A Note On The Size Ramsey Number For Stars¹

Zhang Ke Min

Dept. of Mathematics, Nanjing University, Nanjing, 210008, Peoples Republic of China

Abstract. In this paper, we prove that the size ramsey number

$$\hat{\tau}(a_1 K_{1,n_1}, a_2 K_{1,n_2}, \dots a_{\ell} K_{1,n_{\ell}}) = \left[\sum_{i=1}^{\ell} (a_i - 1) + 1 \right] \left[\sum_{i=1}^{\ell} (n_i - 1) + 1 \right].$$

For the most part our notation will conform with that used in [1]. All graphs considered will be finite, undirected and without loops and multiple edges. Let $G, G_1, G_2, \ldots, G_\ell$ be graphs. The edges of G are colored in any fashion with ℓ colors. If for some $i, 1 \leq i \leq \ell$ the *i*th colored subgraph $G[E_i]$ contains G_i as a subgraph. i.e. $G[E] \supseteq G_i$, then G will be said to arrow $(G_1, G_2, \ldots, G_\ell)$ and will be written $G \to (G_1, G_2, \ldots, G_\ell)$. Let $\mathcal{D} = \{G|G \to (G_1, G_2, \ldots, G_\ell)\}$. The size ramsey number of $\{G_1, G_2, \ldots, G_\ell\}$, denoted $\hat{\tau}(G_1, G_2, \ldots, G_\ell)$, is defined as $\hat{\tau}(G_1, G_2, \ldots, G_\ell) = \min_{G \in \mathcal{D}} |E(G)|$.

In 1967, Kalbfleisch [4] first raised the concept of the size ramsey number, and then it was considered [2] and [3]. There is an open problem in [2]: 'Show that $\hat{r}(mK_{1,k}, nK_{1,\ell}) = (k+\ell-1)(m+n-1)$ for $k \neq \ell$ '. This problem is a corollary of the main result of this paper.

Theorem. $\hat{r}(a_1 K_{1,n_i}, a_2 K_{1,n_2}, \ldots, a_{\ell} K_{1,n_{\ell}}) = [\sum_{i=1}^{\ell} (a_i - 1) + 1] \cdot [\sum_{i=1}^{\ell} (n_i - 1) + 1]$, where a_i, n_i $(1 \le i \le \ell)$ are positive integers.

Proof: Since $[\sum_{i=1}^{\ell} (a_i - 1) + 1] K_{1,\sum_{i=1}^{\ell} (n_i - 1) + 1} \rightarrow (a_1 K_{1,n_\ell}, a_2 K_{1,n_\ell}, \dots, a_\ell K_{1,n_\ell}), \hat{\tau}(a_1 K_{1,n_i}, a_2 K_{1,n_\ell}, \dots, a_\ell K_{1,n_\ell}) \leq |E([\sum_{i=1}^{\ell} (a_i - 1) + 1] K_{1,\sum_{i=1}^{\ell} (n_i - 1) + 1}| = [\sum_{i=1}^{\ell} (a_i - 1) + 1] [\sum_{i=1}^{\ell} (n_i - 1) + 1].$ So we only need to prove that:

$$\hat{\tau}(a_1 K_{1,n_1}, a_2 K_{1,n_2}, \dots, a_{\ell} K_{1,n_{\ell}}) \ge \left[\sum_{i=1}^{\ell} (a_i - 1) + 1 \right] \left[\sum_{i=1}^{\ell} (n_i - 1) + 1 \right]$$
(A)

¹Project supported by NSFC

Now, using induction on $a = \sum_{i=1}^{\ell} (a_i - 1)$ and $n = \sum_{i=1}^{\ell} (n_i - 1)$, we have:

(1) When a=0, i.e. $a_1=a_2=\cdots=a_\ell=1$, for any G with $|E(G)|\leq n$, there is an ℓ -edge coloring of G such that $|E(G[E_i])|\leq n_i-1$, $i=1,2,\ldots,\ell$, where $G[E_i]$ is the *i*th colored subgraph in G. Then $G[E_i]\not\supseteq K_{1,n_i}$, $i=1,2,\ldots,\ell$. Hence $G\not\to (K_{1,n_i},K_{1,n_2},\ldots,K_{1,n_\ell})$. i.e. (A) is true in this case.

In the following, we assume that when $0 \le a < a_0 = \sum_{i=1}^{\ell} (a_i^0 - 1)$, (A) is true. We will prove that when $a = a_0$, (A) is also true. Since $a = a_0 > 0$, without loss of generality, $a_1^0 > 1$.

(2) When n=0, i.e. $n_1=n_2=\cdots=n_\ell=1$, for any G with $|E(G)|\leq a_0$, there is an ℓ -edge coloring such that $|E(G[E_i])|\leq a_i^0-1$, $i=1,2,\ldots,\ell$. Then $G[E_i]\not\supseteq a_i^0K_{1,1}$ $i=1,2,\ldots,\ell$. Hence $G\not\mapsto (a_1^0K_{1,1},a_2^0K_{1,1},\ldots,a_\ell^0K_{1,1})$. So (A) is true in this case.

