Sums involving multinomial coefficients

L. Davison and G. Guenther

Department of Mathematics and Computer Science Laurentian University Sudbury, Ontario, Canada

Abstract. Let $g_k(n) = \sum_{\underline{v} \in C_k(n)} \binom{n}{\underline{v}} 2^{v_1 v_2 + v_2 v_3 + v_3 v_4 + \dots + v_{k-1} v_k}$ where $C_k(n)$ denotes the set of k-compositions of n. We show that

- i) $g_k(n+p-1) \equiv g_k(n) \pmod{p}$ for all $k, n \ge 1$, prime p;
- ii) $g_k(n)$ is a polynomial in k of degree n for $k \ge n+1$;

and, moreover, that these properties hold for wider classes of functions which are sums involving multinomial coefficients.

1 Introduction

Let N denote the set of non-negative integers and let k, n be positive integers. If $\underline{v} = (v_1, v_2, \dots, v_k) \in N^k$ satisfies the condition $\sum_{i=1}^k v_i = n$, then \underline{v} is called a k-composition of n. The set of all such k-compositions of n will be denoted by $C_k(n)$. For $\underline{v} \in C_k(n)$, the multinomial coefficient $\binom{n}{\underline{v}}$ is defined to be $\frac{n!}{v_1!v_2!\dots v_k!}$. The function $g_k: N - \{0\} \to N$ defined by

$$g_k(n) = \sum_{v \in C_k(n)} {n \choose \underline{v}} 2^{v_1 v_2 + v_2 v_3 + v_3 v_4 + \dots + v_{k-1} v_k}$$
 (1)

occurs in the enumeration of graded graphs [5,6]. The present authors were extending the table of computed values of $g_k(n)$ to $1 \le k, n \le 9$ (see Table 1) when they noticed that the resulting table appeared to have some interesting number-theoretic properties. The most startling pattern appears in the final digits of the numbers $g_k(5)$ and $g_k(9)$. In fact, the authors initially assumed that their computer program was in error. Closer inspection proved the observation valid (it follows from feature 3 below) and produced the following list of features.

feature 1:
$$g_2(n+1) = 2g_3(n)$$

feature 2: $g_k(p) \equiv k \pmod{p}$ for $p = 2, 3, 5, 7$
feature 3: $g_k(m+1) \equiv g_k(m) \pmod{2}$
 $g_k(m+2) \equiv g_k(m) \pmod{3}$
 $g_k(m+4) \equiv g_k(m) \pmod{5}$
 $g_k(m+6) \equiv g_k(m) \pmod{7}$

feature 4: This concerned the apparent growth rate of the various columns. It is clear that $g_k(1) = k$ for all $k \ge 1$ so that the first column grows in a linear fashion. Using the standard techniques of differences it is easy to show that

$$g_k(2) = k^2 + 2k - 2, k \ge 1$$

$$g_k(3) = k^3 + 6k^2 + 6k - 18, k \ge 2$$

$$g_k(4) = k^4 + 12k^3 + 48k^2 + 50k - 266, k \ge 3$$

The question arises: Are these features true in general? We were able quickly to dispose of the validity of features 1 and 2 and include the proofs at the end of this section.

						$g_k(n)$			
$k \setminus n$	1	2	3	4	5	6	7	8	9
1	1	1	1	1	1	1	1	1	i
2	2	6	26	162	1442	18306	330626	8488962	309465602
3	3	13	81	721	9153	165313	4244481	154732801	8005686273
4	4	22	166	1726	24814	494902	13729846	531077086	28697950174
5	5	33	287	3309	50975	1058493	29885567	1156711869	61815727295
6	6	46	450	5650	91866	1957066	55363650	2109599650	109773407466
7	7	61	661	8953	152917	3334921	94354981	3528929353	177999003157
8	8	78	926	13446	240758	5381118	152654846	5615217126	274588808678
9	9	97	1251	19381	363339	8337037	238002291	8643818581	410796186939

Table 1

The main purpose of this paper is to prove the conjectures suggested in features 3 and 4 — namely

Conjecture 1.
$$g_k(n+p-1) \equiv g_k(n) \pmod{p}$$
 for all $k, n \ge 1$, prime p .

