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Abstract. An addition-multiplication magic square of order nis an nx nmatrix whose

entries are n® distinct positive integers such that not only the sum but also the product
of the entries in each row, column, main diagonal, and back diagonal is a constant. It
is shown in this paper that such a square exists for any order mn, where m and nare
positive integers and m,n ¢ {1,2,3,6}.

1. Introduction

In [9] and [10], W.W. Homer first investigated construction methods of addition-
multiplication magic squares. An addition-multiplication magic square of order
n, denoted by AMMS(n), is an nx nmatrix whose entries are »* distinct positive
integers such that not only the sum but also the product of the entries in each row,
column, main diagonal, and back diagonal is a constant. The sum is called magic
sum and the product magic product. The main diagonal contains the cells (1,1),
1 < i < m, and the back diagonal contains the cells (¢, n+ 1 —14),1 <i<n

In [3], J. Denes and A.D. Keedwell asked the following open question {(page
489, question 6.3): For what orders n do addition-multiplication magic squares
exist? Examples for orders 8 and 9 are given in [9] and [10], where the meth-
ods are also suitable for other orders such as 16 and some odd orders. In this
paper, we shall use orthogonal diagonal latin squares to show the existence of an
AMMS(mn) for positive integers m and n, where m,n ¢ {1,2,3,6}.

A latin square of order v, based on a v-set S, is a v x v amray such that in
each row and column each element in S occurs exactly once. We usually take
8= {1,2,...,v}. Alatin square is called diagonal if for both the main diagonal
(cells (4,1), 1 < i < v)and the back diagonal (cells ({,v+ 1 —1),1 <1< v)
each has distinct entries. Two latin squares A = (a;;) and B = (b;;) of order
v, based on S; and S, respectively, are said to be orthogonal if every ordered
pair from S x S, occurs exactly once among the v? pairs (aij, bi5), 1 <1< v,
1 < j < v. A pair of orthogonal diagonal latin squares of order v is denoted
by ODLS(v). Many authors investigated the existence of ODLS(v), see [1-2],
[4-8], [11], [13-17]. The existence was finally solved in [1] as follows.

Theoreml1.1. There exists a pair of orthogonal diagonal latin squares of order n
if and only if m is a positive integerand n # 2,3,6.

Our construction will also need the use of quasi-magic rectangles.
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Definitionl.2: Anm x nmatrix is called a quasi-magic rectangle if its mnentries

are distinct non-negative integers such that the sum of the entries in each row is
a constant S,, called row magic sum, and such that the sum of the entries in each
column is also a constant S , called column magic sum. A quasi-magic rectangle
is called a magic rectangle if its entries are consecutive integers ranging from 0
to mn— 1. To avoid triviality we assume thatm+ n > 1.

We shall describe our construction for AMMS using ODLS and quasi-magic
rectangles in the next section. For the quasi-magic rectangles needed, we shall
discuss the existence of the necessary quasi-magic rectangles in Section 3. How-
ever, we have the known existence result for magic rectangles as follows.

Theorem 1.3 ([12]). An m x n magic rectangle exists if and only if m+n> 6,
m=n(mod2)and m,n> 2.

As a consequence we shall prove our main result in Section 4, which can be
presented in the following.

Main Theorem 1.4. An addition-multiplication magic square of order mn exists
if m and n are positive integers and m,n ¢ {1,2,3,6}.

2. A construction
Suppose A = (ayy) and B = (b,,) are ODLS(m), basedon0,1,...,m — 1.
Suppose C = (czy) and D = (d; ) are ODLS(n),basedon0, 1,...,n— 1. For
any z € {0,1,...,mn— 1}, there is a unique pair (p, g) such that z = p + gm,
p€{0,1,...,m—1}andg € {0,1,...,5—1}. Wewrite(z) = p,and (z) = q.
Let G be an m x m quasi-magic rectangle based on T, having its (z,y) en-
try g(z,y) and having its rows and columns labelled with 0,1,...,m — 1 and
0,1,...,n~ 1, respectively. Let E = (e;,) and F = ( f;,) be defined such that
forz,y € {0,1,...,mn—1},

€z,y = A(2),(y) + TC),(3), 1)
fey=9 (b(z) o{9)s d(z).(v)) . V)

Lemma 2.1. E and F form a pair of orthogonal diagonal Iatin squares of order
mn.