In the following, we assume that when $0 \le n < n_0$, (A) is true.

(3) When $n = n_0 = \sum_{i=1}^{\ell} (n_i - 1)$, without loss of generality, we can assume that $n_1^0 > 1$. For any G with $|E(G)| \le (a_0 + 1)(n_0 + 1) - 1$, we divide the problem into three cases to prove (A).

Case 1. $\Delta(G) \ge n_0 + 1$.

There is $v_0 \in V(G)$ such that $d(v_0) = \Delta(G) \geq n_0 + 1$. Since $|E(G - v_0)| = |E(G)| - d(v_0) < (a_0 + 1)(n_0 + 1) - (n_0 + 1) = a_0(n_0 + 1) = \hat{\tau}((a_1^0 - 1)K_{1,n_1^0}, a_2^0K_{1,n_2^0}, \dots, a_\ell^0K_{1,n_2^0})$ by the induction hypothesis, there is an ℓ -edge coloring of $G - v_0$ such that the 1st colored subgraph does not contain $(a_1^0 - 1)K_{1,n_1^0}$ and the *i*th, $2 \leq i \leq \ell$, colored subgraph does not contain $a_i^0K_{1,n_i^0}$. Then the edges which are incident with v_0 are colored in the 1st color. Hence we get an ℓ -edge coloring of G such that $G[E_i] \not\supseteq a_i^0K_{1,n_i^0}$, $i = 1, 2, \dots, \ell$. So $G \not\to (a_1^0K_{1,n_1^0}, a_2^0K_{1,n_2^0}, \dots, a_\ell^0K_{1,n_\ell^0})$;

Case 2. $\Delta(G) \leq n_0$ and there is a component, say C_1 , with $|E(C_1)| \geq a_0(n_0 + 1)$.

- a) When $C_1 \supseteq M_1 = (a_0+1)K_{1,1}$, then $|E(C_1-(a_0+1)K_{1,1})| = |E(C_1)| (a_0+1) \le |E(G)| (a_0+1) < (a_0+1)(n_0+1) (a_0+1) = (a_0+1)n_0 = [\sum_{i=1}^{\ell} (a_i^0-1)+1][n_1^0-2+\sum_{i=2}^{\ell} (n_i^0-1)+1] = \hat{\tau}(a_1^0K_{1,n_0^0-1},a_2^0K_{1,n_0^0},\dots,a_{\ell}^0K_{1,n_0^0})$ by induction hypothesis. Hence there is an ℓ -edge coloring of $C_1-(a_0+1)K_{1,1}$ such that the 1st colored subgraph does not contain $a_1^0K_{1,n_0^0-1}$ and the ith, $2 \le i \le \ell$, colored subgraph does not contain $a_i^0K_{1,n_0^0}$. Then the edges of M_1 are colored in 1st color. Thus we get an ℓ -edge coloring of C_1 such that $C_1[E_i] \not\supseteq a_i^0K_{1,n_0^0}$, $1 \le i \le \ell$, where $C_1[E_i]$ is the ith colored subgraph in C_1 .
- b) When $C_1 \not\supseteq (a_0 + 1) K_{1,1}$, then we have a maximum matching of C_1 $M = \{u_i v_i, i = 1, 2, ..., \alpha'\}, \alpha' \leq a_0$. Let $U = \{u_i, i = 1, 2, ..., \alpha'\}$,

 $V=\{v_i, i=1,2,\ldots,\alpha'\}, W=V(C_1)\setminus\{U\cup V\}$ and $W_0=\{v|d_{c_1}(v)=\Delta(C_1), v\in W\}$. Thus $E(C_1[W])=\phi$. Now, let $C_0=C_1\cap [W\vee (U\cup V)]$, where the join \vee is defined in page 58 of [1]. Thus for any $S\subseteq W_0\subseteq W$, we have $|S|\Delta(C_1)=\sum_{V\in S}d_{c_1}(v)=\sum_{V\in S}d_{c_0}(v)=\sum_{V\in N_{c_0}(S)}d_{c_0}(v)\leq |N_{c_0}(S)|\Delta(C_0)\leq |N_{c_0}(S)|\Delta(C_1)$. Hence $|N_{c_0}(S)|\geq |S|$. By the Hall Theorem ([1] Theorem 5.2), C_0 contains a matching M_0 that saturates every vertex in W_0 . i.e. $W_0\subseteq V(C_0[M_0])=V(C_1[M_0])$. Thus $V(G_1[M\cup M_0])=W_0\cup U\cup V\supseteq\{v|d_{c_1}(v)=\Delta(C_1), v\in V(C_1)\}$. Hence we have:

$$\chi'(C_1 - M \cup M_0) \le 1 + \Delta(C_1 - M \cup M_0) \le \Delta(C_1) \le n_0.$$

So there is an n_0 -edge coloring C of $C_1-M\cup M_0$. Now the edges of $C_1-M\cup M_0$ are recolored as follows. For $j=1,2,\ldots,\ell$, recolor all of the $\sum_{i=1}^{j-1}(n_i^0-1)+1$ th, $\sum_{i=1}^{j-1}(n_i^0-1)+2$ th,..., $\sum_{i=1}^{j}(n_i^0-1)$ th color edges in C with jth color. Thus $(C_1-M\cup M_0)[E_i]\not\supseteq K_{1,n_i^0}$, $i=1,2,\ldots,\ell$.