Conjecture 2. $g_k(n)$ is a polynomial in k of degree n for $k \ge n+1$.

It will be seen that there is a more general setting in which to state and prove the theorems which have as corollaries the proofs of the conjectures and the Dickson-Glaisher results on multinomial sums [1,2,3]. Read [9] and Wright [10] considered the polynomial character of a related function

$$m_k(n) = \sum_{\underline{v} \in C_k(n)} \binom{n}{\underline{v}} 2^s$$
 where $s = \sum_{i < j} v_i v_j$

Their result also follows as a special case of our Theorem 2. Moreover it will be seen that $m_k(n)$ satisfies the congruence $m_k(n+p-1) \equiv m_k(n) \pmod{p}$.

We now return to the disposition of features 1 and 2.

Proposition 1. For all $n \ge 1$, $g_2(n+1) = 2g_3(n)$.

Proof:

$$g_{3}(n) = \sum_{0 \le i, j \le n} \binom{n}{i, j, n-i-j} 2^{ij+j(n-i-j)}$$

$$= \sum_{0 \le i, j \le n} \binom{n}{i, j, n-i-j} 2^{j(n-j)}$$

$$= \sum_{j=0}^{n} \binom{n}{j} 2^{j(n-j)} \left\{ \sum_{i=0}^{n-j} \binom{n-j}{i} \right\}$$

$$= \sum_{j=0}^{n} \binom{n}{j} 2^{j(n-j)} 2^{n-j}$$

$$= \sum_{j=0}^{n} \binom{n}{j} 2^{(j+1)(n-j)}$$

$$= \sum_{j=0}^{n} \binom{n}{j} 2^{j(n-j+1)} \quad \text{by replacing } j \text{ with } n-j.$$

Now

$$g_{2}(n+1) = \sum_{i=0}^{n+1} \binom{n+1}{i} 2^{i(n+1-i)}$$

$$= \sum_{i=0}^{n} \binom{n}{i} 2^{i(n+1-i)} + \sum_{i=1}^{n+1} \binom{n}{i-1} 2^{i(n+1-i)}$$

$$= \sum_{i=0}^{n} \binom{n}{i} 2^{i(n+1-i)} + \sum_{i=0}^{n} \binom{n}{i} 2^{(i+1)(n-i)}$$

$$= 2a_{3}(n).$$

Proposition 2. For all primes p and all integers $k \ge 1$, $g_k(p) \equiv k \pmod{p}$.

Proof: Note that $p \mid \binom{p}{u}$ unless one of the v_i 's equals p (and therefore the rest equal 0) since otherwise p divides the numerator but not the denominator. Thus

$$g_k(p) = \sum_{\text{all } v_i < p} \binom{p}{\underline{v}} 2^{v_1 v_2 + \dots + v_{k-1} v_k} + k \equiv k \pmod{p}.$$

2 Conjecture 1

Let p be a fixed prime ≥ 2 . In order to obtain the proper setting for our theorem we make the following

Definition 1. Let \underline{v} , $\underline{w} \in N^k$. We write $\underline{v} \equiv \underline{w} \pmod{p-1}$ if and only if $v_i \equiv w_i \pmod{p-1}$ for $1 \leq i \leq k$.

It is easy to see that $\equiv \mod p - 1$ is an equivalence relation.

Definition 2. Let $f: N^k \to Z$. f is said to have property P(k) if $\underline{v} \equiv \underline{w} \pmod{p-1} \Rightarrow f(\underline{v}) \equiv f(\underline{w}) \pmod{p}$.