Proof: It is easy to see that E is a diagonal latin square of order m=, based on
{0,1,...,mn— 1}. For the matrix F, it is well defined on T'. For a fixed z, if
fzy = fz.r, we have from (2) that

bez) () = bizy ()
dia) ) = U fv)-

Since B and D are both latin squares, (y) = (z) and {y) = (z). So, y = z,and
each row of F contains distinct entries in 7. In a similar way, we can show that

@
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each column, the main diagonal, and the back diagonal all have the same property.
Thus F is also a diagonal latin square. We next prove orthogonality.
Suppose (ezy, fzy) = (&ij, fij)- We have from (1) and (2) that

a(z) (v) = B,

beay, () = beo) ()

Ez)ln) = COMU)

dia). o) = A0y
The orthogonality of A and B implies (z) = (4) and (y) = (/). The orthogonal-
ity of C and D implies (z) = (i) and {y) = (). Therefore, z = i and y = j. The
proof is complete.
Example 2.2: Let

@

0123 01 2 3
2 30 1 3210
4=3 2 10 B=1 0 3 2
1 0 3 2 2 30 1
02413 31420
41302 203 1 4
C=3 02 41 D=14203
24130 03 1 4 2
1 302 4 42031
0 8 1819 5
c.® 14 1B 3
=% 17 7 6 4
5 1 2 12 2

We then obtain from Lemma 2.1 ODLS(20) E and F as follows.

0 1 2 3 8 9 10111617 1819 4 5 6 7 12 13 1415
2 3 0 11011 8 9 18191617 6 7 4 5 14151213
3 2 1 0 11109 8 19181716 7 6 5 4 1514 13 12
1 0 3 2 9 8 111017 1619 18 5 4 7 6 13 12 15 14
16 17 18 19 5 6 7 121314150 1 2 3 8 9 1011
1819 16 17 6 7 4 5 14151213 2 3 0 1 101 8 9
19 181716 7 6 5 4 1514 13 12 3 2 1 0 11 10 9 8
1716 19 18 5 4 7 6 13 121514 1 0 3 2 9 8 1110
121314150 1 2 3 8 9 10111617 1819 4 5 6 7
E= 14151213 2 3 0 1 1011 8 9 18 19 16 17 6 7 4 5
1514 13123 2 1 0 1110 9 8 19181716 7 6 5 4
13121514 1 0 3 2 9 8 11 1017 16 19 18 5 4 7 6
8 9 10 11 16 17 1819 4 5 6 7 12 13 1415 0 1 2 3
1011 8 9 181916 17 6 7 4 5 14151213 2 3 0 1
11109 8 19181716 7 6 5 4 1514 1312 3 2 1 0
9 8 11 1017 16 19 18 5 4 7 6 13 12 1514 1 0 3 2
4 5 6 7 121314150 1 2 3 8 9 10 11 16 17 18 19
6 7 4 5141512132 3 0 1 101 8 9 1819 16 17
7 6 5 4151413123 2 1 0 11109 8 19 18 17 16
S 4 7 6 13121514 1 0 3 2 9 8 11 1017 16 19 18
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19 3 6 12 8 1417 1 5 11
12 6 3 19 1 17 14 8 20 4
3 19126 14 8 117115 4 1318 2 7 9 0 15
6 12 19 3 17 1 8 14 4 20 11 7 2 18131615 0

4 20 1813 7 2 0 9 16
11
20
5
1813 7 2 0 9 161519 3 6 12 8 1417 1 5 11 4
3
12
19
7

5 2 7 13181516 9

2 7 13181516 9 0 12 6 19 1 17 14 8 20 4 11
1318 2 7 9 0 1516 3 19 6 14 8 1 17 11 5 2
7 2 18131615 0 9 6 12 3171 8 144 2 5
8 1417 1 5 11 4 20 18 13 2 0 9 16 1519 3 6
.1 1714 8 20 4 11 5 2 7 13181516 9 0 12 6 3
14 8 1 17 11 5 20 4 13 18 2 7 9 0 1516 3 19 12
17 1 8 14 4 20 5 11 7 2 18 13 16 15 0 9 6 12 19
0 9 161519 3 6 12 8 1417 1 5 11 4 20 18 13 7
1516 9 0 12 6 3 19 1 17 14 8 20 4 11 5 2 7 13 18
9 0 1516 3 19 12 6 14 8 1 17 11 5 20 4 13 18 2 7
16 15 0 9 6 12 19 3 17 1 8 14 4 20 5 11 7 2 18 13
5 11 4 201813 7 2 0 9 16 1519 3 6 12 8 14 17 1
204 11 5 2 7 13181516 9 0 12 6 3 19 1 17 14 8
19
12

vwoZooeuBornon

11 5 20 4 1318 2 7 9 0 15 16 3 12 6 14 8 1 17
4 20 5 11 7 2 1813 1615 0 9 6 19 3 17 1 8 14

Let H = (hxy) be an mn x mn matrix such that
hz.y = (ez.y + 1)(mnfz.y +1). &)
Lemma 2.3. H is an addition-multiplication magic square of order mn.
Proof: By (5) we know that each entry in H is a positive integer. If hzy = hij,
then .
mnfyy(ezy+ 1) +ezy = mnf;j(e;;+ 1) + e;;. ©)
Since e, y, e5; € {0,1,...,mn— 1}, we have
€zy = €ij
Q)
fz.y = fs.}
The orthogonality of E and F implies that (z,y) = (4, 7). Therefore, H contains

mn distinct entries.
For a fixed =, we compute the product.

