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Abstract. An algorithm is presented for finding all (0,1)-solutions to the matrix prob-
lem AX = J, where A is (0,1)-matrix and J is the all 1°s column vector. It is applied to
the problem of enumerating distinct cyclic Steiner systems and five new values are ob-
ained. Specifically, the number of distinct solutions to S(2,3,55), $(2,3,57), $(2,3,61),
§(2,3,63) and S(3,4,22), are 121,098,240, 84,672,512, 2,542,203,904, 1,782,918,144
and 1140 respectively.

1. Introduction

A Steiner system with parameters S(t, k, v) is a pair (V, B) where V is a v-
element set of points, and B is a collection of k-element subsets of V called blocks,
such that each t-element subset of V' appears in precisely one block of B. Here
1 <t < k < v, where if any equality exists, the design is said to be trivial. An
S(1,k, v) design is said to be cyclic if V = {0,1,2,...,v — 1} and whenever
Kisablockthen K + 1 = {z+ 1 : z € K} is also a block, addition per-
formed modulo v. The number of nonisomorphic S(t,k,v) designs is denoted
by nc(t, k, v). We are interested in computing de(t, k, v) the number of distinct
cyclic 8(t, k, v) designs. The values of de(t, k, v) successfully computed by the
algorithm described in this paper is reported in Table I. The values of de(2, 3, 55),
dce(2,3,57), de(2,3,61), de(2,3,63) and de(3,4,22) are new. It was erro-
neously reported in [5] that nc(3,4,22) = 21 and dc(3,4,22) = 210. There
are in fact 114 nonisomorphic cyclic solutions and 1140 distirct cyclic solutions.
They are given in [8). The remaining values appear in 1, 2, 3, 4, 6, 9, 10.
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TableI

v S(t, k,v) No. of Orbits de(t, k,v) nc(t, k, v)
7 S(2,3,7) 1 2 1
10 S(3,4,10) 3 1 1
11 S(4,5,11) 6 2 1
13 S(2,3,13) 2 4 1

S5(2,4,13) 1 4 1
15 S(2,3,15) 3 4 2
17 $(3,5,17) 4 2 1
19 S(2,3,19) 3 32 4
20 S(3,4,20) 15,16 or17 152 29
21 S(2,3,21) 4 32 7

S(2,5,21) 1 2 1
22 S(3,4,22) 18 or 19 1,140 114
25 S(2,3,25) 4 240 12
26 S(3,5,26) 10 1 1
27 S(2,3,27) 5 144 8
31 S(2,3,31) 5 2,048 80

S(2,6,31) 1 10 1
33 S(2,3,33) 6 1,600 84
37 5(2,3,37) 6 28,480 820

S(2,4,37) 3 48 2
39 S(2,3,39) 7 18,048 798
40 5(2,4,40) 4 96 10
41 S(2,5,41) 2 8 1
43 $(2,3,43) 7 395,648 9,508
45 S(2,3,45) 8 278,784 11,616
49 S(2,3,49) 8 6,594,560 ?

S(2,4,49) 4 9,184 224
51 S(2,3,51) 9 4,474,112 ?
52 S(2,4,52) 5 4,768 206
55 S8(2,3,55) 9 121,098,240 ?
57 $(2,3,57) 10 84,672,512 ?
61 S(2,3,61) 10 2,542,203,904 ?

S(2,4,61) 5 1,087,552 18,132

S(2,5,61) 3 416 10
63 S(2,3,63) 11 1,782,918, 144 ?
64 S(2,4,64) 6 385,536 12,048
65 S(2,5,65) 4 16 2
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2. Solving AX = J

The problem of enumerating cyclic S(¢, k, v) designs can be reformulated as
solving a matrix equation of the form

AX =J 16))

where A is a special m by n (0,1)-matrix and J is the column vector of all 1°’s. An
algorithm that enumerates all solutions to egn. (1) with an arbitrary (0,1)-matrix
A is given in Section 3. For cyclic S(¢, k,v) designs the matrix A has a special
form.

