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Abstract. The total chromatic number x2 (G) of a graph G is the smallest number of
colors which can be assigned to the vertices and edges of G so that adjacent or incident
elements are assigned different colors. For a positive integer m and the star graph K| 5,
the mixed Ramsey number x2 (m, K1,») is the least positive integer p such that if G
is any graph of order p, either x2(G) > m or the complement G contains Kipas
a subgraph. In this paper we introduce the concept of total chromatic matrix and use
it to show the following lower bound: x2(m,K14) > m+n—2 form > 3 and
n> 1. Combining this lower bound with the known upper bound (Fink) we obtain that
x2(m, K1) =m+n—2 formodd andneven,and m + n—2 < x2(m, K1,5) <
m+ n— 1 otherwise.

1. Introduction

The graphs discussed in this paper are simple graphs, i.e., finite undirected graphs
with neither loops nor multiple edges. The k-total coloring of a graph G = (V, E)
is a coloring with k colors assigned to the elements of V U E such that adjacent
or incident elements are assigned different colors. The total chromatic number
x2(G) of a graph G is the minimum k, for which a k-total coloring of G exists.
Let f be a graphical parameter, m a positive integer and H a graph; then the
mixed Ramsey number f(m, H) is the smallest positive integer p such that for
every graph G of order p, either f(G) > mor H C G. For total chromatic
number x2(G) and the star graph K y, Fink [4] determined the following upper
bound for x2 (m, K1 ) and gave the conjecture below:

Theorem 1. Ifm > 3 andn > 1, then

m+n—2 ifm isoddandniseven

x2(m,K15) < { m+n—1 otherwise,

Conjecture (Fink). Form > 5 and n > 2, then

m+n—2 ifmisoddandniseven

xz(m, Kl,u) = { m+ n— 1 otherwise.

The conjecture was verified in [4] for some special cases: m = norm =
n+ 3 = 1 (mod 2). It was further verifed by Cleves and Jacobson [3] for the
small values m = 5 and 6. In this paper we shall give further evidence to support
the conjecture by showing a lower bound x2(m, K1,) >m+n—2 form >3
and n > 1, thus verifying the conjecture for the case when m is odd and nis even.

JCMCC 11 (1992), pp. 182-186



2. Definitions and notation

Suppose we have a k-total coloring of a graph G with V(G) = {v1,v2,...,vs}
and with colors x;, z3, ..., 2, which are distinct positive integers. We consider
the integer matrix M’ = (a;;) where a;; = color assigned to vertex v; and a;; =
color assigned to edge v;vj; a;; = 0 when v;v; ¢ E(G). This leads to the follow-
ing definitions.

A symmetric matrix M = (a;;) of order nis called a k-total chromatic matrix
if M satisfies:

(i) a;j€{0,z1,72,...,7:} and a; #0 for 1 <i,7 < n, where z,,3,,...,3;

are distinct positive integers;
(ii) If two entries in any row or two entries in any column are equal then they
must be zero;

(iii) Ifa;=aj;forl <i<j < nthenag=0.

Suppose M = (a;;) is a k-total chromatic matrix of order n. If G is a graph
with V(G) = {v1,v2,...,v,} suchthata;; = 0 iff v;v; ¢ E(G),1 <i<j<n,
M is called a k-total chromatic matrix of G.

Clearly, a k-total chromatic matrix of G' can determine a k-total coloring of G
as follows: assign color a;; to vertex v; and color a;; to edge vv; for1 < 4,7 <
therefore x2 (G) < k. Itis also easy to see that every k-total chromatic matrix of
order n is a k-total chromatic matrix of a graph G of order n which is uniquely
determined by the matrix under isomorphism. Thus a k-total chromatic matrix of
order n determines both a graph G and a k-total coloring of the graph.

To construct suitable k-total chromatic matrices we shall start with a matrix
L, = (a,-;), where i,j,a.-,- € {l,2,...,n} and a; =i+ )—1 (mod n). Let
M be any real matrix. By M + Z(4,7) we mean a matrix obtained from M by
changing the (1, 7) entry into zero. By M + A,(i,j) we mean a matrix obtained
from M by adding a real number r to the (4, /) entry. In other words, in the sums
M+ Z(s,j) and M + A,(4,),if M = (ma), Z(4,7) = (za) and A,(4,)) =
(ast), then Z(4,7) and A,(4,;) have the same number of rows and the same
number of columns as M, and

2, = { —Mst for(sxt) = (iaj)
*~ 1o otherwise,
{ r for(s,t) =(4,))
Qs = .
0 otherwise.
The notation M+ "; ; Z(4, 7) is self-explanatory and the notation M+, jAr(4,7)
is similar.

3. Main results
In this section we shall give alower bound for the mixed Ramsey numbers x2(m, K ).
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Theorem 2, If m >3 and n> 1, then x2(m, K1) >2m+n—2,
Proof: It has been proved in [3] that x2(3, K1) = n+ 1,and

n+3 if3|(n+2)

4 =
x2(4, K1) {n+2 otherwise.

It then follows that x2(m, K1) > m+n—2for3 <m< 4 andn> 1. So
we assume m > 5 below.

First, form — 2 < 2k < 2m — 5 we shall construct a graph Ha of order 2k
such that the total chromatic number x2 ( H2x) < m— 1 and the minimum degree
8(Hak) 2 m—3.

