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Abstract. Let gx(n) = Egeck(n) (92"1"1*"2"3’"3"4*""“1-:% where Cy(n) de-
notes the set of k-compositions of n. We show that
i) gx(n+ p—1) = gi(n) (mod p) forallk,n> 1, prime p;
ii) gx(n) is a polynomial in k of degree nfork > n+ 1;

and, moreover, that these properties hold for wider classes of functions which are sums
involving multinomial coefficients.

1 Introduction

Let N denote the set of non-negative integers and let k, n be positive integers. If
v=(v,v2,...,%) € N* satisfies the condition EL, v; = n, then v is called a
k-composition of n. The set of all such k-compositions of » will be denoted by

Ck(n). For v € Ci(n), the multinomial coefficient (%) is defined to be v—l-,”z—",'—;,:,-
The function gg: N — {0} — N defined by
n
= 2Vlvz+vzvs*wv4+"-+vk—lvk 1
ge(my = Y (2) 1

vECK(n)

occurs in the enumeration of graded graphs [§5,6]. The present authors were ex-
tending the table of computed values of gx(n) to 1 < k,n < 9 (see Table 1) when
they noticed that the resulting table appeared to have some interesting number-
theoretic properties. The most startling pattern appears in the final digits of the
numbers gx(5) and gx(9). In fact, the authors initially assumed that their com-
puter program was in error. Closer inspection proved the observation valid (it
follows from feature 3 below) and produced the following list of features.

feature 1: ga(n+ 1) = 2g3(n)

feature 2: gx(p) =k (mod p) forp=2,3,5,7

feature 3: gr(m+ 1) = ge(m) (mod 2)
gr(m + 2) = g(m) (mod 3)
gk(m + 4) = ge(m) (mod 5)
ge(m + 6) = ge(m) (mod 7)
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feature 4:  This concerned the apparent growth rate of the various columns. It is
clear that g, (1) = & for all k > 1 so that the first column grows in a
linear fashion. Using the standard techniques of differences it is easy
to show that
w(D=k2+2k-2,k>1
ok(3)=k>+6k>+6k—18,k>2
gk(4) = k* + 12k3 + 48k + 50k — 266,k > 3

The question arises: Are these features true in general? We were able quickly
to dispose of the validity of features 1 and 2 and include the proofs at the end of
this section.

gr(n)
2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1

6 26 162 1442 18306 330626 8488962 309465602
13 81 721 9153 165313 4244481 154732801 8005686273
22 166 1726 24814 494902 13729846 531077086 28697950174
33 287 3309 50975 1058493 29885567 1156711869 61815727295
46 450 5650 91866 1957066 55363650 2109599650 109773407466
61 661 8953 152017 3334921 94354981 3528929353 177999003157
78 926 13446 240758 5381118 152654846 5615217126 274588808678
97 1251 19381 363339 8337037 238002291 8643818581 410796186939
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Table 1
The main purpose of this paper is to prove the conjectures suggested in features
3 and 4 — namely
Conjecture 1. gi(n+p— 1) = gx(n) (mod p) forall k,n> 1, primep.
Conjecture 2. gi(n) is a polynomial in k of degree n for k > n+ 1.

It will be seen that there is a more general setting in which to state and prove the
theorems which have as corollaries the proofs of the conjectures and the Dickson-
Glaisher results on multinomial sums [1,2,3]. Read [9] and Wright [10] considered
the polynomial character of a related function

mk( 11) = z (:)2’ where s= Ev,-v,-

veCy(n) i<j
Their result also follows as a special case of our Theorem 2. Moreover it will be

seen that my(n) satisfies the congruence mi(n+ p— 1) = mi(n) (mod p).
We now retum to the disposition of features 1 and 2.
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Proposition 1. Forall n> 1, g2(n+ 1) = 2g3(n).

