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Abstract. In this paper we introduce the concept of node expansion. Node expansion
is a generalization of edge subdivision and an inverse of subgraph contraction. A graph
Gy = (W, Ey) is an H-node expansion of G = (V, E) if and only if G) contains a
subgraph H = (Vg, Ey) suchthat V = Vi — Vg U {v} and E = E; — Eg U {vw |
wh € E) and A € Vg}. The concept of node expansion is of considerable importance
in modemization of networks.

We consider the node expansion problem of transforming a graph to a bipartite graph
with a minimum number of node expansions using K>. We show that the K> -node
expansion problem is NP-Complete for general graphs and remains so if the input graph
has maximum degree 3. However, we present a O(1? log n+ mn+ p®) algorithm for
the case when the input graph is restricted to be planar 3-connected and output graph is
required to be planar bipanite.

1. Introduction.

The modernization of networks involves improvement of nodes and/or edges. In
the case of computer networks, improvement may imply replacement of a single
processor node with a multiple processor node. In such a case, the interconnection
of these new nodes to the remaining network is of critical concern, so that vital
parameters of the network, such as, diameter, connectivity, planarity, maximum
degree, are not adversely affected. However, no model has been proposed to study
such operations on Networks(graphs).

In this paper, we introduce the concept of node expansion. Node expansion
is a generalization of edge subdivision and an inverse of subgraph contraction.
A graph Gy = (Wi, Ey) is an H-node expansion of G = (V, E) if and only if
G\ contains a subgraph H = (Vy, Ey) such that V = [V; — V] U {v} and
E={E - Eg}U{vw|wh € E;andh € Vy}.

As stated earlier, we are motivated to study node expansion, as it is of impor-
tance in the modernization of networks when a node is replaced by a graph. Sev-
eral interesting modifications can be made by node expansion. In particular, one
might like to modify the network so that it satisfies a certain property using the
minimum number of node expansions. Although any graph can be used for the
expansion of nodes, we use simple graphs for this purpose. Specifically, in this pa-
per, we concentrate on the node expansion problems with K, as the graph used for
expansion. This is motivated by availability of many commercial two-processor
systems.

In this paper, we show that the problem of finding the minimum number of K -
node expansions of a graph to obtain a bipartite graph is NP-Hard. In fact, we
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show that the problem remains NP-Hard even if the input graph has maximum
degree three. However, we show that if the input graph is planar, 3-connected
and the output graph is required to be planar bipartite, then the node expansion
problem is polynomial and we give a O(n? log n+ mn+ p’) algorithm for this

case, where = is the number of vertices, m is the number of edges and p is the
number of vertices with odd degree.

The rest of the paper is organized as follows. In Section 2 we present the rel-
evant definitions and some preliminary results. In Section 3, we investigate the
complexity status of Node expansion problems. In particular, we show the NP-
Completeness proof of NE(arbitrary, bipartite, K, ). In Section 4, we present an
algorithm for NE(planar 3-connected, planar bipartite, K) followed by a com-
plete example. Section 5 presents the formal proof of the algorithm.

2. Preliminaries.

In this section, we present our notation and several definitions that are used in
later sections. In this section, we present our notation and several definitions that
are used in later sections.

NE(m;,m2, H):

Instance: Graph G = (V, E) with property m; , graph property 1,,
connected graph H = (Vy, Ey) and a positive integer K.

Question: Is there a graph G’ = (V', E’) satisfying the property w2,

obtained by at most K, H-node expansions of G.

The node expansion is a generalization of edge subdivision. An edge e = uv is
said to be subdivided if edge e is removed and a new node z is added to the graph
along with the edges uz and vz.

ES(m,m2,):
Instance: Graph G = (V, E) with property w1 and a positive integer K.
Question:  Is there a subset E' C E, |E'| < K such that

subdividing the edges of £’ produces a graph with property m>.

A close relative of edge subdivision problem is the Max Cut problem. The Max
Cut problem can be defined as follows:

SIMPLE MAX CUT:
Instance: Graph G = (V, E) and a positive integer K < |E|.
Question: Is there a bipartite graph G’ = (V, E')

obtained by deleting at most K edges of G.

A restricted but very useful version of max cut is called Simple Restricted Max
Cut problem (SRMC). In fact, it is the max cut problem in which the graph has
maximum degree 3.

