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Abstract. We consider the following three problems: Given a graph G,

What is the smallest number of cliques into which the edges of G can be partitioned?
How many cliques are necded to cover the edges of G?

Can the edges of G be partioned into maximal cliques of G?

All three problems are known to be NP-complete for general G. We show here that (1)
is NP-complete for A (G) > 5, but can be solved in polynomial time if A(G) < 4
(the latter has already been proved by Pullman [P]); (2) is NP-complete for A(G) >6,
and polynomial for A (G) < §; and (3) is NP-complete for A (G) > 8 and polynomial
time for A (G) < 7.

1 Introduction

We consider simple graphs, graphs having no loops or multiple edges.

G =(V,E) = (V(Q), E(G)) = (vertices of G, edges of G)

A K, is a complete graph on n vertices. A cligue of G is a complete subgraph
of G. A K, will be called an edge (and will be loosely identified with the one edge
it contains) and a K3 will be called a triangle. A family C of cliques of G such
that every edge of G belongs to a member of C is called a clique cover of G. If the
members of C are edge disjoint, then C is called a clique partition of G. The clique
covering number of G, cc(G) is the size of a minimum cardinality clique cover
(hereafter minimum clique cover) of G, and cp(G), the clique partition riumber of
G, is the size of a minimum cardinality clique partition (minimum clique partition)
of G. We will be concerned with the following problems.

CC (Clique covering of edges)
Instance: A graph G and natural number k.
Question: Is ce(G) < k?
CP (Clique partition of edges)
Instance: Graph G, integer k.
Question: Is cp(G) < k?
PMC (Partition of edges into maximal cliques)
Instance: Graph G.
Question: Does G have a clique partition into maximal cliques?
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These three problems are known to be NP-complete. For CC this was shown
by Kou, Stockmeyer, and Wong [KSW78], and by Orlin [Or177), but a far more
elegant proof, which shows all three problems to be NP-complete, was given by
Holyer [(Hol81]. We are interested here in the following refinements of these prob-
lems.

For n a fixed integer, let CC(n) denote CC with the restriction that A (G) <
n. Define CP(n) and PMC(7) similarly. The smaller n is, the easier CC(n),
CP(n) or PMC(n) will be. Holyer’s proof shows that these problems are still
NP-complete for n= 14. Our aim is to find the smallest values of n for which the
problems are NP-complete.

A problem is polynomial if there is an algorithm which solves the problem in
time polynomial in the length of the input. We say that a minimization or existence
problem is constructively polynomial if there is an algorithm which constructs
a minimizer or an example if there is one—in the forgoing cases, a minimum
cardinality clique partition or clique cover, or a partition into maximal cliques—
or states that there is none of there is not.

We assume that a graph G is represented in a natural way as a string of charac-
ters, it does not matter exactly how. The length of G as an input means the length
of this string. Given an integer k, there are polynomial time algorithms which,
on input a graph G of degree not more than k, computes in polynomial time (the
polynomial depending on k) a list of all cliques of G, the clique graph of G, a list
of all cligue components of G, and other objects of a similar nature.

Theorem 1. 1. CP(5) is NP-complete.
2. CP(4) is constructively polynomial,

Theorem 2. 1. CC(6) is NP-complete.
2. CC(5) is constructively polynomial.

Theorem 3. 1. PMC(8) is NP complete.
2. PMC(7) is constructively polynomial.,

Pullman [P], has shown that CC(4) and CP(4) are polynomial.

Notation: Vertices of graphs will be denoted by letters a, b, c, . ... A string of let-
ters standing for vertices indicates a clique with those vertices. For instance, ab is
an edge between a and b, abcd is a K4 with vertices a, b, ¢, d. A path through the

vertices ay,..., 6, is denoted (a1, ...,a,). The number of edges of G is e(G),
and v(@) is the number of vertices.

2 NP-completeness proofs for CP(5) and CC(6)

We shall prove Theorems 1.1 and 2.1 by reducing the following two problems,
which were proved NP-complete by Garey, Johnson, and Stockmeyer [GJS76].
Due to space constraints, we will only sketch the necessary constructions, and
leave the details to the reader.
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An independent set in a graph G is a collection of nonadjacent vertices of G.
i3(G), the independent set number of G, is the maximum cardinality of an inde-
pendent setin G. A vertex cover of G is a collection C of vertices of G such that
every edge of G is incident to a vertex in G. vc(G), the vertex cover number of
G is the minimum cardinality of a vertex cover of G. Since the complement of an
independent set is a vertex cover and vice versa, we have ve(G) = v(G) —is(G).
Now here are the problems.

IS(3) (independent set for graphs of degree 3)
Instance: Graph G with A (G) < 3, integer k.
Question: Is is(G) > k?