Let K = {z1,12,%3,...,7¢} be any k-element subset of V, where z; < z; <
T3 < o< g Letdy; =z —ziforl <1< k—-1anddy = v — 3 + 7.
Define §( K) to be the set of all cyclic shifts of (d, d3, ...,d,). Thatis §(K) =
{(d1,da,...,dp), (da,...,ds,d1), ..., (dg,d1,...,dg—1)}. Then it is easy to
see that 8( K1) = 8( K,) ifand only if Ky = K3 + i, forsomei,0 <i<v—1,
addition performed modulo v. Denote by (d1,da, ..., dy) the set of all k-element
subsets K for which (dy,d;,...,d;) € 6(K). Then (dl ,da, ...,dk) is called
the cyclic orbit containing K. It is easy to see that if (V, B) is a cyclic design and
K € B, then (D) C B, forall D € §(K). Thus in particular a cyclic Steiner
system is a disjoint union of cyclic orbits.

Let Ay, Ag, ..., Ay,, and I, Iz, ..., T'y, be complete lists of cyclic orbits
of ¢ and k element subsets of V respectively. Then the matrix A, ; is defined to
be the N; by N integer matrix whose [{, j]-entry is the number of k-element
subsets in I'; containing a fixed representative of A;. This matrix can easily be
computed using the algorithm described in [7]. Note that for S(¢, &, v) designs an
orbit I'; for which Ag[4, 71 > 1 for some i cannot be used. Thus these orbits and
the corresponding columns of Ay; are deleted from consideration. The resulting
column reduced matrix is an m = N; by n < N, matrix A and is the one we use
in eqn. (1). )

A solution to eqn. (1) is a collection of columns of A that have row sum 1.
Consequently, we think of each column as a single entity and refer to it as an
incidence vector. Let Iy, I, ..., I, be the incidence vectors representing the n
columns of A. Then a solution to eqn. (1) is a (0,1)-vector X = [z;,23,...,T4]T
such that

S XL =J. @

i=1

Indeed if A is the reduced matrix obtained from A, and X is a solution, then
U{T;: X[j] = 1} will be an S(¢, k,v) design.

3. The algorithm find

Our algorithm, which we have called find, for finding all solutions to eqn. (1)
is given in figure 1. An example of its execution is given in Section 4. It was
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implemented in C on different operating systems, primarily UNIX, using bit ma-
nipulation programming tricks to speed up computing times. The program uses a
variety of arrays to find solutions to a Steiner system in what we believe is a very
efficient way. The matrix A is stored as an array of integer vectors whose bits
represent the incidence vectors. For an incidence vector I; we define the code of
I; by:

code (L) = Y L[A12".
h=1

Using this coding function the incidence vectors can be arranged in descending
order. This arrangement is maintained by the array ptr. Thus

code (Iptrio)) > code (Ipe(1)) > code (Lptei2)) 2 ---
> code (Iptrfn-1))-

Using this ptr array the array unigue is created which effectively removes all
duplicate incidence vectors from the ptr array. The array unique contains the first
subscript of each unique incidence vector in descending order provided by the
pir array. Thlls, Iptr [u’u'que )] # Iptr [unique 1) for all ¢ # j, and Ip‘r[,‘] #
Ip,, [wnique (1) for all 1, ptr[unique[71] < i < ptrluniquelj + 1]]. Thus, when
searching for a solution to equation (2), only the unique array is searched.

Duplicate columns arise often in the matrix A. In particular for Steiner triple
systems every (d1, dz ,d3 ) orbit creates the same incidence vector as (d1, d3, d2).
In fact, every column of the A, matrix has a duplicate column for acyclic S(2,3,v),
except for the short orbit, whenv > 9 and v =3 (mod 6). Removing these du-
plicate columns from the search space reduces the complexity of the search. It is
easy to see that the number of distinct cyclic solutions to a S(2,3,v) must be a
multiple of 2 ¥, where % is the number of full orbits in the design. Actually, for
all S(2,k,v) designs, there will be duplicate columns, and by creating the ar-
ray unique when a solution is found that consists of a set of of incidence vectors,
the other solutions whose incidence vectors are equivalent to the ones found are
immediately saved instead of searching for them.

