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1. Introduction

A partial triple system (PTS) is a pair (V, B) where V is a v-set of elements and
B is a set of 3-subsets of V called triples such that each 2-subset of V is contained
in at most one triple of B. The leave of a PTS (V, B) is the graph (V, E) where
E contains all pairs that do not appear in B. The leave is quadratic if each of its
vertices has degree 0 or 2. A PTS (V, B) is maximal if its leave is triangle-free.
A Steiner triple system (STS) is a PTS whose leave has no edges.

The existence of maximal partial triple systems (MPT) with a (triangle-free)
quadratic leave Q was seitled completely in [2]. Such an MPT exists if and only if
certain obvious arithmetic conditions are satisfied (basically, the number of edges
in the complement of Q has to be divisible by three), with exactly one exception:
v=9,Q=C3 UCs.

Maximal partial triple systems with a quadratic leave represent an important
class of MPTs, in particular, because of their connections to totally symmetric
quasigroups (see [4]) and to near-Steiner 1-factorizations of the complete graph
(see [5]). A

MPTs of order v < 11 were enumerated in [1]. MPTS of order 13 with hexag-
onal leave were enumerated in [3]. In this paper, the second in a series devoted to
the enumeration of MPTs of order 13 with a quadratic leave, we deal with the case
of leaves having nine edges. There are two such graphs: (i) Cy, and (ii) C4 U Cs.
The second case is interesting in that the leave C; U Cs is the only “exceptional”
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Fig. 1

leave (for v = 9), and v = 13 is the first order after v = 9 for which an MPT
with this leave exists. The number of nonisomorphic MPTs of order 13 with leave
Cs U Cs tums out to be quite large: it equals 438. The number of nonisomorphic
MPTs with leave Cs is even larger: there are 2060 such systems. -

2. Computational results

Unlike for MPTS with a hexagonal leave (cf.[3]), there is no obvious way to obtain
MPTs with leave Cy or Cs U Cs, respectively, from Steiner triple systems. Call
our MPT: briefly Cy -MPT, and C4 5-MPT, respectively. The method to generate
all Cy-MPTs and all Cy s-MPTs was therefore similar to that used to obtain all
those MPT(13) with a hexagonal leave which cannot be obtained from an STS
through a triangle replacement (cf.[3]).

2a, Cy-MPTs

Let the leave of a Co-MPT be C = (012345678), and let the remaining four
elements be a,b,c,d. A solution will fall into one of two classes, depending
on whether it contains a triple T C {a, b, c,d} (type I) or not (type 2). Let us
call a diagonal any edge of the complete graph X, on {0,1,...,8} not in the
leave C. If a solution of type 1 contains a triple, say, {a, b,c} then it also con-
tains a triple {a, d, z} with zeC, say, {a, d, 0}, and exactly four triples {a, z;, y;},
i = 1,2,3,4, with {z;,y;} a diagonal, and {z;,y;} N {zj,y;} = O fori # j,
and {z;,yi:1 = 1,2,3,4} = {1,2,...,8}. There are 24 nonequivalent possi-
bilities (subcases) for the mutual position of these four diagonals; two such typ-
ical subcases are shown in Fig.l. A solution of type 2 does not contain a triple
on {a, b, ¢, d}, thus it must contain triples {a, b, u}, {a, c,v}.{a,d, w}, u,v,weC,
and three triples {a, z;, %}, 1 = 1,2,3, where {z;, y;} is a diagonal, {z;,1:} N
{zj,!lj} =f@fori # j,and {zinyl': i= 1.2’3} = {oili"'!s}\{u!viw}' Here
there are 38 nonequivalent possibilities (subcases) for the mutual position of the 3
diagonals; this number is somewhat larger because there are 7 nonequivalent pos-
sibilities to choose u, v, w from {0, 1,...,8}. Three typical subcases are shown
inFig.2.
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Fig. 2

In either case, the Cy-MPTs were generated by the computer hierarchically, ac-
cording to a fixed order on subcases. Isomorph rejection was performed simulta-
neously. There are 632 nonisomorphic systems of type 1, and 1428 nonisomorphic
systems of type 2, for a total of 2060 nonisomorphic Cy -MPTs . As an independent
check, 50000 Cy-MPTs were generated randomly by hill-climbing (cf..e.g.,[6]).
There were 2059 nonisomorphic Co -MPTs among these; just one Cy-MPT, with
automorphism group of order 6, was missed .