VC(3) (vertex cover for graphs of degree 3)
Instance: Graph G with A(G) < 3, integer k.
Question: Is ve(G) < k?

a b G b fap B

Figure 1: Path replacing the edge ab
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Figure 2: Complexes for reducing IS(3) to CP(5)

Proof of Theorem 1.1: Let (G, k) be an instance of I1S(3). Form the graph G’ by
replacing each edge ab of G by a path (a, cas, o, €qs, fab, b) as in Fig. 1. Observe
that

i3(G") = is(G) + 2¢(@) 1)
Now form a graph G” by replacing each vertex v of G' by one of the complexes
in Figure 2, according to the degree of v.
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The edges (1), (2), (3) correspond to edges e;, ez, e3 of G which are incident
to v. If v and w are joined by an edge e, , then identify edge (1) in the v complex
with edge (1) of the w complex, and so forth. The resulting graph G has no vertex
with degree more than 5 and no clique larger than a triangle. Further, t(G"), the
triangle graph of G, is isomorphic to the graph G'. Hence by (1),

cp(G") = 3e(G") — 2(is(G) + 2¢(Q))

Theorem 1.1 follows. [ ]
Degree 3
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Figure 3: Complexes for reduction of VC(3) to CC(6)

Proof of Theorem 2.1: We reduce VC(3) to CC(6). Observe that if a graph G’ has
no cliques larger than a triangle, then cc(G’) is just ve(¢(G')) plus the number
of edges of G’ which are not contained in a triangle. Let (G, k) be an instance
of VC(3). Assume that G has no isolated vertices, since such a vertex can be
omitted from any vertex cover. Form a graph G’ by replacing each vertex v of G
by one of the complexes C(v) in Figure 3, according to the degree of v. As in
the construction for CP(5), (i), (ii), (iii) are edges of G incident to v. If v and w
are joined by an edge e; in G, then the (1) edge of C(v) is identified with the (1)
edge of C(w), and so forth. To ensure A (G") < 6, this must be done so that the
arrow on (1) in C(v) has the opposite orientation to the arrow on (1) in C(w).
Then the resulting graph G' has degree at most 6. Let v;(G) indicate the number
of vertices of G which have degree i. We have

cc(G') = ve(B) + 2v1(GR) + v2(G) + 6v3(G).

The result follows. 1
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3 NP-completeness of PMC(8)

We shall prove that PMC(8) is NP-complete by reducing to it the One-in-Three
Satisfiability problem (1-in-3 SAT) without negated propositional variables ([LO4]
in [GJ79]). l-in-3 SAT was shown by Shaefer [Sha78] to be NP-complete.

The problem 1-in-3 SAT (without negated variables) is as follows. A clause C
is a set of at most three propositional variables. A valuation V is a set of propo-
sitional variables. A set of clauses S is satisfied by a valuation V iff V' contains
exactly one member of each clause in S. Now here is the problem.

1-in-3 SAT.
Input. A finite set S of clauses.
Question. Is there a valuation which satisfies every clause in S?

Top

a a

b /\/W /\/\b/ e
+ + + +
c window 1 window 2 c j f
d + + i
\/\/\/\/\/\/d\ h g
\
e e
f g h i j

Figure 4: A Unit

Proof of Theorem 3.1: Let S be afinite set of clauses. We may suppose that S does
not contain the empty clause, since the empty clause is by definition unsatisfiable.
We construct a graph G which has a partition by maximal cliques iff S is 1-in-3
satisfiable. For each occurrence of a literal in S, G will contain a subgraph of the
form given in Fig. 4, which we call a unit.

Call the the cycle along the top of the diagram the top boundary of the unit,
and the two cycles around the windows the window boundary, both together be-
ing the boundary. A weak partition of a unit is a collection of disjoint maximal
cliques (triangles) of the unit which covers all the edges except, possibly, bound-
ary edges. A unit has exactly two weak partitions. One covers the top boundary
and the boundary edges in the window boundary marked ‘+’; call this the posi-
tive partition, and the edges marked ‘+’, positive edges. The other weak partition
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consists of all the triangles not in the positive partition; call this the negative par-
tition. It covers no boundary edges but those around the windows which are not
marked with a ‘+’; call these edges negative. Let py, ..., pn, be the propositional
variables occurring in S, and for eachs = 1...m, let p;, ..., pi,, be be all the
occurrences of p; in clauses of S. By repeating clauses, if necessary, we may as-
sume that n; > 2. G will contain a unit U;; for each p;;. Units are strung together
as follows. Forl < i < mand 1 < j < w;, identify the boundary of window 2 of
U;; with the boundary of window 1 of Uy;+1) o that positive edges are identified
with negative edges, and do the same for the boundary of window 2 of U, and
that of window 1 of U;; . Call the resulting graph G;. Because n; > 2,G; is asim-
ple graph, and has no cliques not contained in one of its constituent units. Hence
G; has exactly two weak partitions (covering all edges of G; except possibly those
belonging to the top boundaries of the constituent units), one which induces the
positive partition on each U;;, and one which induces the negative partition. Fi-
nally, for each clause C € S, if W1, W2, W3 are the units corresponding to the
instances of literals contained in C, join the W;'s by identifying their top bound-
aries. The resulting graph G has no vertex of degree more than 8. It has a partition
into triangles, its maximal cliques, iff S is satisfiable. ’ [}

