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1. Introduction

The problem of finding the biclique partition number of various bipartite graphs
(bigraphs) and digraphs has been investigated in several recent papers (for exam-
ple, [1], [3], [4]). This problem is equivalent to finding the nonnegative integer
rank of the corresponding adjacency matrix (see [4] or [5]). Unfortunately, in
general these numbers are difficult to calculate, but real rank provides a lower
bound. In this paper we show how bad this bound can be by examining a variety
of digraphs and (0, 1) -matrices.

Let X be an n x nmatrix over Z*, the semiring of nonnegative integers. The
nonnegative integer rank, rz + (X)), is the least k for which there exists nx k and
k x nmatrices F' and G over Z* providing the factorization X = FG. If r(X)
denotes the ordinary real rank, then it is easy to see that (X) < rz + (X).

Next we consider minimum partitions of bigraphs and digraphs. Our digraphs
will have no loops or multiple arcs. A biclique of a bigraph is a complete bipartite
subgraph. A directed biclique is a biclique with vertex partition (X,Y’) whose
edges have been oriented from X to Y. The biclique partition number bp( B)
of a bigraph B is the smallest number of bicliques which partition the edges of

B. Similarly, we let 5};’( D) be the minimum number of directed bicliques which
partition the arcs of the digraph D.

To see the relationship between the partition problem for digraphs and the par-
tition problem for bigraphs, let A( D) be the adjacency matrix for a digraph D on
n vertices. A(D) is a (0, 1)-matrix with zeros on the diagonal. The bicliques of
D are in one-to-one correspondence to those submatrices of A( D) with all entries
equal to one and for which the sets of row indices and column indices are disjoint.

1 This research was panially supported by Research Contract NO0O14-91-J-1145 of the Office of Naval
Research.
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Furthermore, if B is the bipartite graph on 2 » vertices determined by A( D), then
5p(D) = bp(B).

The following result follows immediately from the definitions (see Gregory et
al. [4] for details).

Proposition 1.1. Suppose X is an nx n(0, 1) -matrix,
a) IfB is its bigraph, thenbp(B) = rz + (X).

b) Ifalldiagonal entries in X are zeroand D is the digraph of X, lhanp’( D) =
rz + (X ) .

Given this result, we will move interchangeably between bigraphs, digraphs,
and matrices. Graph-theoretic and matrix-theoretic methods are used together in
many of the proofs.

Since in general it is difficult to calculate rz + (A), the bound r( 4) < rz+(A4)
is frequently used to approximate or calculate rz + (A). For example, if IS =
Jun — I, then it is easy to show that r(I) = n,so0rz + (If) = n For D a

digraph, rz + (A(D)) = bp(D), so the complete digraph has partition number
n. Thus, if r(A) is close to n, we get a good bound, but how bad can this bound

be? For
A *
A= [ ’._ :| s
0 Am

rz + (4) > Y rz + (A;) by Lemma 2.1 of [5]. So we will consider the
situation where A is irreducible or where the digraph D is strongly connected.
Theorem 2.3 of [6] gives an infinite family of matrices A that satisfy

r(A) 2

=

rz+ (A) 3

In section 2 of this paper we give examples of infinite families of matrices where
this ratio approaches %— as n approaches infinity. In section 3 we show that there
exists families of matrices where this ratio approaches zero.

2. Matrices Satisfying ;24 > 1

In Hefner et al. [6] an infinite family of matrices was given that satisfies

r(A)
Tz + (A)

2
=3

At the time that was the smallest ratio given in the literature. In this section we
will give some infinite families where the ratio approaches ;.
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Let Ay be the k-regular 2 k x 2 k circulent {0 1}-matrix with first row having
[£] zeroes followed by k ones followed by L£] zeroes. For example,