Given a graph G = (V, E) and a subset S C V, a collection of paths in G is
an S-vertex cover if each vertex of S is an endpoint of exactly one of the paths
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and S is the union of the endpoints of the paths. An n-wheel is the join of a
vertex and an n-cycle. The vertex and cycle will be called the Aub and the rim,
respectively. The edges not in the rim will be called the spokes. A graph which
is homeomorphic to an n-wheel will also be called an n-wheel. If T is a planar
embedding of G we define the pseudo-dual Gy = (Vr, Er) of G as the graph
with vertices and edges

Vr =V U{f| f is aface of the embedding T(G) }
and

Er ={vf|v €YV, and f is a face of T'(G) with
v a vertex on the boundary of f}

respectively. Figure 4 shows a graph G along with its corresponding Gr. Note
that the pseudo-dual of a planar graph is also a planar graph. We use Fr to refer
to the set of faces, thatis, Fp = Vp - V.

If a vertex v in a graph is the hub of a deg(v)-wheel then the rim has two orien-
tations which induce cyclic orderings of the spokes and the vertices adjacent to v.
If the graph is planar then the faces incident to v also have two cyclic orderings.
We shall refer to these cyclic orderings as an orientation at v.

Lemma 1. Every vertex v in a 3-connected planar graph is the hub of a deg(v)-
wheel.

Proof: Let v be a vertex in a planar graph G and let T be a 2-sphere embedding
of G. Since G does not contain cut vertices each face incident to v must be a
closed 2-cell. If the intersection of two faces incident to v is not a path, that is, not
connected , then G contains two vertices which together form a cut set. Since G is
3-connected this is not possible. Thus, the number of faces incident at v is equal
to deg(v) and there union is a closed 2-cell whose boundary is a cycle. Thus, v is
the hub of a deg(v)-wheel. [ |

Definition 1: Let v be the hub of a deg(v)-wheel in a graph G. A K3 -node expan-
sion of G at v is a simple K>-node expansion if the rim of the deg(v)-wheel at v
can be partitioned into two edge disjoint paths P; and P, such that {e;w; | e; is a
new vertex in the node expansion fori = 1,2, 1 < j < deg(v), and w; € P for
k= 1,2} along with e; e; are the new edges in the node expansion.

Lemma 2. Let G be a planar graph with the property that every vertex v is the
hub of a homeomorphic deg(v)-wheel. A K, -node expansion of G is simple if
and only if it is planar.

Proof: Let G satisfy the hypothesis of the Lemma. Clearly, a simple K>-node
expansion is a planar K -node expansion. Conversely, suppose we have a non-
simple K, -node expansion of G at v. Since there are no non-simple nor non-planar
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K3>-node expansions at vertices with degree less than four, the degree of v must
be at least four. If the K, -node expansion is non-simple there must exist vertices
w1, w2, w3, and wa adjacent to v in G with the induced order w; wy w3 w4 and the
edges viw, viws, vowz, and vawy in the K3 -node expansion. Thus, the graph
obtained contains a homeomorphic K3 3 and is not planar. In Figure 2 we show an
example of a simple K;-node expansion and a non-simple K -node expansion.

(a) Homeomorphic 4-wheel

(b) Non-simple Node expansion

(¢) Simple Node expansion

Simple and Non-simple K -node expansions
Figure 1
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Figure 2
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Lemma 3. The K, -node expansion of a non-planar graph is non-planar.

Proof: Edge contraction is a one sided inverse of K>-node expansion. Since the
edge contraction of a planar graph is obviously planar, we have the result. 1

3. NP-Completeness of NE(g, bipartite, K3).

In this section we show that the NE(¢, bipartite, K, ) is NP-Complete, where ¢
refers to the class of all graphs.

Consider the operation of edge removal and edge subdivision. These operations
are equivalent with respect to making the graph bipartite, since removing an edge
as in SIMPLE MAX CUT has the same effect as subdividing it. An example of
equivalence of edge removal and edge subdivision operation is shown in Figure
2. Figure 2(a) shows a solution of SIMPLE MAX CUT where edges e; and e; are
the removed edges. For edge subdivision we create a vertex v; and remove edge
e; = zy and add edges v, z, v, y. Similarly, a vertex v, and edges are created for
edge e;.

Let -y be the class of graphs with maximum degree 3. SIMPLE MAX CUT for
graphs with maximum degree 3 and no edge weights, that is, SRMC was shown
to be NP-Complete by Yanakakis [S]. This implies that a solution of SRMC exists
if and only if a solution for ES(¢, bipartite) exists, giving us the following resuit.

Lemma 4. ES(y, bipartite) is NP-Complete.