4 Polynomial algorithms for CP(4) and CC(5)

We will prove Theorems 1.2 and 2.2 by showing that in graphs of the appropriate
low degree, configurations which might make it difficult to find a minimum clique
partition or clique cover can only occur in a small clique component of G or of a
graph derived from G. The problem can then be solved component by component,
on large components by an easy algorithm, and on small components by brute
force.

In the constructions for these results and for Theorem 3.2, below, we will use the
following terminology. If we are constructing a graph G under the constraint that
A(G) < k,wesay thata vertex v of G is full at a given stage of the construction if
it is adjacent to k distinct vertices. The current degree of v, cd(v), is the number
of distinct vertices adjacent to v at a given stage of the construction (which, of
course, changes during the construction).

Since Pullman has already proved the simplest of the results we have stated,
Theorem 1.2, we will just sketch it as follows. Let G be given with A(G) < 4.
It suffices to solve the problem for each clique component separately, so we may
assume that G is clique connected. By examining various cases, we can show
that either [e(G)| < 12 or else G contains no clique larger than a triangle, and
A(t(G)) < 2. In the former case, solve the problem by brute force. In the latter
case t(@G) is either a path or a cycle. Start at one end, if a path, and take every
other triangle plus the edges left over.

The proofs of Theorems 2.2 and 3.2 are based on the same general idea, the
hard part being to confine the troublesome configurations to small subgraphs. Let

192



us now prove Theorem 2,

We want to construct a minimum clique cover successively adding cligues to
a partial cover. Here is a definition to allows to express the idea of completing a
clique cover.

Definition 4. Let H be a subgraph of G.

1. AG-clique coverof H is a collection of cliques of G which together contain
all edges of H. ccq( H) is the minimum cardinality of a G -clique cover of
H.

2. An H -eligible clique of G is either

(a) a maximal clique of G which contains at least two edges of H, or
(b) an edge of H which is contained in no clique of the kind described in
2a.

3. Anedge of H is H-exposed if it belongs to only one H -eligible clique.
A clique of G is H-exposed if it is H -eligible and contains an H -exposed
edge. &y is the class of all H -exposed cliques.

4. The set of interior edges of H, inf H), consists of those edges of H which
belong to no H -exposed clique.

Of course, a clique cover of G is just a G-clique cover of G, hence cc(G) =
ccg(G). The following lemma is clear.

Lemma 5. If C is a minimum G -cligue-cover of inf( H), then C U &y is a
minimum G -clique-cover of H.

The Lemma shows how to begin an algorithm to find a minimum clique cover
CofG.

C (—Q; H« G,

Repeat
C—CUé&y;
H « int(H);

Until H = int(H)

Since the loop is executed at most e( G') times, and each execution takes poly-
nomial time, this part of the algorithm takes polynomial time. After this, we are
left with a subgraph H of G which has no H-exposed edges. Thus each edge of
H belongs to at least two H-eligible cliques, but not to any G-exposed clique,
since H C int(G). As any H-eligible clique which consisting of a single edge
would be exposed, every H-eligible clique must be a maximal clique of G which
contains at least two edges of H.

By Lemma 5, we can finish the algorithm by finding a mimimum G-clique cover
for H. This done in the following way. Let elig( H) be the graph whose vertices
are H-eligible cliques, two cliques being adjacent if they share an edge of H.
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Since aminimum G-clique cover of H corresponds to a collection of minimum G-
clique covers of the elig( H)-components of H, a minimum cover may be found
elig( H)-component by component. Hence we may assume that H is elig( H)-
connected.

We will show that either H has no more than some fixed number of edges, or
else

(4.1) every edge of H is contained in exactly two H -eligible cliques; and
(4.2) no H-eligible clique is adjacent to more than two other H -eligible cliques.

R,
AN

Figure 5: A maximal K4 inG

By (4.1), a minimum cover of H by eligible cliques is the same as a minimum
vertex cover of elig( H). By (4.2), except in small components of elig( H), no
vertex of elig( H) has degree more than 2. Hence one can find a minimum vertex
cover in polynomial time.

The following sequence of lemmas will establish (4.1) and (4.2), thereby com-
pleting the proof of the Theorem.

Lemma 6. Any K4 of G which contains an edge of int(G) is contained in a
clique component of G which contains at most 15 edges.

Proof: Since A(G) < 5, itis easy to see that any K5 of G either has an exposed
edge, or else is contained in a K, in which case all the edges are exposed. Hence
a K5 of G comtains no edge of int(G).