It should be evident that f has property $P(k) \iff \exists \bar{f} : N^k / \equiv \to Z_p$ such that the following diagram commutes.

$$\begin{array}{ccc} N^k & \xrightarrow{f} & Z \\ & \downarrow^{\pi} & \downarrow^{\pi} \\ N^k/ \equiv \xrightarrow{f} & Z_p \end{array}$$

A large class of functions satisfy property P(k). If g is a polynomial in k variables and a is a positive integer, then $f(\underline{v}) = a^{g(\underline{v})}$ has property P(k) for any prime $p \neq a$. To see this, note that $\underline{v} \equiv \underline{w} \pmod{p-1}$ implies that $g(\underline{v}) \equiv g(\underline{w}) \pmod{p-1}$. Hence using Fermat's theorem [4], $a^{p-1} \equiv 1 \pmod{p}$, we obtain $f(\underline{v}) \equiv f(\underline{w}) \pmod{p}$. The particular choices $g_1(\underline{v}) = \sum_i v_i v_{i+1}$ and $g_2(\underline{v}) = \sum_{i < j} v_i v_j$ give rise to the functions $g_k(n)$ and $m_k(n)$ respectively.

We begin with two well known lemmas [7,2] that form the basis of our main results. (We believe our proof of Lemma 2 is rather clearer than Glaisher's.)

Lemma 1. (Lucas)[7]
$$\binom{p-1}{j} \equiv (-1)^j \pmod{p}$$
 for p prime, $0 \le j \le p-1$.

Proof: If j = 0, the result is trivial.

So we suppose $j \ge 1$. $(p-1)(p-2)\dots(p-j) \equiv (-1)^j j! \pmod p$. Since j! is a factor of the left side of the equation and since $\gcd(p, j!) = 1$ we can divide both sides by j! to obtain the required result.

Lemma 2. (Glaisher)[3] Let $0 \le w \le p-2$. If $m \equiv n \pmod{p-1}$ then

$$\sum_{\substack{i \equiv w \pmod{p-1} \\ 0 \le i \le m}} \binom{m}{i} \equiv \sum_{\substack{i \equiv w \pmod{p-1} \\ 0 \le i \le n}} \binom{n}{i} \pmod{p}.$$

Proof: It is sufficient to prove the result when m = n + p - 1. If p = 2 then the left side of the equation equals 2^{n+1} and the right side equals 2^n so the result is established in this case.

Suppose then that p > 2.

$$\sum_{\substack{i \equiv w \pmod{p-1} \\ 0 \le i \le n+p-1}} \binom{n+p-1}{i} = \sum_{\substack{i \equiv w \pmod{p-1} \\ 0 \le i \le n+p-1}} \sum_{j=0}^{p-1} \binom{p-1}{j} \binom{n}{i-j}$$

By Lemma 1, the right side is congruent \pmod{p} to

$$\sum_{\substack{i \equiv w \pmod{p-1} \\ 0 \leqslant i \leqslant n+p-1}} \sum_{j=0}^{p-1} (-1)^j \binom{n}{i-j}$$

Note that $\binom{n}{i}$ is equal to 0 for i > n. Considering j = 0 and j > 0 separately we obtain that this sum equals

$$\sum_{\substack{i \equiv w \pmod{p-1} \\ 0 < i < n}} \binom{n}{i} + \sum_{\substack{i \equiv w \pmod{p-1} \\ 0 < i < n+p-1}} \sum_{j=1}^{p-1} (-1)^j \binom{n}{i-j}$$

Every integer in interval [0, n] occurs exactly once as i - j in the double summation. Thus, setting u = i - j, the second term is equal to $(-1)^w \sum_{u=0}^n (-1)^u \binom{n}{u} = 0$, as required.