0 0 0 01 11 11110 0 01
0 0000111111100
0 0000011111110
0000 0001111111
100000O0O0OT1T1T1T1T11
110000O0O0OO0OT1T1T1TI1]1
4 |1 1100000001111
Y11 1110000 00O0T1T1 1
11 111000UO0O0O0UO0T1]1
1111110000 O0UO0TUO0 1
1111111000 00O0TUO0T0O0
0 1111111000000
0 01 1 11111000UO0T0O0
0 001 111111000 0l

A set S of ones in a matrix A is said to be independent if no two occur in the
same row or column of A. A set S of ones is isolated if S is independent and no
twoonesof S are ina2 x 2 submatrix of A of the form

If we let S be the set of fourteen underlined ones in A,4, then clearly S is isolated.
By Lemma 3.4 of [4], it follows that vz + (Aj4) = 14. In general, the same
argument shows that rz + (Ay;) = 2k.

Next, we show that (Az;) = k+ 1. Let A be the (k+ 1) x (k+ 1) submatrix
of the first k + 1 columns of Az and the k + 1 consecutive rows starting with the
first row that has a one in column one. For example, in A14 , A is the submatrix
consisting of the first eight columns and rows 5-12. Since A is a lower triangular
matrix with ones on its diagonal, det(4) = 1. Therefore, r(Azx) > k+ 1.

Now, consider the k — 1 k-tuples X R o= (1,-1, 0,...,007, JC,‘z =
(0,1,-1,0,...,0)...,X2L_ =(0,...,0,1,—1)T. Clearly these vectors arc
linearly independent. Now, for i = 1,...,k — 1, let @f = (XT,XT). If we
let Ni = (@T,) be the subspace generated by @7, then dim(Ni) = & — 1. Fur-
thermore, if NS(Az;) designates the nullspace of Ay, then it is easy to check
that Ny C NS(Az:), so dim(NS(A2k)) > k— 1. Butr(Az) > k+ 1,50
dim(NS(Az2:)) = k— 1 and v(Az;) = k + 1. We have proved the following
theorem.

49



THEOREM 2.1. Let Ay, be the k-regular {0, 1}-circulent matrix described
above,

Then
r(A) _k+1

rz+ (Ax) 2k
So this gives us an infinite series of matrices where the ratio of ranks decreases
to %— The next infinite series of matrices that we consider allows us to get a ratio

equal to any rational number between -;— and 1 except rationals of the form Mqﬂ
where ¢ is odd.

THEOREM 2.2. Let

-[E @
M=|P Kn

where Kp = Jo — In, Ken = Jn — Iy, n,m > 3 and P and Q are (0,1) matrices
with at most one 1 in each row and column. Thenrz + (M) = n+ m.

Proof: Let R be a collection of rectangles in M (i.e., rank 1 (0, I)-submatrices of
M) which partition the 1’s of M (i.e., sum o M).

We wish to show that |[R| > n+ m. Let A consist of those members of R
which meet K, but not K,,; B those which meet K,, but not K,; and, C those
which meet both K, and K,,. Then R D A U BUC. Itis therefore sufficient to
show that [A] > n.— Il and |B| > m — EL.

Note that each member of C is a J3 > and that those 1°s of K, that are in members
of C are independent in the sense that no two of them share a row or column,

Let A and B be the submatrices of K,, and K, obtained by deleting those 1°s
of K, and K,, respectively, that are in the C matrices. Fom the paragraph above,
we see that A and B are the adjacency matrices of directed graphs obtained by
deleting the arcs of collections of vertex disjoint directed paths and cycles from
the complete directed graphs on n and m vertices, respectively.

In particular, by ordering the vertices appropriately, we may assume that A=
J — A (the “complement” of A) is a direct sum of n; x n; cycle matrices?

11 0
11 0

Cu= |, stz k2
[ 1 0 1.

2In particular G, = [: :],P;: [(l) :]
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and m; x m; path matrices®

P, = 1 . J=1,2,...,8m; >2
0 1

and an r x r identity matrix

1 0
0 1

Since if e is odd
n in 18

1'(c"")_{n,-—l if n; is even

and since the Pp,, and I, have full real rank, it follows that r(A) = nminus the
numberof evenm;,i=1,2,...,k.