On the other hand, it follows from looking at cases that any K4 abcd which is
a maximal clique of G and contains an edge of int(G) must be contained in a
clique component isomorphic to one of the two forms in Fig. 5, which have 14
and 15 edges respectively. 1

Lemma 6 implies that, except in small clique components of G, all H-¢ligible
cliques are triangles. It follows that except in such a small clique component of
G, edges in two different components of H cannot belong to the same clique of
G, hence any elig( H)-component of H is connected.
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Lemma 7. Suppose that ab is an edge of int(G) which is contained in at least
three maximal cliques of G. Then ab belongs to a clique component of G which
has at most twenty edges.

f/\g

d

19

Figure 6: An edge of H contained in three triangles of G

Proof: By the preceding Lemma, we may take the maximal cliques containing ab
to be triangles abc, abd and abe. Since ab € H, the triangles are not G-exposed.
As we already have four edges incident at a and b, we must have the situation in
Fig. 6. f # g, since otherwise ebc would not be a maximal clique. Now every
vertex in the diagram has current degree at least 4, so any triangle in the clique
component of G of ab contains one of the edges in the diagram. As the diagram
has 15 edges and 5 vertices which may each be incident to one more edge, there
can be at most 20 edges in the clique component. [ |

Since H has no exposed edges, the Lemma implies that except on small elig( H )
components of H, each edge of H belongs to exactly two H -eligible cliques. That
is, (4.1) holds.

Lemmas 6 and 7 also imply that, except on small components, any H-eligible
clique which is shares an edge with each of three other H-eligible cliques must be
a triangle of H. Thus, the following Lemma establishes (4.2).

Lemma8. Suppose thatno K4 of G contains anedge of H,and noedgeof H is

contained in more than two cligues of G. Let abc be an H -eligible triangle which
is adjacent to three other H -eligible triangles. Then each vertex of H which is
connected to abc has H -distance at most 4 from the nearest vertex of abc.

Proof: We begin by investigating the structure of G near abc. First, each edge of
abc is contained in exactly one other clique of G, since abc is not exposed. These
other cliques must be the adjacent H-eligible triangles. Since these triangles are
in fact adjacent, i.e. they share an edge of H with abc, each edge ab, bc, ca must
be one of those edges, and hence must be in H. Let the adjacent triangles be
abe, acd and bef. d, e, f are distinct since otherwise abc would be contained in a
K. As these triangles contain edges of H, none of their edges can be exposed.
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It follows that G’ contains one of the configurations of Figure 7. In the sequel,
we will assume that we have the first configuration, For the others, the proof is
similar, but we have not been able to unify the proofs.

AV

Figure 7: Neighborhood of a triangle of H adjacent to three eligible triangles

Since the vertices d through i are the only vertices of G adjacent to abc, hence
the only vertices which may be adjacent in H, it suffices to prove that any vertex
which is connected by an H -path to one of the vertices d, e, f, g, h, i is connected
by an H-path of length at most two. Suppose, then, that this not the case. Up
to isomorphism, we may assume that we have a vertex ! which has H-distance
exactly three from either g or e. Bear in mind two simple observations, which we
will use several times.

1. No H-eligible clique has a G-exposed edge.

2. No H-eligible triangle containing ! contains any of the vertices d, e, f, g,
h,1, since there would be an H-path of length at most two from [ to that
vertex.

Case 1: The shortest H-path from ! to a vertex d, e, f,g,h,iis P = (g,7,k,1).
As the current degree of g is 4, one of the two H -eligible cliques containing g;
must be gjd or gje, say gjd. Now, jd must not be G-exposed, hence there must
be an edge ij. Now cd(j) = 4, so one of the two H-eligible cliques containing
7k must be either jki or jkg. Suppose it is jk, as in Fig. 8. As ki must not be
G-exposed, there must be a triangle kfi. Now cd(k) = 4, so the two eligible
triangles containing k! must be jk! and klm. m is a new vertex by Observation 2.
But k and all vertices adjacent to it but ! and m are full, so km must be G-exposed,
impossible since of klm contains an edge of H. On the other hand, if one of the
H -eligible cliques containing j k is g jk, then as gk as is not G-exposed, k must be
adjacent to e. Again, the two H -eligible cliques containing k! must be klm and
Jkl, and again km must be exposed, a contradiction.

The subcase where one of the triangles containing jk is gjk, is handled simi-
larly, as is Case 2, where the shortest H-path from [ to a vertex d,...,5 is P =
(e,7,k,1). ]
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Figure 8: The first subcase of Case 1

5 A polynomial algorithm for PMC(7)

We follow a local reduction plan to attack the problem of partitioning a graph
G of degree < 7 into maximal cliques, as we did for CP(4) and CC(5). CC(7),
however, is much more complex, and a more interesting problem is left over after
the reduction. To carry out our reduction plan we need a more general notion of a
partition problem.