Proof:
n
= 7 7+ j(n—i—)
ga(n) 0 (‘l]ln—’—])
s»:sn
0<s, j<n ,,n—1—]
n .
50 {5 0)
jao J i=0 !
n
= ("‘) 2i(n=j) g n—j
j=o N
n
(”)2(;+1)(n—;)
j=0 /
= n
=Y ( )2"”"”’ by replacing j with n— j
= N
Now

- n+ l $(n+1—1)
0(n+l) = E 2
1=0

- ( )Zt(ml-l') +z( )21’(2#1-5)
$=0 i=1

E( )2:(n+l—i) + E( )2(:'4-1)(7»—!')
1=0

i=0
2g93(n).

1

Proposition 2. For all primes p and all integers k > 1, gi(p) = k(mod p).

Proof: Note that p | (°) unless one of the v;'s equals p (and therefore the rest
equal 0) since otherwise p divides the numerator but not the denominator. Thus

w®= ), (Z)z"m*"’*"*-ww k=k (mod p).

all y<p
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2 Conjecture 1

Let p be a fixed prime > 2. In order to obtain the proper setting for our theorem
we make the following

Definition 1. Lef v, w € N*. We write y = w (mod p — 1) if and only if
vi=w; (mod p—1) for1 <i< k.

It is easy to see that = mod p — 1 is an equivalence relation.

Definition 2. Let f: N* — Z. f is said to have property P(k) if
y=w (mod p—1) = f(v) = f(w)(modp).

It should be evident that f has property P(k) <= 3f: N¥/ =— Zyp such that
the following diagram commutes.

Nt L,z
‘ll lﬂ'
Nk = 5 Zp

A large class of functions satisfy property P(k). If g is a polynomial in k
variables and a is a positive integer, then f(v) = a%¥ has property P(k) for any
prime p # a. To see this, note that y = w (mod p — 1) implies that g(v) =
g(w) (mod p— 1). Hence using Fermat’s theorem 4], a?~! = 1 (mod p), we
obtain f(y) = f(w) (mod p). The particular choices g1 (v) = Y, vivis1 and
g2(v) = 2«;‘ viv; give rise to the functions gx(n) and m(n) respectively.

We begin with two well known lemmas [7,2] that form the basis of our main
results. (We believe our proof of Lemma 2 is rather clearer than Glaisher’s.)

Lemma 1. (Lucas)/7] (P;‘) = (—1)/ (mod p) for p prime,0 < j < p—1.

Proof: If j = O, the result is trivial.

Sowesuppose j > 1. (p— 1)(p—2)...(p—j) = (=1)/;! (mod p). Since j!
is a factor of the left side of the equation and since gcd (p, ;!) = 1 we can divide
both sides by j! to obtain the required result. ]

Lemma 2. (Glaisher)[3]Let0 < w<p—2.If m=n(modp— 1) then

> 0= 2,0 men

i=w (mod p—1) i=w (mod p~1)
0<i<m 0<i<n

Proof: It is sufficient to prove the result when m = n+ p— 1. If p = 2 then the

left side of the equation equals 2™! and the right side equals 2™ so the result is
established in this case.
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Suppose then thatp > 2.

n+p—1 Lk p—1 n
PN G DRI e @D 69)
i=w (mod p-1) i=w (mod p—-1) j=0

0<i<ntp—1 0<i<ntp—1
By Lemma 1, the right side is congruent ( mod p) to
p~-1
> ()
i=w (mod p-1) j=0 L
0<i<ntp—1

Note that (%) is equal to O for i > n. Considering j = 0 and j > 0 separately we
obtain that this sum equals

n -1 n
-1y’
2@ 2 ()
i=w (mod p-—1) i=w (mod p—1) j=1
0<ign 0<i<ntp—~1

Every integer in interval [0, n] occurs exactly once as 1 — j in the double summa-
tion. Thus, setting u = i— 7, the second term is equal to (—1)* 3 °0_ (—1)*(%) =
0, as required. |

Lemma 3. Suppose H = {0,1,...,p—2} andletw € H.
Ifm=mn(mod p~— 1) then

50,20 e

r=w (mod p-1)
vECL(m) vECr(n)

Proof: Again, it is sufficient to prove the result for m = n+ p— 1. Ifp = 2
then the left side equals k™! whereas the right side equals k™, and clearly k™! =
k™ (mod 2).