P= J[ by

0<y<mn—~1

= JI (ewy+ D(mnfey+1)

0<y<mn-1

= (mn)! II (mmGn+n

0<i<m—1,0<j<n—1

= (mn)! H(mnt+ 1

teT
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In a similar way, we can show that the product of the entries in each column, the
main diagonal, and the back diagonal is also P.

Let S = ma(mn+ 1)(1+ Y, 1) /2. Let S, and S be the row magic sum
and the column magic sum of G, respectively. For a fixed z, we compute the sum

E hey= Z (mnegyfoy + ey + mnfry+ 1)

0<y<mn—1 0<y<mn~1
mn—1 ®)
=mn E ezyfey + mn > +mnz t+ mn

0<y<mn—1 teT

Using (1) and (2) we have

E exyfry = E (a(z) () + mc(:).(v)) g (b(z) {9)s d(z).(v))

0<y<mn~-1 0<y<mn~1

= Y Y (et memy) g (bayi diay)

0<i<m—-1 0<jgn~1

= E o) iSr+ m E c(,)ch

0<i<m—1 0<jgn-1
=m(m—1)5;/2+ mn(n—1)S./2

Combine (8) and (9). Noticing that mS; = nS. = )", t we obtain

Y hay=S

0<y<mn—1

Similarly, we can show that the sum of entries in each column, the main diagonal,
and the back diagonal is also S.

Therefore, H is an addition-multiplication magic square. The proof is complete.
We conclude this section with the following.

Theorem 2.4. Suppose there exist ODLS(m), ODLS(n) and an m x n quasi-
magic rectangle, then there exists an addition-multiplication magic square of order
mn.

Example 2.5: An AMMS(20) is constructed in the appendix using (5) and the
squares E and F in Example 2.2.

3. Quasi-magic rectangles
In this section we shall establish the existence of quasi-magic rectangles.
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Lemma 3.1. For any positive integer k, there exists a 3 x (2k) quasi-magic
rectangle.

Proof: Let A = (azy) bea3 x (2 k) matrix where

a;y=2k+2yforr=0andy=0,1,...,2k-1,
=6k+2yforzr=1andy=0,1,...,k—1,
=2y—2kforz=1landy=k,k+1,...,2k-1,
=4k—-3 —-4yforxr=2andy=0,1,...,k—1,
=12k-3—-4yforz=2andy=k,k+1,...,2k—-1.

It is readily checked that A has the minimum entry 0, the maximum entry h =
8k — 2, and all entries distinct. Also, it has the row magic sum S, = kh and
the column magic sum S, = 3h/2. Therefore, A is the required quasi-magic
rectangle.

Lemma 3.2. For any positive integer k, there exists a 5 x (2k) quasi-magic
rectangle.

Proof: It is readily checked that the following 5 x (2 k) matrix A = (a,y) is the
required one. It has distinct entries between 0 and & = 12 k, the row magic sum
is S; = kh and the column magic sum is S, = 5h/2, where

azy=4k+2yforr=0andy=0,1,...,k—1,
=4k+2+2yforz=0andy=k,k+1,...,2k—-1,
=12k-2yforrz=1andy=0,1,...,k—1,
=4k—2 —2yforz=1andy=k,k+1,...,2k—-1,
=8k+2+2yforz=2andy=0,1,...,k-1,
=2yforz=2andy=k,k+1,...,2k-1,
=2y+1forr=3andy=0,1,...,k—-1,
=8k+1+2yforz=3andy=k,k+1,...,2k-1,
=6k—3—4yforz=4andy=0,1,...,k—1,
=14k—-1—-4yforx=4andy=+k,k+1,...,2k—1.