A partition problem is a pair (G, L) where G is a graph and L is a collection of
maximal cliques of G. (G, L) is partitionable iff the edges of G can be partitioned
by elements of £. Thus an instance of PMC is a partition problem (G, M), where
M is the set of all maximal cliques of G. We say that (G, £) reduces to ( H,K)
iff H is a subgraph of G, K C L, and (G, L) is partitionable iff ( H, ) is. Often
we can find a proper reduction of G by looking only at small subgraphs of G. We
say that a subgraph H of G is small if its diameter is not more than two. An(-
partition of H is a covering of the edges of H by edge-disjoint members of L (the
members of £ used may contain edges of G which are not in H). H is said to be
partition independent in (G, L) if H has an L-partition and any L-partition of H
covers only edges of H.

Here are some ways to reduce (G, L).

(Rl) If H has no LC-partition, (G, L) is unpartitionable (reduces to a trivially
unpartitionable problem). . '
(R2) If H has only one L-partition P, then (G, L) reduces to (G', L'), where G/
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is the subgraph of G induced by those edges not in any element of P, and
L'={CeL;CCG}

(R4) If H is partition independent in (G, L), then (G, L) reduces to (G\H, L'),
where L' consists of all cliques of £ which contain no edges of H.

Assume that A(G) < 7.

To decide whether G can be partitioned into maximal cliques, start with £ = M,
and repeatedly apply the reductions (R1) through (R3) to (G, L) as H varies over
small subgraphs of G. In polynomial time we can decide whether such a reduc-
tion exists and, if there is one, apply it, since the number of maximal cliques of
G (hence the size of £) and the number of small subgraphs of G are both poly-
nomial in the size of G. Since each reduction reduces the size of either G or L,
if we repeatedly reduce this way, in polynomial time we will reduce (G, £) until
reductions (R1) through (R4) can no longer be applied with A a small subgraph.
When this state is reached, we say that (G, L) is locally reduced, or just plain
reduced. Note that a locally reduced problem has no L-exposed cliques, cliques
of L which contain an edge in no other clique of £. In particular, £ contains no
maximal cliques consisting of a single edge.

We may assume, then, that (G, L) is locally reduced. Identify £ with the sub-
graph of the clique graph of G whose vertices are the cliques in £. We assume that
L is connected, since an L-partition of each £L-component of G yields a partition
of the whole.

Call an edge of G which is contained in three or more members of L a triple
edge of (G, L). Suppose that (G, L) has no triple edges. As G has no L-exposed
edges, each edge of G belongs to exactly two cliques of £. Pullman, Shank and
Wwallis [PSW82] observed that in this case one can decide in the following way
whether G can be partitioned into maximal cliques: Define an equivalence relation
= on L by letting two members be equivalent iff there is a path of even length in
L from one to the other. (G, L) is partitionable iff = has two equivalence classes
(rather than just one), and a partition is formed of all members of either of the two
classes. In particular, any clique in £ belongs to a partition.

We will show that if (G, £) is locally reduced and L is connected, triple edges
of (G, L) can occur only in C-components of a special structure for which an
L-partition is easily found, so that for the rest of the graph partitionability can
be determined by the method of Pullman, Shank and Wallis. The rest of the proof
consists of a series of Lemmas showing that triple edges occur only in these special
components,

By a subgraph of G induced by a set of vertices or edges of G, we mean the
subgraph which consists of those vertices or edges and all edges between any pair
of the vertices, or of the edges and all vertices to which they are incident.

If H is a subgraph of G, £( H), the locality of H , is the subgraph of G induced
by all edges of G incident to any vertex of H. £(v) = £({v}) for v a vertex of
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G. The neighborhood graph of v, nbd(v), is the subgraph of G induced by v and
all vertices adjacent to it. In carrying out our campaign against triple edges, we
will repeatedly use the following facts about L-partitions of £(v), v a vertex of G,
where (G, L) is a locally reduced partition problem.

1. The only ways to partition £(v) are those indicated in Table 1. In partic-
ular, the partition cannot consist of a single clique, as that would lead to a
reduction by (R2). Note that no edges of G can be maximal cliques, as that
would lead to a reduction by either (R1) or (R2).

2. £(v) has at least two L-partitions, because otherwise there would be a re-
duction by (R2).

Lemma9. Foreach vertexa € (G),nbd(a) has exactly two L-partitions, unless

nbd(a) contained in a complex of the form shown in Fig. 9, where each triangle
shown belongs to L, except for possibly cdh and fgi, and a is a vertex of no
triangle of L other than those shown.