So we suppose that p > 2 in what follows. We will prove the result by induction
onk.Ifu= ('Ul,... , Vke1) weletg’ = (vz,... s Vel ).

The case k = 2 is Lemma 2 and serves as the basis of the induction. Assume
the result fora & > 2. Then

> ()

¥=w (mod p-1)
VECks1 (ntp—1)

_ E (n+p—1) E (n+p—l—gl)
- v v/
w=w (mod p-1)

v1=w; (mod p-1)
WeC(ntp—1—v;)
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Now by the inductive hypothesis the inner term is constant (mod p) for each
v; = w; (using n — v, instead of n). Thus the right side is congruent (mod p)

0 1
n+p-— n—v
> (™) s W)
vy =wy (mod p-1) vi=w (mod p—1)
YECy(n—vy)

By Lemma 2 we obtain that this expression equals

> () (") mean

v/
w=w (mod p-—1)

w=w (mod p—1)

wECi(n—v1)
which equals E (n) , as required. [ |
v
ySw (mod p-1) M
YEC 1 (n)

Theorem 1. Suppose f: N¥ — Z has property P(k) for a fixed primep > 2.
Let Fi(m) = ¥peqy(n (Z) f(v). Then F; has property P(k);
that is, Fy(n+ p—1) = Fi(n) (mod p) foralin> 1.

Proof: As before, let H = {0,1,... ,p— 2}*. Then

(n+ p—-1 )f(!)
vECx(ntp—1) L

E E (n-&»i—l)f(y)

weH =w
vEC(n+p-1)

By property P(k), f(¥) = f(w) (mod p) so the last sum is

=Y iw ¥ (") tmoa

Fy(n+p—1)

weH vECL(n+p-1)
=Y fw Y (:) (mod p)
weH vECK(n) M

= Fix(n) (mod p).

Corollary 1. gi(n+ p— 1) = gx(n) (mod p) forallk,n > 1, p prime.

Proof: If pis a prime # 2, then Theorem 1 can be applied directly since we have
already remarked that the summand 2 v1v2+v2us*-+v-1% hag property P(k).
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So we can suppose p = 2. Let g(v) = vivz + vavs + --- + vg_1v;. Since
299 =0 (mod 2) if g(v) > 0, it is sufficient to show that

) (n)Ek (mod 2) n>1. 1))
veCi(m Y
q(g)zo

The proof proceeds by induction. The cases k = 2 and k = 3 are easily proved.

Inductive step: If y € Ci(n) and g(v) = 0 we can express y either in the form
v=(v1,0,2);01 > 1,8" € Cha(n—v1) ory = (0,); v/ € Ce_1(m) and we
have g(v') = 0, ¢(w/) = 0. Then

> @-20) . > ()= 6

vEC(n) v =1 v’ €Ci-2(n—w1)
o(9)=0 a(y")=0 a(e=0

By the inductive hypothesis, we obtain

n-1

> (Z)Ez(z)(k—2)+l+(k—l) (mod 2)
Y

=@Q2"—2(k—-2 +k
=k (mod 2)

and the inductive step is verified.

Corollary 2. (Dickson-Glaisher)[1,2,3]: Letm =n (mod p—1),1 < m <
p—1l,andletw € {0,1,...,p—2}*

> @)= mr s

1 ify=w (mod p—1);
Proof: Let f(u) = 0 otherwise

From Theorem 1 we obtain Fx(n) = Fi(m)(mod p), but

Ame 3 (7)-{ P fueac,

weCaim) 0 otherwise;
y=w (mod p—1)

which gives the result. |
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3 Conjecture 2

In order for us to settle the conjecture it seems necessary to introduce the following
definitions and to prove some introductory results.