Lemma 3.3. For any positive integers t and k, there exists 2 (2t + 1) x (2k)
quasi-magic rectangle.
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Proof: First, we construct a (4t) x (2k) matrix B = (b;,) where

bry=4ty+zfor0 <y<k—land0<z<t—1
or3t<z<4t—1,
=4t(2k—y)—1—-z+sfor0 <y<k-—landit<z<3t-1,
=4f(y+1)—1—z+sfork<y<2k—land0 <z <t -1
or3t<z<4t—1,
=4t(2k—1—-y)+zfork<y<2k—landt<z<3t-1.

It is not difficult to verify that B is a quasi-magic rectangle with row magic sum
k(8kt — 1+ s), column magic sum 2¢(8kt — 1 + s) and distinct entries in the
intervals [0,4 kt—1] and [4 kt+ s, 8 kt— 1+ s]. Here, s is a non-negative integer.

Next, ford = 3,5 we have from Lemmas 3.1 and 3.2 ad x (2 k) quasi-magic
rectangle A = (a,,) withdistinctentries in [0, h], row magic sum kA and column
magic sum dh /2.

Atlast, we construct a (4t + d) x (2k) matrix C = (c;,,) where

Czy=0azy+4dktfor0 <z<d-1and0 <y<2k-1,
=bagyford<zr<4t+d—1and0 <y<2k—-1.

Take s = h+ 1 in B. Itis readily checked that C is a (4t + d) x (2 k) quasi-magic
rectangle.

Theorem 3.4. An m x n quasi-magic rectangle exists if and only if m,n > 2
andm+n>S.

Proof: By Definition 1.2, it is easy to check the necessity. For the sufficiency,
the conclusion follows from Theorem 1.3 when m — n = 0 (mod 2), and from
Lemma 3.3 when m — n=1 (mod 2).

4. Main result
We are now in a position to prove our main result.

Proof of Main Theorem 1.4: If m and nare positive integersandm, n # {1,2,3,6},
then there are ODLS(m) and ODLS(n) from Theorem 1.1, and also an m X n
quasi-magic rectangle from Theorem 3.4. Therefore, we can apply Theorem 2.4

to obtain an addition-multiplication magic square of order mn.

In order to completely solve the existence question of AMMS(n) posted by J.
Denes and A.D. Keedwell, one should further consider the following remaining or-
ders: n=24,27,54,p,2p, 3p, and 6 p where p is a prime integer. To the authors’
knowledge, these cases are still open except the nonexistence of an AMMS(2) and
the known AMMS(9).
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181

381
723
244
242
6137
779
5220
2538
2093
315
4496
4774
9
31
2172
3210
505
2807
1768

122
484
1143
241
4698
2820
6859
697
3934
5456
2415
273
1810
3852
11
2709
1326
648
707

An addition-multiplication magic square of order 20

363
61
482
1524
2679
4437
738
7220
5115
3653
294
2576
3531
1629
3010
12
567
1105
2406

964
762
121
183
820
6498
2397
4959
336
2254
4433
4215
3612
10
2889
1991
3208
606
405

48 2005 808. 1547

1449
231
3372
3410
5
2107
1448
1926
101
1203
884
162
6477
4579
1220
2178
4693
615
4176
1974

2810
4092
17
189
1086
2568
7
1505
442
324
303
401
1098
2420
7239
4097
3654
2256
5415
533

Appendix

3751
2529
210
1932
247
905
1806
8
243
21
802
404
2299
1037
4338
7620
2115
3393
574
5776

252

1610
3069
3091
2408

117
7619
4420
1458
4953
3615
976
1694
3249
451
3132
1410
805
147
2248
2046
1
903
724
642

3978
1620
1919
6817
854
1936
5715
3133
2610
1692
3971
369
1686
2728
1127
105
362
1284
3
301

1539
3757
7218
2020
1815
793
3374
6096
1551
2349
410

4

8020
1818
1377
4199
3856
5334
1573
915
492
3610
1269
2871
168
966
1705
1967
1204
2
321
543

1566 987 328

1128
2527
205
562
1364
483
21
3258
6420
19
5117
3094
1296
1515
5213
610
1452
4191
2169

1305
246
2888
1023
281
42

1215
2873
5614
1616
1331
549
2410
4572

2166
705
1827
84
322
341
843
6020
18
5457
3439
6416
1414
1053
3315
2892
3810
1089
671

13
4515
2896
4494
909
4411
2652
810
1905
1687
488
726
361
123
1044
282
2737
399
5620

2534
5136
15
3913
2210
972
1111
3609
366
968
2667
1205
522
564
1083
41
5058
6820
3059

4815
2353
4214
16
891
1989
4010
1212
847
305
1446
3048
423
261
82
1444
6479
4777
378

6138 357 3220

4816
14
4173
2715
4812
1010
729
2431
1928
2286
605
427
164
722
141
783
420
2898
5797
5339



