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Abstract, With the help of a computer, the third Ramsey number is determined for
each of the 25 graphs with five edges, five or more vertices and no trivial components.

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. For
a graph G with vertex-set V(G) and edge-set E(G), we write p(G) = |V(G)|
and ¢(G) = |E(G)|. The mth Ramsey number of G is the least n € A such that
every assignment of m colours to E( K,) results in a monochromatic subgraph
isomorphic to G. The second Ramsey numbers for graphs with at most seven
edges and no isolated vertices were given in [2,8]. In [11] we gave the third Ram-
sey numbers for all graphs with at most four edges and no isolated vertices. Here
we give the corresponding Ramsey numbers for all but one of the graphs with five
edges. The exception arises when the graph in question has only four vertices: in
this case we know only that 28 < r3 (K4 — e) < 32, these bounds having been
established recently by Exoo [6].

There are 26 graphs D with ¢(D) = 5 and no isolated vertices: we label
them Dy, ..., Dy as shown in Fig.1, with D; = K4 —e. For1 < k < 26,
let Fy(n) be the set of n-vertex graphs which contain no Dy, and let tx(n) =
max{g(G): G € Fi(n)}. If K, is the edge-disjoint union of m graphs in Fi(n)
then (3) = g(K,) < mty(n) and so we have:

1 The first author is grateful to the British Council for a Sino-Friendship Scholarship, held at the Uni-
versity of Stirling 1990-91.
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Lemma 1.1. If mti(n) < (3) then rm(Di) < m.

n 2345 6 7 8 910111213141516171819 20 21 22 23
Hin) [134 6 9 1216 20 25 30 36 42 49 56 64 72 81 90 100 110 121 132
ta(m) |136 7 9 1216 20 25 30 36 42 49 56 64 72 81 90 100 110 121 132
t3(n) 1366 7 9 121316 18 21 24 27 30 33 36 39 42 46 50 52 56
ta(n) |136 7 9 1216 20 25 30 36 42 49 56 64 72 81 90 100 110 121 132
ts(n) [136 7 9 1216 20 25 30 36 42 49 56 64 72 81 90 100 110 121 132
ts(n) 1136 7 9 1216 20 25 30 36 42 49 56 64 72 81 90 100 110 121 132
ta(n) | 1361010 11 13 16 20 20 21 23 26 30 30 31 33 36 40 40 41 43
tg(n) |13 61010 11 13 16 20 20 21 23 26 30 30 31 33 36 40 40 41 43
to(n) | 1361010 11 13 16 20 20 21 23 26 30 30 31 33 36 40 40 41 43
tio(n) | 1361010 11 13 16 20 20 21 23 26 30 30 31 33 36 40 40 41 43
tn(n) | 1361010 11 13 16 20 20 21 23 26 30 30 31 33 36 40 40 41 43
tiz(n) | 1361012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
t13(n) 136101011 13 1517 19 21 24 27 30 33 36 39 42 46 S50 52 56
tia(n) | 13 6 10 10 12 16 20 25 30 36 42 49 56 64 72 81 90 100 110 121 132
tis(n) | 1361010 12 16 20 25 30 36 42 49 56 64 72 81 90 100 110 121 132
tis(n) | 13610151515 1517 19 21 23 25 27 29 31 33 35 37 39 41 43
ti7(n) | 13610151515 1517 19 21 23 25 27 29 31 33 35 37 39 41 43
t1e(n) | 13610151516 16 16 16 18 19 21 22 24 25 27 28 30 31 33 34
tig(n) | 136101515 16 16 17 19 21 23 25 27 29 31 33 35 37 39 41 43
tao(n) | 13610151516 16 17 17 18 18 19 21 22 24 2527 28 30 31 33
ta(n) | 136101515 18 21 25 30 36 42 49 56 64 72 81 90 100 110 121 132
tn(n) | 136101521 21 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63
t235(n) | 136101521 21 2121 212123 252729313335 37 39 41 43
tu(n) | 13610152121 2121212123252729313335 37 39 41 43
tas(n) | 13 6 10 15 21 28 28 28 28 30 33 36 39 42 45 48 51 54 57 60 63
| t2s(n) 136101521 28 36 36 36 38 42 46 50 54 58 62 66 70 74 78 82