Next, we show that NE(¢, bipartite, K, ) is NP-Complete by restriction to ES(vy,
bipartite). Let us consider a graph from class ~. It is easy to see that a node
expansion operation in such a graph is always same as subdivision of an edge.
This is so because a node v with degree 3 can be expanded exactly three ways
each corresponding to subdivision of one of the incident edges of v. An example
of equivalence of node expansion and edge subdivision when vertex degree is
three is shown in Figure 2(c).

This implies that a solution of ES(~, bipartite) exists if and only if a solution for
NE(, bipartite, K ) exists. This implies that NE(-y, bipartite, K> ) is NP-Complete
and gives us the following theorem.

Theorem 1. NE($, bipartite, K, ) is NP-Complete and remains NP-Complete
even for graphs with maximum degree 3.

4. An algorithm for NE(T", bipartite, K>).

As shown in the previous section, NE(¢, bipartite, K ) is NP-Complete, so there
is little hope of finding a polynomial algorithm for the general problem. In this
section we present a polynomial algorithm for NE(T", bipartite, K ), where a graph
with the property I is a planar graph such that each vertex v of degree greater than
3 is a hub of a deg(v)-wheel. It should be noted that this class of graphs contains
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the planar 3-connected graphs. First we present the algorithm informally followed
by a formal description and an example.

A face with an odd number of edges is referred to as an odd face. The bipartite
planar graphs do not have odd faces. Moreover, for any graph the number of odd
faces is even [4]. The main idea of the algorithm is to pair up two odd faces and
make each face even by a series of node expansions. Depending upon the relative
location of the faces in the embedding we have two cases:

CASE 1: If the faces share a common node then two faces can be made even by
expansion of this node as shown in Figure 3(a). This operation does not affect the
number of edges on any other face. The result of such an operation is shown in
Figure 3(b).

CASE 2: If the faces do not share a node then we find a shortest path between the
two faces and expand all nodes in the path as shown in Figure 3(c). This operation
makes two faces in question even. In addition it does not change any even face to
an odd face since it adds exactly two edges to every intermediate face as shown
in Figure 3(d). If there is an odd intermediate face then it remains odd.

-1

) @

Two cases for node expansion
Figure 3

Using this idea of pairing odd faces reduces the problem to that of finding odd
faces, and then finding a particular shortest path between paired odd faces. This
is accomplished by using the pseudo-dual Gr of graph G.

The vertices with odd degree in Fir are the odd faces of Gr. We define path ( f;, f;)
to be a shortest path between two odd faces f; and f; in Gr. Let len( f;, f;) be
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the length of path( f;, f;). The algorithm finds a path( f;, f;) for all pairs f;, f;
in G using all-pair shortest paths algorithm.
Next, we define a weighted complete graph G, = (V,, E.). Where

Ve = {v | v € Fr and deg(v) is odd}.
The weight on the edges is defined by the following function:
w(fh ff) = len(ff: f))'

Then we find a minimum weight matching in G.; this gives us the required odd
vertex pairing required. Finally, the nodes are expanded along each path giving
us the required bipartite graph.

Formally the algorithm is stated below.

ALGORITHM Planar Node Expand
Input: A planar graph G with the property that every vertex v with degree
deg(v) > 4 is a hub of a subgraph homeomorphic to an n-wheel.
Output: A minimum number of simple K -node expansions of G
which yields a bipartite graph.

(1) While 3v € V' such that deg(v) = 0 or 1 do
Ifdeg(v)=0orl,letG= (V' E), V' = V' —v,E' = E—{vw},we V'

(2) LetT beaplanar embedding of the graph G. Let f1, f2, ... , fi be the faces
of the T'.

(3) Using T construct Gy.

(4) Let R be the set of vertices of odd degree in Fip and let Q be the set of all
pairs consisting of vertices in R.

(5) Construct the complete weighted graph G.,= (R, Q).

(6) Find a minimum weight matching M in G..

(7) Using M find a set of paths, one for each of the matched pairs in G, whose
length is the distance between the pair.

(8) If some paths are crossing then use Lemma 5 to replace them with an equiv-
alent set of non-crossing paths.

(9) Each path determines a set of simple K3 -node expansions of G, the total of
which is the desired set.

We now present a complete example of finding a minimum number of K-
node expansions for a graph G using the algorithm given above. The input graph
is shown in Figure 4(a) and its pseudo-dual Gr is shown in Figure 4(b).

The graph G'p has 4 vertices of odd degree viz fi, f3, fs, fs. We then form a
complete graph G, on these vertices. The edge weights are then computed for the
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(b) The Graph G,

Planar Graph and its pseudo-dual
Figure 4
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graph G, and are shown below.

fi f fs f3
T 2 12 |2
J2) 2 4
fe 4
f3

The minimum weight matching can be done in the graph G, by inspection and
it is shown below.