Lemma 3. Suppose $H = \{0, 1, ..., p-2\}^k$ and let $\underline{w} \in H$. If $m \equiv n \pmod{p-1}$ then

$$\sum_{\underline{\underline{\nu}} \equiv \underline{\underline{w}} \pmod{p-1}} {m \choose \underline{v}} \equiv \sum_{\underline{\underline{\nu}} \equiv \underline{\underline{w}} \pmod{p-1}} {n \choose \underline{\underline{v}}} \pmod{p}$$

Proof: Again, it is sufficient to prove the result for m = n + p - 1. If p = 2 then the left side equals k^{n+1} whereas the right side equals k^n , and clearly $k^{n+1} \equiv k^n \pmod{2}$.

So we suppose that p > 2 in what follows. We will prove the result by induction on k. If $\underline{v} = (v_1, \dots, v_{k+1})$ we let $\underline{v}' = (v_2, \dots, v_{k+1})$.

The case k=2 is Lemma 2 and serves as the basis of the induction. Assume the result for a $k \ge 2$. Then

$$\begin{split} \sum_{\substack{\underline{v} \equiv \underline{w} \pmod{p-1} \\ \underline{v} \in C_{k+1}(n+p-1)}} \binom{n+p-1}{\underline{v}} \\ &= \sum_{v_1 \equiv w_1 \pmod{p-1}} \binom{n+p-1}{v_1} \left\{ \sum_{\substack{\underline{v} \equiv \underline{w}' \pmod{p-1} \\ \underline{v} \notin C_k(n+p-1-v_1)}} \binom{n+p-1-\underline{v}_1}{\underline{v}'} \right\} \end{split}$$

Now by the inductive hypothesis the inner term is constant \pmod{p} for each $v_1 \equiv w_1$ (using $n - v_1$ instead of n). Thus the right side is congruent \pmod{p} to

$$\sum_{v_1 \equiv w_1 \pmod{p-1}} \binom{n+p-1}{v_1} \sum_{\substack{\underline{v}' \equiv \underline{w}' \pmod{p-1} \\ v' \in C_k(n-v_1)}} \binom{n-v_1}{\underline{v}'}$$

By Lemma 2 we obtain that this expression equals

$$\sum_{v_1 \equiv w_1 \pmod{p-1}} \binom{n}{v_1} \sum_{\underline{v}' \equiv \underline{w}' \pmod{p-1} \choose \underline{v}' \pmod{p}} \binom{n-v_1}{\underline{v}'} \pmod{p}$$

which equals $\sum_{\underline{v} \equiv \underline{w} \pmod{p-1}} \binom{n}{\underline{v}}$, as required.

Theorem 1. Suppose $f: N^k \to Z$ has property P(k) for a fixed prime $p \ge 2$. Let $F_k(n) = \sum_{\underline{v} \in C_k(n)} \binom{n}{\underline{v}} f(\underline{v})$. Then F_k has property P(k); that is, $F_k(n+p-1) \equiv F_k(n) \pmod{p}$ for all $n \ge 1$.

I

Proof: As before, let $H = \{0, 1, ..., p-2\}^k$. Then

$$\begin{split} F_k(n+p-1) &= \sum_{\underline{v} \in C_k(n+p-1)} \binom{n+p-1}{\underline{v}} f(\underline{v}) \\ &= \sum_{\underline{w} \in H} \sum_{\underline{v} \subseteq \underline{w} \atop \underline{v} \in C_k(n+p-1)} \binom{n+p-1}{\underline{v}} f(\underline{v}) \end{split}$$

By property P(k), $f(\underline{v}) \equiv f(\underline{w}) \pmod{p}$ so the last sum is

$$\equiv \sum_{\underline{w} \in H} f(\underline{w}) \sum_{\underline{v} \in C_k(n+p-1)} \binom{n+p-1}{\underline{v}} \pmod{p}$$

$$\equiv \sum_{\underline{w} \in H} f(\underline{w}) \sum_{\underline{v} \in C_k(n)} \binom{n}{\underline{v}} \pmod{p}$$

$$\equiv F_k(n) \pmod{p}.$$

Corollary 1. $g_k(n+p-1) \equiv g_k(n) \pmod{p}$ for all $k, n \ge 1$, p prime.