Table 1: The values of t;(n)

Clearly t,(n) = max{g(G):G € Ci(m)} where Ci(n) denotes the set of
n-vertex graphs which are critical in our context: thus G € Ci(n) if and only
if G € Fi(m) and the addition of any edge results in a subgraph isomorphic to
Dy. In [9] we reported on a computer search for critical graphs having no 4-cycle.
Here we use the same algorithm for determining ¢ (n) and Cx(n) forl < k < 26
and 2 < n < 23. In practice it suffices to find only those graphs in Ci(n) with
sufficiently many edges, as explained in §. The values of ¢,(n) are shown in
Table 1. From this table and Lemma 1.1 we obtain upper bounds for r3 (D) for
allk € {1,...,26} except k = 1,2,4,5,6,14,15,21. These are shown in
Table 2. It was already known that r3(D12) = 14, from general results of Burr
and Roberts [3] on Ramsey numbers of stars. The numbers r3 (D) (2 < k < 26)
arc determined in the next section and the results are given in Table 3. The notation
is that of [[1], Chapter 1].
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k 3(718]9|10|11]12]13]16
(DY <|n|12|12]1212]12{14]12| 12
k 17|18 |19]20(22|23 (24|25 26
(D)< |12 |12]11|17}12]12|17]|23

Table 2: Some upper bounds for r3(D;).

k 1 2134|5617 ]|8|9|10j11]12]13
ri(D;) [ 283217 111|21121|21}10|12{10]|10]|12| 14| 11
k 14 (1516|1718 19]20|2122]23]24]25]|26
ra(De) | 17 (1711|1111 )11(10|17]|14|12|12|15]18

Table 3: The Ramsey numbers r3(Dg) (1 < k < 26).

2. The Ramsey numbers 73 ( Di)

For a given graph Dy, an m-colouring of K,, will be taken to mean an assignment

of m colours to the edges of K, in such a way that K,, has no monochromatic
subgraph isomorphic to D;. An m-colouring is specified by m monochromatic
subgraphs SC,,...,SCy, (with colours 1, ..., m), whose edge-disjoint union is
K,. Such an m-colouring is extremal if (i) ¢(SCy) < --- < ¢(SCr,), and (ii)
whenever 1 < i1 < j < m, SCj + e € Fi(n) foralle € E(SC;). In this
situation, g(SCm) > [(})/m] and SCm € Ci(n). As noted in [(10], Lemma
3.1] K, has an extremal m-colouring if and only if X, has an m-colouring. Thus
if K, has no extremal m-colouring then r,( D) < n Of course, if K, has an
m-colouring then r,,(D;) > n+ 1. We denote the values for 3 (Dy) in table 3
as Bk (2 < k < 26). First, for lower bounds on r3 (D) we have:

Lemma 2.1. r3(Dy) > B(2 < k < 26).

Proof: The graphs D5 and and D;3; contain a 4-cycle, and so from [4] we have
r3(Dy) > 11 = B (k= 3, 13). The graphs D,4, Dys and Dy, containalriangle,
and so from [7] wehave r3 (Dy) > 17 = B (k = 14,15,21). Since Dys = 5 K>,
we have from [5] that 3 (Das) > 5.4 —2 = fa. Figs. 2-5 show a 3-colouring of
Kpg,—1 withno Di fork = 7,8,9,10,11,12,20; so we have r3(Dy) > B for
these values of k. For the remaining values of & the 3-colourings of Kg,_, with
no D; may be determined by means of Table 4. Hence we have v3(D;) > B
(k=1,2,4,5,6,16,17,18,19,22,23,24,25). [ |
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k B SC SC; SC,