M= {(fl)f%)t(f31f6)}'

Now we must find path ( f;, f;) in Gr if ( f;, f;) appearsin M.

There are three paths between f; and f; of length 2, fivy fs, fiviz fs and
fivia fs, we break ties arbitrarily and choose fivi3vs. Similarly, there are two
paths between f3 and f5 of length 2 viz f3us f¢ and Sf3v1 fe, we chose f3v7 fe. It
is important to note that this choice does not affect the optimality of the algorithm
since the same number of nodes are expanded. The paths chosen are

P={fiviafs,favife}.

This means the nodes v; and vy3 are to be expanded and final solution is shown
in Figure 5,

Minimum K3 -node expansions of graph G.
Figure 5§

5. Analysis of algorithm Planar Node Expand.

In this section, we establish the time complexity of the algorithm Planar Node
Expand and show that the algorithm produces an optimal solution. In particular,
we show that crossing paths can be exchanged with non-crossing paths with the
same total length. This leads to a proof that there exists a K -node expansion of
G to obtain a bipartite graph. Finally, we prove that expanding of the Vi nodes of
a minimal odd Fr-vertex cover leads to an optimal solution.
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Theorem 2. Algorithm Planar Node Expand runs in O(nlog n+ mn) time

Proof: Each step in the algorithm is clearly polynomial. Steps 4-5 and 6 determine
the overall time complexity of the algorithm. Steps 4-5 can be done using all-pairs
shortest path algorithm with time complexity of O( p®), where p is the number
of vertices with odd degree. The asymptotically fastest algorithms for minimum
weight matching are due to Gabow [3] and runs in O(nlog n+ mn) time, where
n is the number of vertices and m is the number of edges (see also [1, 2]). It
should be noted that Step 8 can be easily accomplished in O(p.A), where A in
the maximum degree of the graph. Thus, the overall time complexity of algorithm
Planar Node Expand is O(nlog n+ mn+ p®). 1

Let P, and P, be edge disjoint paths in Gr which have a vertex v € V in
common, that is, fjvfi is a subpath of Py and f,vf, is a subpath of P,. We say
that P, and P, are non-crossing at v if either both f, and f, are between f; and
£ in the orientation at v or neither of them is.

Lemma 5. If P\, P,,... , P, are edge disjoint paths in Gy which have v € V
in common, then there exist paths P{,P;, ... , P, on the same set of edges which
are pair wise non-crossing at v. :

Proof: Since Py, P,, ... , P, are edge disjoint and contain v it follows that f; v fiz
is a subpath of P; fori = 1,2,... ,nand f; # fjxfori # jandk=1,2. We
can write each of the paths P; as follows:

P;= Py U(favfa) UPa.

Since there is an orientation at v we can order the f;;’s to be consistent with this
orientation. Let gy, 92, ... , g2+ be such an ordering. Define

v:{1,...,20} = {1,... ,m} x {1,2}

¥(j) = (1,k) if fue = g;.
Note that ¢ is a bijection. If we define

P’.' = Pyi-1ny U (92i-1vg2i) U Pyapy for i=1,...,n

then we have the desired paths. 1
A simple induction argument gives us the following result:
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Corollary 1. If P, P,,... , P, are edge disjoint paths in Gr then there exist
paths P{, P, ..., P, which are pair wise non-crossing at each vertex of Vq.

Lemma6. Let G = (V, E) agraph with a planar embedding T If P is a path in

G'r connecting two vertices of F which have odd degree then there isa K -node
expansion of each of the vertices of G in Gy, which lie on P, such that the new
graph is planar and has two fewer odd faces than G.

Proof: Since both end points of P are in the same partite set of G its length must
be even, that is, length of P is 2z for some positive integer n. We proceed by
induction on n. If n.= 1 then P = f;vf;, where f; and f; are in the orientation at
v. We will assume that f; precedes f; in the orientation. The following K -node
expansion of v gives the desired graph G : Replace v with the vertices v; and v,
along with the edges vy v;,

{viwi | vw € E and vwy is an edge of the face f, for k < i or k > j}
and

{v2wi | vwi € E and vw, is an edge of the face f} for i < k < j}.