If2k = m—2,let Hy; be the complete graph K, . Evidently, x2( Kp,_2) =
m—1and§( K, 2)=m-—-3.1f2k>m—2,wedenotes=2k—m+ 1. Itis
casily seenthat0 < s < k— 1. Let

My = Lo+ Y |, 2G5, 5),
S

where the summation is taken over the set {(1,7)|1 < 1,7 < 2k,i—j = k (mod
2)YU{(i,HN €1, < 2k,i+j=2p+1(mod2k),1 < p < s}. Then
My, is an (m — 1)-total chromatic matrix of order 2k usingm — 1 = 2k — s
colors in the set {1,2,...,2k}\{2,4,...,23}. This matrix M3; determines a
graph Hj; of order 2 k such that the total chromatic number x2( Hz) < m — 1
and the minimum degree 8( H2;) > (2k—1)—-1—-s=m -3,

Next, we shall construct a graph Hy ;.1 of order 2k + 1 for each odd number
2k + 1 in the interval [m — 2,2m — 5] such that x2(H2+1) < m — 1 and
8(Hzk41) 2 m—3.

If2k+ 1 < m—1, Hape1 = Kape can satisfy the requirement. Otherwise,
2k+1>m—1.Lett=2k—m+2,thenl <t < k~-1.

When 1 <t < k-2, delete the last row and last column from the above defined
matrix L3, and denote by L), _, the resultant matrix of order 2k — 1. Add one to
each entry from column (& + 1) to column (2 k — 1) in the last row of L3, _, and
from row (k + 1) to row (2 k — 2) in the last column of L}, _; . Here, the result is
taken from the set {1,2,...,2k} modulo 2 k, and the resultant matrix is denoted
by L3;_,. Let

M3y = L3hoy + ) 23,0+ ) Asknr (4,5) + Y Aea (4, 1),
ij ij i

where the first summation is taken over the set {(4, /) |1 < 1,7 < 2k—1,[i—j| €
{k,k—1}}, the second over the set {(4,7)|1 <1,/ <2k—1,{1,;} # {k,2k—
1},]i—j| = k—1} and the third over the set {(, ) |{4, 7} = {k,2k—1}}. Onthe
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other hand, we constructa (2 k— 1) x 2 matrix B as follows. Keeping the i-th row
we transfer the (1, 5) entries in the set {(1,/)|1 <1,/ < 2k—-14—j=k,1 -k}
of L3, , into the first column of B. Similarly, move the set {(4,7)|1 < 1,7 <
2k—1,—1i= k,1—k} into the second column of B. Denote by B the transpose

of B. Let .
, MZk-l | B
MZk#l = B‘ | 2k+1 0
0 2k+1

It is easily checked that M3,,, is a (2k + 1)-total chromatic matrix of order
2k + 1. In M3,,, we replace all of the elements 2,4,...,2¢ by zeros. Since
they cannot appear on the main diagonaland 2k + 1 — ¢ = m — 1, we obtain an
(m — 1)-total chromatic matrix of order 2 k + 1 using colors in {1,2,...,2k +
1}\{2,4,...,2t}, say M24+1. This matrix M2, determines a graph Ha4+; of
order 2 k + 1 satisfying both x2 ( H2z+1) < m—1and §( Hags1) 2> 2k—-1—-t=
m—3.

It remains to discuss the case whent =k — 1,thatis2k+ 1=2m ~-5.Ifm

is odd, let 0
Lp—a | ..
Mg = ( 0 l L* 3 +§Am—l(’l])l

where L}, _, is obtained by deleting the last row and last column in L,,_3 , and the
summation is taken over the set {(4, /) |1 <4,/ < 2m—=5,i # j,i+j = 2m—4}.
If m is even, let

L' _ 0 .. ..
Mgy = ( ) + E :Am—l(‘3]) + E :Amlz(’lj)!

where L, _, is obtained by adding one to each entry > m/2 in L,,_3, the first
summation is the same as above in the odd case, the second summation is taken
over the set {(4,7)|{i,7j} ={m—-3,m—2}},and

N 2={L,,._2+):,.jzu,j) if4 Jm
e Lm2+Y;;2(i,7/) + Ag.1(3m/4 — 1,3m/4 — 1) if4|m

both the summations here are taken over the same set {(1,7)|1 <4,/ < m -2,
|§ — j| = m/2 — 1}. Therefore, Mag4; is an (m — 1)-total chromatic matrix
of order 2k + 1, which determines a graph H;., of order 2k + 1 satisfying
x2(H2g+1) < m—1and 6( Hager) > m = 3.

Now we complete the proof. Whenm > 3 andn > 1, the numberm + n— 3
may be expressed as a sum of multiples of integers in the interval [m—2,2m—5].
Suppose

m+n—3= E cy-h,
m-2<h<2m-5
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where c;, is a non-negative integer. Let

H= E Ch H hs
m-2<hg2m-5

where H,, is constructed above. Then H is a graph of order m + n— 3. Since for
each number h in the interval [m — 2,2 m — 5] there exists a graph H}; such that
x2(Hp) < m—1and8§(Hy) > m—3,thenx2(H) < m—1and§(H) > m-3.
The maximum degree of the complementary graph HisA(H) < (m+n—4) —
(m - 3) = n— 1. H cannot contain any K , as a subgraph. Thus we obtain the
bound x2(m, K14) > m+n—2.

Combining Theorem 1 and Theorem 2 we obtain

Theorem 3. Ifm > 3 isoddandn > 2 iseven, thenx2(m, K1) = m+n—2.
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