Two other arrays are then created in find which allow faster manipulation of the
matrix. The array bit_change will contain the indices of the unique array where
the highest bit in the incidence vectors changes. Thus, § = unique [bit_change [j]1]
is the index 1 of the first incidence vector such that I;[m — j]1 = 1 and ;{A] =0
form — j < h < m. If the algorithm decides on using incidence vector  and
unique[bit_change(j1) < § < unique[bit_change(j + 1]], then the sum of the
incidence vectors choosen so far will have a one in positions m — {,m — i +
1,...m. Consequently, the next possible vector to consider is in a position at
least unique [ bit_change[ s + 1]]. This avoids a costly linear search of the matrix.
Also, an array next is created which points to the next possible incidence vector
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Algorithm:find
Construct and initialize data structures:
pir, unique, bit_change bit_category, and next.
Set: ans to the empty stack;
current = 0;
J=Yio 2!
7=0;
partial = 0;
solution_possible = TRUE;
and solution_found = FALSE.
while(solution_possible) do
while(NOT solution_found ) AND (solution_possible) do
(1) while
(i) 7 < bit_change [current+1], and
(ii)code (Iptr[unique[m) and partial # 0
doj=j+1.
Thns Tpitr tunique;n 1S the first incidence vector, if there is one,
that is disjoint from the vectors chosen so far.
(2 If (j< bit_change( current +1], then
(a)push j onto the stack ans of incidence vectors used so far;
(b)update partial by the code of Ipsy (unique(j))»
i.e. partial = partial bitwise-OR code (I, otr (uniquel m
and
(©)if (partial = J)
(d)then set solution_found = TRUE
(e)otherwise set j = next [j] and current = bzl.category( N
(3) elseif (ans is not empty) then
(a) pop j from the stack ans;
(b) remove the code of [, ptr [unique;1] from partial ,
i.e. partial = partial bitwise-XOR code
Uptriunique )+ and
(c) setcurrent = bitcategory(j) andj=j+ 1;
(4) else set solutions_possible = FALSE.
end while
(5) if (solution_found ) then
(@) save all solutions found;
(b) set solution_found = FALSE; and
(c) perform (3.3, 3.b, and 3.c).
end while

Figure 1: Pseudocode for algorithm find
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in A that could be used with the current incidence vector referenced by unique;
next[i] = oo if there is no such incidence vector. The construction of these two ar-
rays both require one pass through the unique array. We also make use of the func-
tion bit_category(j) which returns 1 if bit_change[i] < j < bit_change[i + 1]
and returns 1 plus the number of entries in bit_change if there is no such 1.

Once all of these arrays are created, the process of searching for a solution
begins. Two data structures are used for this purpose: a stack ans to hold the
indices of the unique array used in the solution (this stack can be thought of as
the compressed version of the sparse array X in equation (1)); and, a variable
partial o indicate the present partial solution of all the incidence vectors selected.
Using the data structures defined above, the algorithm searches for the solution
using an iterative implementation rather than a recursive one. This improves the
overall performance of the algorithm. The algorithm is an exhaustive backtracking
algorithm. It starts with the first incidence vector in ptr, then jumps to the next
group defined by bit_change, or the incidence vector defined by next. Then this is
applied until no incidence vector in a group defined by bit_change can be found
with the current incidence vectors already used, at this point the last incidence
vector added to the solution ans is removed, and then the search continues in the
same bit_change group for another incidence vector. If no other incidence vector
is found, the last incidence vector added is removed again. This search process
exhaustively finds all distinct solutions to equation (2). Although it may seem
like wasting a lot of memory to have all of the arrays that were defined above, the
improvement in time is very significant.