Definition 3. LetC(n) = U,,,Ci(n) be the set of all compositions of n. For
v € C(n) we define £(v) to be the number of components of v and m(v) the
number of zero components of v. Also we define p: C(n) — C(n), a compres-
sion map as follows: if v € C(n), then p(x) is the vector obtained by compress-
ing consecutive zeroes in v.

For example ify = (0,0,2,0,3,0,0,0,4) then p(v) = (0,2,0,3,0,4).

Proposition 3. Let A(n) = {a € C(n): p(a) = a}. Further define ~ on C(n)
byv~ w4 p(v) = p(w). Then
i) A is finite: in fact|A(n)| = 4 -3™1;
ii) ~ is an equivalence relation onC(n);
i) [C(m)/ ~] = |A(n)].
Proof:
i) Leta € A(n). Since p(a) = a, a has no consecutive zeroes. Thus a cor-
responds to a non-empty composition of n into ¢(= £(a) — m(a)) parts

together with the addition of some single 0’s between the non-zero compo-
nents, which can be placed in 2¢*! ways. Thus

N [n—=1\_,. N (n—1
ZICIEDY ('t‘_ 1)2‘ P=22%" (’t‘_ 1)2'-' =4.3%1,

t=1 t=1
ii) TItis obvious that ~ is an equivalence relation on C(n).

iii) Since p o p = p we see that p:C(n) — A(n) is surjective and ~ is the
relation ker p so the result follows [8]. |

Proposition 4. Leta € A(n); then
{a} if k=£a)

If = -1 =
a) Ifm(a) =0 thenp™ (8) NCy(n) { 0 otherwise

b) Ifm(a) > 1 then |p~'(a) NCi(n)| = (42 P1)

Proof:

a) is obvious.

b) v € p7(a) NCi(n) 4 p(2) = a, v € Ci(n). Thus o' (a) NC(n)| is
the number of ways we can “pad” a with k£ — £(a) zeroes at places where
there is already a single zero. This is the number equivalent to the num-
ber of ways of distributing = identical objects in s identical boxes which is

(o)) I
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Definition 4. Let h:C(n) — Z. h is said to have property Q provided that
v~ w= h(yv) = h(w)

We see that A has property Q <=> Jh:C(n)/ ~— Z such that the following
diagram commutes.

C(n) 4,z
al /h
C(n)/ ~

Examples of such functions arise from Section 1. If h;: C(n) — Z is obtained
by setting b1 (2) = (7) then h, has property Q. Similarly h;: C(n) — Z obtained
from hy(v) = 29+ +u-1% and hy:C(n) — Z, where h3(v) = a®® in which
s is any symmetric polynomial, also have property Q. Moreover if k1, hy have
property @ so does h1ha. We thus see that the proof of Conjecture 2 will follow
immediately from:

Theorum 2. Let h: C(n) — Z have property Q andlet Ha(k) = 3 yeq,(n) P
Then H,(k) is a polynomial of degree nin k for k > n+ 1.

Proof: Since h has property Q we can write

Hyk)= Y k=Y, Y mo= Y ha)|p(a) NCi(n)|

vECK(n) a€A(n) p(Y)=a a€A(n)
v€Ci(n)
Using Proposition 4
— -1
=3 h(g)(k e@”"‘(lg) )+ 3 M.
a€A(n) m(a) - aEA(m)
m(g) 21 m(a)=0

The first term is a finite (by prop. 3) weighted sum of binomial coefficients which
are polynomials of degrec at most m(a) — 1 < n. In fact it is a polynomial of
degree exactly n, sincea = (0,1,0,1,...,1,0) will have m(g) — 1 = n. The
second term vanishes when k > n+ 1 since m(a) > 1 in that case. [ |

Close examination of the data presented suggests that, in fact,H,( k) is a poly-
nomial of degree nin &k for £ > n— 1. We have been unable to settle this out-
standing conjecture.’
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