6(v) 4 5 6 7
possible 2 I(s’s 1{3, I(s 3 1{3,8 1{4, 2 1(3,8
cliques of 2 Ky'’s Ks, K,
an C-partition . 1{5, 1(3 I{s, 1{3
of £(v)

Table 1: Partitions of the locality of a vertex in a locally reduced problem (G, L)

Figure 9: A locality with three partitions
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Proof: We will go through all the cases in Table 1 and show that nbd(a) cannot
have three or more L-partitions, until the only remaining possibility is that shown
inFig. 9.

We can treat one family of cases generally, those in which there is an L-partition
of £(a) which consists of a K3, abc, and one other clique, C. This is depicted
in Figure 10. A second partition of £(a) must consist of two cliques {a,b} U
Ci,{s,c} U C;, where C;,C; are disjoint and C; U C, U {a} = C. Now, b
cannot be adjacent to any vertex in C;, nor ¢ to any vertex in C;, else abc would
not be a maximal clique. Hence there can be only these two partitions of £(a),
hence only two partitions of nbd(a).

This leaves only four cases to consider, two each for §( a)=6,7.

Case 1: &(a) = 7, and there is a partition of £(a) which consists of a Ks and
a K4, Figure 11 (a) .

The second partition can be either: a K4 and two K3 s, as in Fig. li(b),a K5 and
a K4 again, as in (c) or (d). If the second partition is (b), any further adjacencies
would violate the maximality of one of the triangles, so there cannot be any other
partition,

If we superpose (a) and (c) and consider the edges left over by the partition in
(a), the solid lines in (e), we see that extending this partition to nbd(a) would
require three distinct cliques to contain the uncovered edges incident at f. This
would bring the degree of f to nine, so this is impossible. Similarly superimposing
(a) and (d), as in (f), and extending the (a) partition to a partition of nbd(a) would
require the degree of e to be at least eight, so that is also impossible.

b C
la

@ (®)
Figure 10: £(a) partitioned by a K3 and one other clique

Case 2: §(a) = 7, and there is a partition which consists of a K4 and two
K3’s, Figure 12(a). The possibilities for a second partition are a Ks and a K,
which we have already discussed, and another way of partitioning into a K4 and
two K3's. The different ways of doing this (up to isomorphism) are shown in
Figure 12(b),(c),(d). They are as follows.
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(b) Use the same K4 and different triangles.
(¢) Use a K4 which contains two of the vertices b, ¢, d.
(d) Use a K4 which contains only one of b, c, d (solid lines).

There is only one way to do (b), so to get three partitions, we would have to
combine (a) with either (b) and (c), (c) and (d), two ways of doing (c), or two
ways doing (d). (b) and (d) are incompatible, as the triangle a fg, or one of the
others, is not maximal if (d), or a copy of it, is superimposed. Similarly, superim-
posing (a) and two copies of (d) violates the maximality of one of triangles in the
superposition of (a) and (d).

If (a), (b), and (c), are superimposed, consider the edges left not covered by par-
tition (b). These are the solid edges in (€). In a partition of nbd(a) which contains
afg, and hence all of (b), the solid edges incident at e must be contained in sepa-
rate cliques, since edges between them which are not already in (b) would violate
the assumed maximality of some clique we already have. But putting them in sep-
arate cliques would bring the degree of e to at least 8, a contradiction. Therefore
(G, L) must be reducible by either (RI) or (R2).

(a) ®) ©

Figure 11: £(a) partitioned by a Ks and a K4
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Consider superposition of (a), () and (d). A copy of (c) can be superimposed
on diagram (d) by either connecting b and f or d and g, which are isomorphic. The
latter is shown in (f). Each of the resulting partitions of nbd( a) requires a different
partition of £(c). Hence nbd(c) must have three L-partitions. If ¢ has degree 6,
then the partition of £(c) induced by (d) must consist of two K ’s. This reduces
to the next case, so we need consider it no further. If ¢ has degree 7, then each
partition of £(c) must consist of the K4 given and two K3 ’s. By isomorphism with
(d), there must be triangles bci, cdj in the extension of (d) to £(c), and cgs, ¢ f7 in
the extension of (a) to £(c). Consider a partition extending (a) to nbd(a). dg and
f4g are so far uncovered, and must be covered by distinct cliques since an edge df
would violate the maximality of ae f. But this brings the degree of g to 8.

Figure 12: £(a) partitioned by a K4 and two K3 s

Superimposing (a) and two copies of (c) can be done in two ways. If done as
in (g), so that the K4’s from the two copies of (c), acde and abcz have only o
and one other vertex in common, we can argue as in the (a), (c), (d) superposi-
tion. Suppose, then (a) and two ways of doing (c) are superimposed as in (h),
so that the new K4 's acde and acdh share two vertices besides a. Consider first
a L-partition of nbd(a) which extends (a). ce, de,ch and dh must be contained
in triangles cei, dej, chk,chm. The cliques containing these edges can only be
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triangles, because this already brings the degrees of ¢ and d to 7. Hence e and
h must have degree 6, and must have one L-partition which consists of two K45
(acde and efij, for e), the other of the triangles just introduced. The possibility
of a third £-partition is eliminated in the next case, so we assume that these are
the only L-partitions of £(e) and £(h). Hence, if we consider an L-partition of
nbd(a) which contains acde, it must also contain agh, chk and dhm. In order
to cover ab, bc, and bd, b must be adjacent 1o f,i, and j. But if we consider an
L-partition containing acdh, the same reasoning shows that b must be adjacent to
g, k and m. This brings the degree of b to nine, a contradiction.