4. Example

The following is an example of algorithm find with S(2,3,15). The cyclic orbits
of 2-element subsets are

(1,14),(2,13),(3,12),(4,11),(5,10),{6,9) and {7, 8).

and the cyclic orbits of 3-eclement subsets are

(1,1,13),(1,2,12),(1,12,2),(1,3, 11),{1, 11,3),(1,4,10),(1,10,4),(1,5,9)
(1,9,5),(1,6,8),(1,8,6),{1,7,7),(2,2,11),(2,3,10),(2,10,3),(2,4,9)
(2,9,4),(2,5,8),(2,8,5),{2,6,7),(2,7,6),(3,3,9),(3,4,8),(3,8,4),
(3,5,7),(3,7,5),(3,6,6),(4,4,7),{4,5,6),(4,6,5)and(5,5,5).
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Here is the A3 3 matrix with these orbits as labels (note that blanks denote 0).
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Now any column having any value other than 0 or 1 is discarded.

Thus, the matrix A that is used to search for a solution is:
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The matrix is then sorted by the codes of the columns, and the corresponding
data structures created. The matrix in this example does not need sorting, but here

itis again with the data structures.
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The following is a simple example of the algorithm flow. The numbers in paren-
theses (x) correspond to the statement numbers in the Algorithm find presented in
this paper. For this example J = 127.

J curremt ans partial solution_possible solution_found
0 0 | 0 = 0000000 TRUE FALSE
a1 o
2 1 3 [0] 114 = 1110000
M 1
2) 4 0,111 126=1111110
(1) oo
(3) 12 3 [0] 112 = 1110000
1 3
(3) 1 0 a 0 = 000000
m 1
2 7 1 {1] 88 = 1011000
ay 7
2) oo 4 m 88 = 1011000
(1) oo
@ 12 4 [1,81 118=1111011
(1 12
(03 (1,8,12] 127 = 1111111 TRUE
(5) 13 4 [1,8] 118=1111011 FALSE
) 13
3 9 1 [1] 88 = 1011000
aQ 9
3 2 0 1] 0 = 0000000
an 2
2 8 0 [2] 76 = 1001100
1y 8
2 12 0 (8] 110=1101111
(1) 13
3 9 2 {2] 76 = 1001100
@ 9
(3) 3 0 | 0 = 0000000
(1 3
2 9 2 [3] 70= 1000110
a 9
2 12 4 3,91 95=1011111
1 13
3) 10 2 31 70 =1000110
1 1
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J current ans partial solution_possible solution found
3) 4 0 ] 0 = 0000000
1 4
@ 5 1 [4] 67 =1000011
@ s
2) oo 5 [4,5] 118 =1110111
(1) oo
(3) 6 1 [4] 67 =1000011
1P 9
3 5 0 0 0 = 0000000
1 s
3) Stack Empty
@ FALSE

The algorithm finds one solution among the unique incidence vectors. This solu-
tion is:

Lotr tuniqueny = (1,0,1,1,0,0,0,

Tptr tunique sy = 10,1,0,0,0,1,1] and

Lptr (unique g = 10,0,0,0,1,0,0).

The orbits that have incidence vector[1,0,1,1,0,0,0] are (1,3, 11) and (1, 11, 3).
The orbits that have incidence vector [0,1,0,0,0,1,1] are{2,6,7) and(2,7,6).
The only orbit that has incidence vector [0,0,0,0,1,0,0] is(5,5,5). Thus, the
one solution found among the unique vectors yields the four solutions below:

m  (1,3,11), {2,6,7), (5,5,5)
@ (1,3,11), (2,7,6), (5,5,5)
3) (1!1113)! (2»6’7)s (5:5,5)
@ (1,11,3), (2n7)6)x (5,5,5)

5. Concluding Remarks

Using the algorithm discussed in this paper, research on other cyclic Steiner sys-
tems beyond the range of Table I and on cyclic t—designs with A > 1 should be
possible. Changing most of the necessary modules in the code to find t-designs
should be fairly straightforward. However, another way of comparing incidence
vectors that does not require the use of bit operations must be derived, or a differ-
ent method written to check incidence vectors. The current programs obtain the
answers for small designs relatively quickly, but on large designs the size of the
matrix is too large to search within a specified time frame. A modification to the
algorithm would be to change the implementation of some code to try to speed up
the run time, adding some heuristics in a few places.
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