2 17 Kgg 2K44 4 K4
4,5,6 [21 [ C5[K.] Cs[Ka) 5K
16,17 | 11 | K2 + 8K, |2K1U(K2+6K1) | 4K1 UK

18 11 | K4UK33 KiUK33 KsUKss

19 11 | K, + 8K, 2Ky UK, UK 2K1UK> 6
22 14 | K3+ 10K, |3 U(Ks+7K,) | 6 K,UK;,
23,24 |12 | Kb +9K, |2K1U(K2+7Ky) | 4K1 UK,
25 15 | K3+ 11K, |3K1U(Ka+8K;) | 6 K1 UK3

Table 4: 3-colourings of Kg,_; with no Dy.
For upper bounds on ;3 (D) we have first from Table 2:
Lemma 2.2. r3(D;) < B (k=3,8,11,12,18,23,24). |
For the graphs D, which do not contain a triangle we have:
Lemma 23. r3(D) < Bt (k=2,7,9,10,13,16,17,19,20,22,25,26).

Proof: Suppose by way of contradiction that there is an extremal 3-colouring
SC3 U SC, U SC of of Kp, with no D. Then SC; € Ci(B) and ¢(SC3) >
[(%)/31; moreover SC5 has a 2-colouring and hence Ko, ¢ SCs where ay =
r2(Dy). Let Sk = {G: G € Ci(Br),9(G) > [(#)/3] and K.,  T}.

By using an algorithm similar to that for determining ¢, ( n) and Ci(n) (see[9]),
we can construct all the graphs in Sj.. Table 5 shows the values of |Sk|, and where
the zeros occur we can deduce that r3( D) < Be (k = 13,16,17,19,22,25).
By using the algorithm described in [10], we can establish that no graph G with
G in S; has an extremal 2-colouring with no D;. Hence we have r3(D;) < S
(k=2,7,9,10,20,26). ]

k J2]7To]10]13]16]17]19] 20222526
Isst[s2]2]2]4fofofofo1]0o]0]1

Table 5: The values of | S| for Lemma 2.3.
The remaining lemmas deal with the graphs Dy which contain a triangle.
Lemma 2.4. r3(Ds) < 21.

Proof: Suppose that there is a 3-colouring SC; USC, USC; of K3, withno D,.
Since r3(K3) = 17 [7], we may suppose that SC; (say) contains a triangle. If
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there is a vertex u of the triangle with degree 2 in SG; , we take w = u. Otherwise
we take w to be a third vertex adjacent to u. Then w has degree at most 3 in
SC; and at least 17 in SC;. Without loss of generality, w has degree at least 9
in SC,. Let vi(1 < § < d,d < 9) be the vertices adjacent to w in SC,, and
u;(1 < j € 20 — d) be the vertices not adjacent to w in SC,. We show that
SC; contains Ko . This is immediate if the v; are independent in SC, ; otherwise,
since SC, has no Ds, there is precisely one pair of the v; which are adjacent,
say v; ~ vp. Thus if d > 11 then again SC; contains Ky. Accordingly we
may suppose that 20 — d > 10. In this case we may assume that u; and u, are
non-adjacent because the u; cannot induce a complete subgraph. Now, since SC,
has no Dy, the vertices u;, uz,v3, vq, ..., o are independent. Thus always SC,
contains Ky ; but this contradicts the fact that r,(Ds) = 9 [2]. Hence r3(Ds) <
21. ]

Lemma 2.5. r3(Ds) < 21.

Proof: Suppose that there is a 3-colouring SC; U SC; U SC; of K, with no
Ds. As before we may suppose that SC; contains a triangle. Since SC; has no
Ds, some vertex u of this triangle has degree < 3 in SC;. Hence without loss
in generality u has degree at least 9 in SC;. Let v;(1 < i < d,d > 9) be the
vertices adjacent to u in SC, . Since SC; has no Ds, each v;, is adjacent to at most
one v;(1 < i # j < d). We can now show that SC; contains Ky — E(3 K3).
This is clear unless the graph induced by vy, ..., v has four independent edges.
In this case we may suppose that v; ~ v2, v3 ~ v4, s ~ vg and v7 ~ vg.
Of the 12 vertices different from u and vy, v3,...,vs there must be two which
are non-adjacent, say u; and uz. Since SC, contains no Ds neither u; nor u; is
adjacent to any of vy, vy,..., vg. It follows that the subgraph of SC; induced by
u1,u2,v1,v2,...,v7 is 3 K2 U3 K. Thus always SC, contains K9 — E(3 K»).
But by using the algorithm described in [10] we know that K¢ — E(3 K3) hasno
extremal 2-colouring with no Ds. It follows that r3( Ds) < 21. |

Lemma 2.6. r3(Ds) < 21.