Proof: If p is a prime $\neq 2$, then Theorem 1 can be applied directly since we have already remarked that the summand $2^{\upsilon_1\upsilon_2+\upsilon_2\upsilon_3+\cdots+\upsilon_{k-1}\upsilon_k}$ has property P(k).

So we can suppose p=2. Let $q(\underline{v})=v_1v_2+v_2v_3+\cdots+v_{k-1}v_k$. Since $2^{q(v)} \equiv 0 \pmod{2}$ if q(v) > 0, it is sufficient to show that

$$\sum_{\substack{\underline{v} \in C_k(n) \\ \sigma(v) = 0}} \binom{n}{\underline{v}} \equiv k \pmod{2} \quad n \ge 1.$$
 (2)

The proof proceeds by induction. The cases k = 2 and k = 3 are easily proved. Inductive step: If $\underline{v} \in C_k(n)$ and $q(\underline{v}) = 0$ we can express \underline{v} either in the form $\underline{v} = (v_1, 0, \underline{v}''); v_1 \ge 1, \underline{v}'' \in \mathcal{C}_{k-2}(n-v_1) \text{ or } \underline{v} = (0, \underline{v}/); \underline{v}/\in \mathcal{C}_{k-1}(n) \text{ and we}$ have $q(\underline{v}') = 0$, $q(\underline{v}') = 0$. Then

$$\sum_{\substack{\underline{v}\in\mathcal{C}_k(n)\\q(\underline{v})=0}} \binom{n}{\underline{v}} = \sum_{v_1=1}^n \binom{n}{v_1} \sum_{\substack{\underline{v}''\in\mathcal{C}_{k-2}(n-v_1)\\q(\underline{v}'')=0}} \binom{n}{\underline{v}''} + \sum_{\substack{\underline{v}'\in\mathcal{C}_{k-1}(n)\\q(\underline{v}')=0}} \binom{n}{\underline{v}'}$$

By the inductive hypothesis, we obtain

$$\sum_{\underline{v} \in C_k(n) \atop q(\underline{v})=0} \binom{n}{\underline{v}} \equiv \sum_{v_1=1}^{n-1} \binom{n}{v_1} (k-2) + 1 + (k-1) \pmod{2}$$
$$\equiv (2^n - 2)(k-2) + k$$
$$\equiv k \pmod{2}$$

and the inductive step is verified.

Corollary 2. (Dickson-Glaisher)[1,2,3]: Let $m \equiv n \pmod{p-1}$, $1 \leq m \leq n$ p-1, and let $\underline{w} \in \{0,1,\ldots,p-2\}^k$.

$$\sum_{\substack{\underline{v} \in C_k(n) \\ \underline{v} \equiv \underline{w} \pmod{p-1}}} \binom{n}{\underline{v}} \equiv \left\{ \begin{array}{l} \binom{m}{\underline{w}} & \pmod{p} \text{ if } \sum w_i = m \\ 0 & \pmod{p} \text{ if } \sum w_i \neq m \end{array} \right.$$

Proof: Let $f(\underline{v}) = \begin{cases} 1 & \text{if } \underline{v} \equiv \underline{w} \pmod{p-1}; \\ 0 & \text{otherwise.} \end{cases}$ From Theorem 1 we obtain $F_k(n) \equiv F_k(m) \pmod{p}$, but

$$F_k(m) = \sum_{\substack{\underline{v} \in C_k(m) \\ v \equiv w \pmod{p-1}}} {m \choose \underline{v}} = \left\{ \begin{array}{ll} {m \choose \underline{w}} & \text{if } \underline{w} \in C_k(m), \\ 0 & \text{otherwise;} \end{array} \right.$$

which gives the result.