c c
b d b d
a
a
g c g [
f f
@ ©
vertices labeled alike
are identified

Figure 13: £(a) partitioned into a two K4's

Case 3: §(a)=6, and £(a) has an L-partition which consists of two K4 ’s, Figure
13. If, as in 13(b), a second partition consists of three K3's, then any further
connections are impossible because the triangles are maximal, so there cannot be
a third partition.

The second and third partitions, then, must both consist of two K,’s and this
gives us the complex in Fig. 13(c). To extend any three of the four possible
partitions of £(a) to nbd(a), we must have the complex in 13(c). It has diameter
2 and is partition independent, hence is reducible by (R3).

Case 4: §(a)=6, and £(a) has a L-partition which consists of three K3 ’s.

Superimposing three ways of partitioning £(a) into triangles lead to one of the
complexes in Figure 14(a)-(c), where every triangle shown belongs to L and every
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@ © 0]

Figure 14: £(a) partitioned into three K3's

triangle of £ which has a as a vertex is shown. By irreducibility, each neighbor of
a which is a vertex of three triangles shown, must have three partitions, and hence
must be the center of a similar complex. If follows that the complexes (a), (b),
(c) are contained in (d), (¢), (f), respectively. (d) and (e) are partition independent
and of diameter two, hence are reducible by (R3). The remaining complex (f) is
the one allowed by the statement of this Lemma. 1

Observe that in a reduced problem (G, £), if an edge ab is contained in three
distinct cliques Cj, C2, C3 € L, then each of nbd( a) and nbd(b) has at least three
distinct L-partitions, one containing each of the three cliques C;, C;, C;. Hence,
our problem will be solved if we can show that each a such that nbd(a) has three
or more L-partitions is contained in a clique component for which PMC is easy to
solve. To this end, we make the following definition.

A segment is a subgraph of G as shown in Figure 15, such that
1. abe,bcf,acd,ade,bef, cdf € L, and :
2. the edges ad, ae, be, bf, cf, cd do not belong to any other cliques of L.
We call the triangles abc and de f end triangles of the segment, and the edges
not contained in these triangles side edges.
A cylinder is a graph consisting of a sequence of segments S;,1 < i < n, seg-
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A segment. A K4 containing abc. A K4 containing ab only.

Figure 15: A Segment

ment S; having vertices are denoted a;, b;, ¢;, d;, €;, f; corresponding to those in
Fig. 15, so that for i < n,a;+1 = d;, bi+1 = €, and ;41 = f;, and no other identi-
fications are made. A forus is a similar graph which has also a1 = dy.b; = e,, and
c1 = fa, Or some other one-to-one identification of the end triangles of a cylin-
der. A torus must have n > 3, for its constituents to be actually segments. When
a torus is a subgraph of G for a reduced problem (G, L), any end triangle of a
constituent segment may or may not belong to £. The same goes for cylinders,
except the end triangles of the entire cylinder, a1 b1 ¢) and dye,, f,,, must be con-
tained in cliques in L, else their edges would be exposed. We see below that the
cliques must be the end triangles themselves, or else triangles of another segment
extending the cylinder.

The complex in Fig. 14(f), that is the only way a vertex a with three partitions
of #(e) can occur is a reduced graph, is a cylinder of two segments, fused at the
triangle abe. The following Lemma implies that in such a case, £(a) is contained
in a cylinder or a torus. We continue our assumption that (G, £) is a reduced
problem.

Lemma 10. The L-component of a segment of G is either a cylinder or a torus.

Proof: It will suffice to show that given a segment S, if any of its edges is con-
tained in another clique, then that edge is an edge of one of the end triangles of S,
the clique is a triangle, and it is contained in a segment joined to § in the manner
prescribed for a cylinder or a torus.

Suppose that the vertices of S are named as in Fig. 15.

The edge definitely has to be an edge of an end triangle, because side edges
are not in any cliques but those in the segment, by definition. We show that the
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clique cannot be a K4 . The argument also shows that it also cannot be larger. We
suppose without loss of generality that the edge in question is ab. There are two
cases to consider.