Note that $C_1[M \cup M_0]$ has $\alpha'(\leq a_0)$ components which are ismorphic to $K_{1,1}$ or $K_{1,2}$. Hence there is an ℓ -edge coloring of $C_1[M \cup M_0]$ such that the edges of each component are colored the same color and there are at most $a_i^0 - 1$ ith color components $i = 1, 2, \ldots, \ell$. Thus we have an ℓ -edge coloring of C_1 with $C_1[E_i] = (C_1 - M \cup M_0)[E_i] \cup (C_1[M \cup M_0])[E_i] \not\supseteq a_i K_{1,n_i^0}$, $i = 1, 2, \ldots, \ell$. Combining a) and b), we have

$$C_1 \not\to (a_1^0 K_{1,n^0}, a_2^0 K_{1,n^0}, \ldots, a_\ell^0 K_{1,n^0}).$$

On the other hand, $|E(G-C_1)| = |E(G)| - |E(C_1)| < (a_0+1)(n_0+1) - a_0(n_0+1) = n_0+1 = \hat{r}(K_{1,n_1^0}, K_{2,n_2^0}, \ldots, K_{1,n_\ell^0})$ by the induction hypothesis. So

$$G-C_1 \not\to (K_{1,n_1^0},K_{1,n_2^0},\ldots,K_{1,n_2^0}).$$

Hence $G \not\to (a_1^0 K_{1,n_1^0}, a_2^0 K_{1,n_2^0}, \dots, a_\ell^0 K_{1,n_\ell^0}).$

Case 3. For every component C_j of G, $|E(C_j)| \leq a_0(n_0 + 1) - 1$, $j = 1, 2, ..., \omega$.

In this case, for any j, $1 \le j \le \omega$, there is k_j with $0 \le k_j \le a_0 - 1$ such that

$$k_j(n_0+1) \le |E(C_j)| < (k_j+1)(n_0+1)$$
 (B)

By the induction hypothesis, for any $\{a_{1j}, a_{2j}, \ldots, a_{\ell j}\}$ with $\sum_{v=1}^{\ell} (a_{ij} - 1) = k_j$, we have:

$$\hat{\tau}(a_{1j}K_{1,n_0^0},a_{2j}K_{1,n_0^0},\ldots,a_{\ell j}K_{1,n_0^0})=(k_j+1)(n_0+1).$$

Thus by (B), we have

$$C_j \not\to (a_{1j}K_{1,n_0^0}, a_{2j}K_{1,n_2^0}, \ldots, a_{\ell j}K_{1,n_0^0}).$$

Hence
$$G = \bigcup_{j=1}^{\omega} C_j \not\to ([\sum_{j=1}^{\omega} (a_{1j} - 1) + 1] K_{1,n_1^0}, [\sum_{j=1}^{\omega} (a_{2j} - 1) + 1] K_{1,n_2^0}, \ldots, [\sum_{j=1}^{\omega} (a_{\ell j} - 1) + 1] K_{1,n_2^0}).$$

On the other hand, by (B), we have $\sum_{i=1}^{\ell} \left[\sum_{j=1}^{\omega} (a_{ij}-1)+1 \right] = \sum_{j=1}^{\omega} \left[\sum_{j=1}^{\ell} (a_{ij}-1) \right] + \ell = \sum_{j=1}^{\omega} k_j + \ell \le \left[\sum_{j=1}^{\omega} |E(C_j)|/(n_0+1) \right] + \ell = \left[|E(G)|/(n_0+1) \right] + \ell \le \ell$ $a_0 + \ell = \sum_{i=1}^{\ell} (a_i^0 - 1) + \ell = \sum_{i=1}^{\ell} a_i^0$. So we can choose positive integers a_{ij} , $1 \le i \le \ell$ and $1 \le j \le \omega$, such that

 $\sum_{i=1}^{\ell} (a_{ij}-1) = k_j$ and $\sum_{i=1}^{\omega} (a_{ij}-1) + 1 = a_i^0$. Hence

$$G \not\to (a_1^0 K_{1,n_1^0}, a_2^0 K_{1,n_2^0}, \ldots, a_\ell^0 K_{1,n_\ell^0}).$$

Combining cases 1,2 and 3, (A) is true. The proof is complete.

References

- 1. Bondy, J.A. and U.S.R. Murty, Graph Theory with Application, Macmillan, London, New York (1976).
- 2. Erdös, P., R.J. Faudree, C.C. Rousseau and R.H. Schelp, The size ramsey number, Periodic Math. Hung. 9 (1978), 145-161.
- 3. Faudree, F.J. and R.H. Schelp, Some problems in ramsey theory, Lecture Notes in Math. 642, Y. Alavi and D.R. Lick (1978), 500-515.
- 4. Kalbfleisch, J.G., Upper bounds for some ramsey numbers, J. Combin. Theory 2 (1967), 35-42.