3 Conjecture 2

In order for us to settle the conjecture it seems necessary to introduce the following definitions and to prove some introductory results.

Definition 3. Let $C(n) = \bigcup_{k>1} C_k(n)$ be the set of all compositions of n. For $\underline{v} \in C(n)$ we define $\ell(\underline{v})$ to \bar{be} the number of components of \underline{v} and $m(\underline{v})$ the number of zero components of \underline{v} . Also we define $\rho: C(n) \to C(n)$, a compression map as follows: if $v \in C(n)$, then $\rho(v)$ is the vector obtained by compressing consecutive zeroes in v.

For example if $\underline{v} = (0,0,2,0,3,0,0,0,4)$ then $\rho(\underline{v}) = (0,2,0,3,0,4)$.

Proposition 3. Let $A(n) = \{\underline{\alpha} \in C(n) : \rho(\underline{\alpha}) = \underline{\alpha}\}$. Further define \sim on C(n)by $\underline{v} \sim \underline{w} \Leftrightarrow \rho(\underline{v}) = \rho(\underline{w})$. Then

- i) A is finite: in fact $|A(n)| = 4 \cdot 3^{n-1}$:
- ii) \sim is an equivalence relation on C(n);
- iii) $|C(n)/\sim| = |A(n)|$.

Proof:

i) Let $\underline{a} \in \mathcal{A}(n)$. Since $\rho(\underline{a}) = \underline{a}$, \underline{a} has no consecutive zeroes. Thus \underline{a} corresponds to a non-empty composition of n into $t = \ell(\underline{a}) - m(\underline{a})$ parts together with the addition of some single 0's between the non-zero components, which can be placed in 2^{t+1} ways. Thus

$$|\mathcal{A}(n)| = \sum_{t=1}^{n} {n-1 \choose t-1} 2^{t+1} = 2^{2} \sum_{t=1}^{n} {n-1 \choose t-1} 2^{t-1} = 4 \cdot 3^{n-1}.$$

- ii) It is obvious that \sim is an equivalence relation on C(n).
- iii) Since $\rho \circ \rho = \rho$ we see that $\rho: C(n) \to A(n)$ is surjective and \sim is the relation ker ρ so the result follows [8].

Proposition 4. Let $a \in A(n)$; then

- a) If $m(\underline{a}) = 0$ then $\rho^{-1}(\underline{a}) \cap C_k(n) = \begin{cases} \{\underline{a}\} & \text{if } k = \ell(\underline{a}) \\ 0 & \text{otherwise} \end{cases}$ b) If $m(\underline{a}) \geq 1$ then $\left| \rho^{-1}(a) \cap C_k(n) \right| = \binom{k-\ell(\underline{a})+m(\underline{a})-1}{m(\underline{a})-1}$

Proof:

- a) is obvious.
- b) $\underline{v} \in \rho^{-1}(\underline{a}) \cap C_k(n) \Leftrightarrow \rho(\underline{v}) = \underline{a}, \underline{v} \in C_k(n)$. Thus $|\rho^{-1}(\underline{a}) \cap C_k(n)|$ is the number of ways we can "pad" \underline{a} with $k - \ell(\underline{a})$ zeroes at places where there is already a single zero. This is the number equivalent to the number of ways of distributing r identical objects in s identical boxes which is $\binom{r+s-1}{s-1}[8].$

Definition 4. Let $h: C(n) \to Z$. h is said to have property Q provided that $\underline{v} \sim \underline{w} \Rightarrow h(\underline{v}) = h(\underline{w})$

We see that h has property $Q \iff \exists \bar{h} : C(n) / \sim \longrightarrow Z$ such that the following diagram commutes.

$$\begin{array}{ccc} C(n) & \stackrel{h}{\longrightarrow} & Z \\ \downarrow & \uparrow & \bar{h} \\ C(n)/\sim & \end{array}$$