Case 1: the K, contains the entire end triangle abc. The K4 must be abeg,
where g is a new vertex. Since the subgraph H generated by a,b, ¢, d, e, f, g has
diameter two, and abe € £, H must have an L-partition P; which contains abe,
and hence does not contain abcg. P; must contain a clique containing ag. Since
all existing edges containing ¢ are already in a clique that already must be in P,
there must be a K4aght € Py, h,i a new vertices. We know it is a K4 because
£(a) has a partition containing a K4abcg and a triangle ade, hence must have
degree 5 or 7. Now consider an L-partition P, of the £(a) which contains abcg.
‘P, must contain ade, since it does not contain abe or acd and ad and ae are not
contained in any other cliques. Since there are already 7 edges containing a and all
others are already in cliques in P2, ah and a$ cannot be covered, a contradiction.

Case 2: the K4 contains only the edge ab. Say the K is abgh, g and h new
edges. As before, any L-partition must contain a K4 containing each of a and b.
Consider again a partition which contains abe, bcf, and acd. P must have K;'s
containing e and b. They must be aghi and bghj, since there is room for only
one more edge at each vertex a and b. But these two K4’s have the edge gh in
common, a contradiction.

Thus no K4 contains an edge of S, and any adjacent clique must be a triangle
containing just one edge of an end triangle. Consider such a triangle, which we
may take to be abg. A partition that contains this triangle must contain ade, cdf,
and be f, hence must also contain triangles ach and bei. Looking at a partition
which contains abe, and hence acd and bef, it must also contain agh, bgi and
chi. To show that a, b, c, g, h,t induce a segment, it remains to show that each
of ag,ah, bg, bi, ch, ci is not contained an any other clique of £. To be specific,
consider ag. Since no more edges can be incident at a, such a clique would have
to be a triangle agz where z is one of ¢,d, ore. z = c would form a K4abcg,
which has been ruled out already, and z = ¢ or z = d would make a third clique of
L containing ac or ad, contradicting assumption 2 of the definition of a segment.

|

Recall that a triple edge is an edge contained in three cliques of L.

Lemma 11. A reduced problem (G, L) is partitionable iff G, L') is partitionable,
where
L' = L\{triangles of triple edges of L}.

Proof: By the previous results, the £-component of any triple edge is a torus or
a cylinder, and triple edge to a triangle of triple edges, which is an end triangle
of a segment which is not at the end of a cylinder. Consider a cylinder or torus
formed from segments S, ,..., S,, joined as prescribed. If it is a torus, then P =
{asbie;, bici fi,aicidi; i = 1,...,n} is a partition. If it is a cylinder then P U
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{dnex fa} isa partition. These do not contain any of the end triangles of constituent
segments that may be triangles of triple edges of L, such such triangles may be
deleted without affecting partitionability 1

This Lemma concludes the proof of Theorem 2 since we have reduced an ar-
bitrary partition problem with A (G) < 7 to a partition problem (G, £) in which
every edge of G is covered by exactly two triangles in £. Let us summarize the
algorithm.

Polynomial algorithm for PMC(7). This produces a partition into maximal
cliques if there is one.

‘P denotes the partition being constructed.

Excise.and list(S), where S C L , means
P—PUS,
G « subgraph of G induced by edges not covered by S,
L—LIG(={CeL;CCG}

The Algorithm.

L « {maximal cliques of G},
P9
(Part 1—Reduce G locally)
‘While there is a reduction by a small subgraph do
if type (RI), then stop and reject,
if type (R2) or (R3), then Excise_and_List L-partition of subgraph,
end while
L « L£\{triangles of triple edges},
(now every edge of G is covered by exactly two cliques of L)

(Part 2—find partition for G when each edge is contained in exactly two edges
of £) while G is not empty, do

Excise_and list({C}),forany C € L
while there is an L-exposed or edge not covered by £, do
if uncovered edge, stop and reject,
else Excise_and_list(any clique with an L-exposed edge)
end (inner while)
end (outer while).

Return partition P and accept

end (of Algorithm).

The last part of the algorithm works because, as observed above, if any edge
of G belongs to exactly two cliques of £, and (G, L) is partitionable, then any
cligue of £ belongs to a partition, so we may excise and list any clique. After
that, there will be £-exposed or uncovered cliques, and any exposed cliques must
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belong to any partition of the remaining problem. When we run out of exposed
cliques, if there are no uncovered cliques, either G is empty, and we are done, or
(G, £) again has the property that each edge is covered by exactly two cliques of
L, and we may repeat the process of excising any clique.

Remark. In [PSW82] the problem of partitioning a graph into maximal cligues is
Dposed as the problem of finding such a partition which is of minimum cardinalit Y.
To find such a partition, modify our algorithm as follows.

¢ When reducing by a partition independent subgraph, always choose the
smallest partition.

¢ Once every edge is contained in exactly two edges of £, proceed by com-
ponent by component, and choose the smaller of the two partitions of each
component.

Other steps involve putting cliques into the partition which must be there any-
how, or removing triangles of triple edges from triangles and tori. Since maximal
cliques contained in triangles and tori are all triangles, they have only one size of
partition anyway.
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