G, is planar and the faces corresponding to f; and f; have one additional edge.
The other faces remain unchanged. Assume the lemma holds for paths with length
2(k — 1). If P has length 2k, that is, P = fiv) fav3 ... fie1 then a K5 -node
expansion at vy as above will change the parity of the number of edges of the faces
corresponding to fi and f>. By induction there are k — 1 K;-node expansions
which change the parity of the number of edges of faces corresponding to f, and
fk+1. Since the parity of the number of edges of the face corresponding to f was
changed twice, in the final graph only the parity of the number of edges of the
faces corresponding to f) and f,; are changed. ]

Lemma 7. If P, R,,..., P, is a minimal odd F-vertex cover of Gr then the
Dpaths are edge disjoint.

Proof: Suppose that P; = wijjwiz ... win, and P = Wj1Wj2 ... Wjp, are two paths
which have at least two vertices in common. Let p;, = Pj» be the first vertices
they have in common and p;; = p;, the last vertices they have in common. If we
replace P; and P; with

P; = pipia ... PirDjs-1 .. Pj1
and

p}( = Pjn; Pjnj—1 « -+ PjuPit+1 -+ - Din,

respectively, then we get an odd Fp-vertex cover with smaller total length. Thus,
each pair of paths in a minimal odd Fir-vertex cover can share at most one vertex.



Theorem 3. N is the minimal number of simple K, -node expansions of a pla-
nar graph G which yields a bipartite graph if and only if there exists a planar
embedding T and a minimum Fy-odd vertex cover P\, P, ,... , Py, such that

 length(P))
N= E —
i=1

Proof: Let G = (V, E) be a planar graph. Let T be a planer embedding of G
and let N be the minimal number of simple K;-node expansion of G required to
obtain a bipartite graph G;. Let Gr be the pseudo-dual of G associated with T.
By definition each simple K> -node expansion is defined by a triple fi1vifi2,1 =
1,2,...,n where f;; € Frand y; € V. Since G, is bipartite each of the vertices
of Fr with odd degree must be includedin the list L = {fix |1=1,2,... ,N and
k = 1,2} an odd number of times and the other vertices of Fr must be included
in the list L an even number of times, possibly zero.

If N = 1 then f;; and fi2 must both have odd degree and the path P, =
fi1v1 f12 is the desired minimum odd Fp-vertex cover. Assume the theorem is
true for all graphs which require N — 1 simple K> -node expansions to obtain a
bipartite graph. Since N is minimal at least one of the f;’s in the list L has odd
degree, without loss of generality, we assume fi; has odd degree. Consider the
graph G obtained from G by a single simple K -node expansion at v; determined
by fui1 and f12. G’ requires only N — 1 simple K -node expansions to obtain a
bipartite graph. By the induction assumption there exists an odd Fr.-vertex cover
of Gp: P{, P},..., P}, such that

ml ,

$=1

There are two cases to consider:

Case 1: fy; is a vertex of Fr with odd degree.
In this case we add the path P = fi;v1 fi2 to the set of paths P{, P;,..., P, t0
obtain the desired odd Fp-vertex cover of Gr.

Case 2: fi, is a vertex of Fr with even degree.
In lhis case fi2 is an Fy vertex of odd degree in G7.. Thus, one of the paths
P{,P;,..., P}, must have fi, as an endpoint, say P’ If the union of the paths
Sunifia and P' contains a loop then the K3 -node expansnon at each Vr vertex of
the loopis unnecessary to obtain a bipartite graph. Since N is minimal, fi; v fizU
P; must be a path. We obtain the desired odd Frr-vertex cover by replacing P; with
P!, # j and P} with fiv1 fi2 U P} this shows that N = 3°72 -“—'H-zifil.
Conversely, suppose that P, P,..., P, isanodd FT-vcrtex cover in GT with
minimal total length, By Lemma7 and Lemma Swecanassumethat P, P,... , P,
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are pair wise non-crossing at each vertex of V in Gr. By repeatedly applying
Lemma 6 we obtain a graph which is planar and bipartite. The total number of
simple K -node expansions required for each path P is (R since we get a
simple K -node expansion for each V- vertex on P;. Thus, the total number of
simple K -node expansions is

i length( P)

i=1 2
If N is not minimal then by the first part of the proof there exists an odd Fp-vertex
cover with fewer edges contrary to the hypothesis. [ ]

6. Conclusions.

In this paper, we have shown that the NE(arbitrary, bipartite, K ) problem is NP-
Complete. However, this problem can be solved in polynomial time if the input
graphs are restricted to be planar graphs where every vertex v with degree greater
than 3 is the hub of a deg(v)-wheel. These graphs include planar 3-connected
graphs. We conjecture that the NE(planar, bipartite, K ) problem is NP-Complete
even if the output graph is to be planer.
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