Examples of such functions arise from Section 1. If $h_1: C(n) \to Z$ is obtained by setting $h_1(\underline{v}) = \binom{n}{\underline{v}}$ then h_1 has property Q. Similarly $h_2: C(n) \to Z$ obtained from $h_2(\underline{v}) = 2^{v_1v_2+\cdots+v_{k-1}v_k}$, and $h_3: C(n) \to Z$, where $h_3(\underline{v}) = a^{s(\underline{v})}$ in which s is any symmetric polynomial, also have property Q. Moreover if h_1, h_2 have property Q so does h_1h_2 . We thus see that the proof of Conjecture 2 will follow immediately from:

Theorum 2. Let $h: C(n) \to Z$ have property Q and let $H_n(k) = \sum_{\underline{v} \in C_k(n)} h(\underline{v})$. Then $H_n(k)$ is a polynomial of degree n in k for $k \ge n+1$.

Proof: Since h has property Q we can write

$$H_n(k) = \sum_{\underline{v} \in \mathcal{C}_k(n)} h(\underline{v}) = \sum_{\underline{\alpha} \in \mathcal{A}(n)} \sum_{\substack{\rho(\underline{v}) = \underline{\alpha} \\ v \in \mathcal{C}_k(n)}} h(\underline{v}) = \sum_{\underline{\alpha} \in \mathcal{A}(n)} h(\underline{\alpha}) \left| \rho^{-1}(a) \cap \mathcal{C}_k(n) \right|$$

Using Proposition 4

$$=\sum_{\substack{\underline{\alpha}\in A(n)\\m(\underline{\alpha})\geq 1}}h(\underline{\alpha})\binom{k-\ell(\underline{\alpha})+m(\underline{\alpha})-1}{m(\underline{\alpha})-1}+\sum_{\substack{\underline{\alpha}\in A(n)\\m(\underline{\alpha})=0}}h(\underline{\alpha}).$$

The first term is a finite (by prop. 3) weighted sum of binomial coefficients which are polynomials of degree at most $m(\underline{a}) - 1 \le n$. In fact it is a polynomial of degree exactly n, since $\underline{a} = (0, 1, 0, 1, ..., 1, 0)$ will have $m(\underline{a}) - 1 = n$. The second term vanishes when $k \ge n+1$ since $m(\underline{a}) \ge 1$ in that case.

Close examination of the data presented suggests that, in fact, $H_n(k)$ is a polynomial of degree n in k for $k \ge n-1$. We have been unable to settle this outstanding conjecture.

References

- 1. Dickson, L., Theorems on the Residues of Multinomial Coefficients with respect to a Prime Modulus, Quarterly J. Math 33 (1902), 378-384.
- 2. Glaisher, J.W.L., On the residue of a Binomial Theorem Coefficient with respect to a Prime Modulus, Quarterly J. Math 30 (1899), 150-156.
- 3. Glaisher, J.W.L., On the Residue with respect to p^{n+1} of a Binomial-Theorem coefficient divisible by p^n , Quarterly J. Math 30 (1899), 349–366.
- 4. Hardy, G.H., Wright, E.M., *The Theory of Numbers*, Oxford Univ. Press (1975).
- 5. Klarner, D., *The Number of Graded Partially Ordered Sets*, J. Comb. Theory 6 (1969), 12–19.
- 6. Klarner, D., The Number of Classes of Isomorphic Graded Partially Ordered Sets, J. Comb. Theory 9 (1970), 412–419.
- 7. Lucas, E., Théorie des Nombres, Paris, 1891 (repr. Blanchard, 1961), 420.
- 8. Prather, R., Discrete Mathematical Structures for Computer Science, Houghton Mifflin Co., Boston (1976).
- 9. Read, R.C., The number of k-coloured graphs on labelled nodes, Can. J. Math 12 (1960), 410-414.
- 10. Wright, E.M., Counting coloured Graphs, Can. J. Math 13 (1961), 683-693.