Note that the all 1’s column & = [1,1,...,1]7 is in the column space of A
(choose each C,, column with weight 5; choose the last, third from last, fifth
from last, ... columns of each P,,, with weight 1, and all of the columns of I,).

Consequently, @ = A% where §_ z; > 1 (since n > 2).

__Since & € column space A= J — A, we have column space A C column space
A.

Now, @ € column space A too because AZ = (J — A)T = (3 z; — 1)@

where ¥ x; # 1. Thus, column space A C column space A. Therefore,? r(A) =

r(A) = nminus the number of even n;, i = 1,2,..., k. Now, the number of
off-diagonal 0’s in A is
ICl=) "m+ > (mj-D+r
> 2( the number of n;)

> 2(the number of even n;).

Therefore, rz + (A) > r(A) > n— &L Similarly, r; + (B) > m — £l
Now, the members of A, when restricted to K,,, yield a partition of A. Thus,
|A| > rz + (A). Similarly, |B| > rz + (B).

3In particular Cp = [: :]p, = [(') :]
4 These observations about real rank of A versus J — A appear essentially in Brualdi, Manber, and Ross
[2] and are attributed there to H. Ryser.
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Therefore,
IRl > 1A] +B]+C]
2n—|g—|+m—lg—l+|0|
=n+m
as required. |
Remark: It is interesting to note that although the nonnegative integer rank of M
remains unchanged for all choices of subpermutation matrices P and Q, the real

rank can vary (by at most 1 with the addition or deletion of a single 1 from or to
P or QQ). Two extreme cases are

(i) PandQareallO: M = K, P Kp, 7(M) =m+mn;

() P=Q=1I: M= [ff" l{(N],r(M)”H.

To get the real rank we are after, assume n > m and let

I
M= [ Ko O ] :
Im 0 Kn
Then it is easy to see that the m bottom rows are the complements of the first m
rows, so that the sum of each of these complements gives the all 1’s vector. It

follows that (M) = n+ 1. Combining this fact with Theorem 2.2 we get the
following result.

Theorem 2.3. Let
In
M= [ Ko O ]forn2m23.
I. 0 Kp

Then
(M) n+l

rz+ (M) n+m’
3. u—fﬁ-’(‘-}ﬁ Arbitrarily Small

In order to find matrices satisfying ;ﬁ% < %, we had to use tensor products.
We are then able to find infinite families of matrices A, satisfying

7(An) _
Ly e

Let i(A) denote the maximum size of a set of isolated 1’s in the {0, 1}-matrix
A. Let A® B be the Kronecker product, i.e., the matrix obtained by replacing
each entry of A by the matrix a;;B. The following result is well-known in the
literature.
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Proposition 3.1. (A ® B) = r(A)r(B).
The next result gives a lower bound for the nonnegative integer rank.
Theorem 3.2. rz+ (A® B) > i(A)rz + (B).

Proof: Chooseasetofi(A) isolated 1’sin A. In AQ B this givesaset{B), B, ...}
of i( A) copies of B that are “isolated” in the sense that no rectangle contained in
AQ® B will have 1’s in two of these i( A) copies of B. Now let R be any rectangle
partition of A ® B; let R; be the rectangles of R that have a 1 in B;. We have just
observed that these R;’s are disjoint. Hence
iC4)
IRl > Y IRi| 2 i(A)rz + (B),
i=1
and the result follows. |
We can now get a ratio of ranks to be arbitrarily small by applying this result
to any of the matrices A, from the previous section. For example, r(Ag) = 4,
rz + (Ag) = i(Ag) = 6.
Let AR = Ag ® As ® --- ® As (k times). Applying Proposition 3.1 and
Theorem 3.2 repeatedly, we get: 7(A®) = 4% and rz + (AP) = 6*. Hence,

o r(ARy 72k
g (amy ~ i \3) =0

We have been unable to find any examples where the ratio is exactly % Using
tensor products is the only way we could find ratios less than %—
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