Proof: Suppose that there is a 3-colouring SC; USC, USC) of Ka; withno Dg.
Again we may suppose that SC; contains a triangle. The vertices of this triangle
have at most degree 3 in SC3 because SC3 has no Ds. Such vertices have degree
atleast 17 in SCs and so without loss of generality, SC, has a vertex v of degree at
least 9. Since .S'Cz has no Ds, the vertices adjacent to v are pairwise non-adjacent
in 8C,. Thus SC, contains Ky, a contradiction since r2(Dg) =9 [2]. 1

Lemma 2.7, r3(Dy4) < 17.

Proof: Suppose that there is a 3-colouring SC3 USC, USC, of K17 withno Dy4.
In the notation of [11], D14 = Hyo U K, where Hig = K4 — E(P;3), with third
Ramsey number equal to 13. Accordingly we may suppose that SC; contains
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Hjyo. The remaining 13 vertices are independent in SC3 and so SC; contains
K3, a contradiction since 75 (Dy4) = 8 [2]. [}

Lemma 2.8. r(D5) < 17.

Proof: Suppose that there is a 3-colouring SC; U SC; U SC) of K17 with no
Dis. As before we may suppose that SC; contains a triangle; moreover SC3;
contains no K because 5 (D;s) = 8 [2]. In addition SC; contains no D;s and
the only graph to satisfy all these conditions is Ks U 6 K,. Now SC3 contains
K¢ and o ( K3) = 6. Accordingly we may assume that SC, has a triangle, and
so similarly SC, = Ks U 6 K. From Table 1, ¢(SC)) < 72 and so ¢(SC)) +
g(8C,) + q(SC3) < 104, a contradiction. Hence 73 (Dys) < 17. ]

Lemma 2.9. r3(Dy) < 17.

Proof: Suppose that there is a 3-colouring SC; USC, USC; of K7 withno Dy;.
Now Dy, contains K3 U K> and we know from [11] that r3( K3 U K3) = 17.
Accordingly we may assume that SC; contains K3 U K. The remaining 12
vertices are independent in SCs , and so SC; contains K1 . This is a contradiction
because 13 (D2) = 10 [2]. Hence r3( D7) < 17. 1

Lemmas 2.1 t0 2.9. now serve to verify that the Ramsey numbers r3 (D) (2 <
k < 26) are as given in Table 3.
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NOOA . ALK

D, Dg Dy
Ds0 Py Dy2 Dy3 Dya
: oO—0
0—0—0—0—0
s D6 Dy Dig
o—0—0
0 ode AL
o—00—0—0 o—0o0—0—0
Do P20 D21 D22
o—0 0—O o0—o0 o—0 o—oO0
i oO—0—=o0 o—0 0—O o0—0 0—0
o—0—0 o—0—O0 o—0 O0—O
D23 D)a D25 D26

Fig. 1: The graphs with five edges and no isolated vertices.
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1 4 5 BI :5
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| | E
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. 2
SC2 SC1

Fig. 2: A 3-colouring of Ky with no D7, Dy or Dyo.

3 . 6 9
| @2 1@2 | @2
4 5 7 1 1
6 11 3 11 3 8
7 10 3 10 4 2
sc, sc, sc, .

Fig. 3: A 3-colouring of K11 with no Dg, or Dy;.
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Fig. 4: A 3-colouring of K13 with no D;.

Fig. 5: A 3-colouring of Ko with no Dsy.
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