S in two possible
ways:
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i) R*(A)={z€S:VYa€A, aRz}
i) R(4) = {z € S:3a € A, aRxz}.

Certainly R*({a}) = R(a) = R°({a}), and R*°(4) = N{R(a) : a € A},
R°(A) = U{R(a) : a € A}.

For every relation R, the operation A — R*®R°(A) is a transitive closure
operator [R1, 139]. In this way, every relation R defines a dependence system.
Some initial steps in the investigation of the closure T°T*, where T is the tolerance
determined by a graph Gr(V, E), were taken in [61]. We will not consider this
kind of dependence system, but a more comprehensive study will be contained in
a separate paper.

Now observe that always A C B = R°(A) C R°(B). In addition if R is a
reflexive relation, then A C R°(A). Therefore every reflexive relation defines
a dependence system by the (not necessarily transitive) operator A — R¢(A).
Moreover R is a transitive relation iff A — R°(A) is a transitive closure oper-
ator. So while in general if T is a tolerance relation, then A — T°(A) is a (not
necessarily transitive) operator, it is a transitive closure operator iff T is an equiv-
alence relation. Although the name dependence system (introduced much later)
and the terminology introduced above did not occur in this context there is a rich
literature about the properties of the operator T in graph theory. A large part of
Berge’s book [9] is devoted to it.

Now we return to the dictionary: (dependence system terminology was ex-
plained in Section 3)

11. Ae€TeéInd A is an independent set of points
(stable [9])

12. max{]A|: A € T*-Ind} Bo(G) [94)= a(G) 9]

13. ACS ={BeL(T): A is an independent set of lines

|B| =2} and A € T{-Ind,
where T3 is the line tolerance

of T

14. max{|A|: A € T{-Ind} A (&)

15. AC S, min{|4]: A € ae(G) [94]
T*¢-Gen} = go(G) [85]

= B(G) [9]

16. AC S,min{|A|: A€ an (@) [94)
T{-Gen} = 0(G) [85]

17. ACS Ae€T*:Gen A is absorbent [9]

A is dominant [139]
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The dictionary above does not exhaust all parallels between graph theory and
tolerance theory. For example, the problem of factorization of tolerance was stated
by MHall in the language of combinatorial theory [91]. The graph theoretical
result of Mukhopadhyay [125, Thm1] is essentially a corollary to the proof of our
Proposition 4.39.
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