For each of the solutions obtained, we computed the order of the automorphism
group. The only orders that occur are 1,2,3 and 6 (the same as for Cs-MPTs, cf.
[3]). The distribution of automorphism group sizes is as follows:

number of Cy-MPTs with automorphism group of order

1 2 3 6
typel 568 58 4 2
type2 1398 20 10 -

otal 1966 78 14 2

Other invariants computed included the number of almost parallel classes (APC),
i.e. sets of four pairwise disjoint triples, and the chromatic index. Each system
contains at least one APC. The number of APCs ranges from 1 to 13 while the
chromatic index ranges from 6 to 8. This information is summarized below.

number of APCs
012 3 4 5 6 7 8 9 10111213
Cy-MPTs 0 8 52 146 269 411 347 314 216 153 106 25 11 2
chromatic index
6 7 8

number of Cy -MPTS 15 2002 43
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We list in Table 1 one Cy-MPT with automorphism group of order 1, 2, 3,
respectively, of each of the two types, both Cy -MPTS with automorphism group
of order 6, as well as one Cy-MPT with chromatic index 6 (in the Table, APC
denotes the number of almost parallel classes).

2b. C45-MPTs

In many respects, the procedure to generate all C4 s-MPTs was similar to that
for Cy-MPTs but there were some differences. Let the leave of a Cs s-MPT be
C = (0123)(45678), and let the remaining elements be a, b, ¢, d. Again we have
two types of solutions depending on whether there is a triple on {a, b, ¢, d} or not.
These fall into 9 and 11 subcases, respectively. A typical start for a solution of type
1 would include triples {a, b, ¢}, {a,d,0}, {e,1,3},{s,2,4},{a,5,7},{a,6,8},
while a typical start for a solution of type 2 would take triples {a, ,0},{a,c,1},
{a,d,2},{a,3,4}, {a,5,7},{a,6,8}. The C4 5-MPTs were again generated
hierarchically, with isomorph rejection performed during the process. The total
number of nonisomorphic Cy s -MPTS obtained is 438, of which 152 are of type 1,
and 286 of type 2. Again, as a means of an independent check, 20000 Cy s -MPTs
were generated randomly by hill-climbing, confirming our computation. Of the
438 systems, 42 have automorphism group of order 2, and 396 are automorphism-
free. No automorphism group orders other than 1 and 2 occur. Unlike in the case
of Gy -MPTs, there exist systems without an APC, The information about the num-
ber of APCs and the chromatic index is summarized below.

number of APCs

0123 456 7 8 9101
Cs5-MPTs 2 3 8 27 66 66 93 77 54 23 16 3

chromatic index
6 7 8
Css-MPTs 3 427 8
In Table 2, we list the three C4 5-MPTs with chromatic index 6, as well as two
Ca 5-MPTSs (one of each type) with automorphism group of order 2.

3. Conclusion

The authors hope to complete the enumeration of MPT(13)’s with a quadratic
leave in a subsequent paper. This will involve considering the five possible leaves
with 12 edges each.
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Table 1

Some Cy-MPT(13)s

No. 1

No. 2

No. 3

No. 4

No. §

No. 6

No. 7

No. 8

No. 9

Table 2

type 1; |Autl =1; chr. index =7; APC =5

abc ad0 al5 a26 a37 a48 bd1 cd3 b04 b27 b35 b68
c07 c16 c24 ¢58 d28 d46 d57 025 036 138 147
type 1; |1Autl =2; chr. index =7; APC =4

abc ad0 al5 a26 a37 a48 bd3 cd6 b04 b17 b25 b68
<05 c13 c28 47 d18 d24 d57 027 036 146 358
type 1; |Autl =3; chr. index =7;APC =9

abc ad0 al7 a26 a35 a48 bd3 cd6 b0S b14 b27 b68
c02 c15 c38 c47 d18 d24 d57 037 046 136 258
type 1; |Autl =6; chr. index =7; APC =7

abc ad0 a16 a25 a38 a47 bd3 cd6 b04 b17 b26 b58
c05 c14 c28 c37 d18 d24 d57 027 036 135 468
type 1; |Autl =6; chr. index =7; APC =4

abe ad0 al4 a26 a37 a58 bd3 cd6 b05 b16 b28 b47
c04 c17 25 c38 d18 d24 d57 027 036 135 468

type 2; |Autl =1; chr. index =7; APC =3

ab0 acl ad2 a37 ad6 aS8 be3 bd4 cd5 b18 b26 b57
c04 27 c68 d07 d16 d38 025 036 135 147 248
type 2; |Autl =2; chr. index =7; APC =6

ab0 acl ad3 a26 a48 a57 bc3 bd6 cdS b15 b28 bd7
c07 c24 c68 d04 d18 d27 025 036 137 146 358
type 2; lAutl =3; chr. index =7; APC =11

ab0 acl ad3 a26 a48 a57 be7 bd6 cdd b15 b24 b38
c02 ¢35 c68 d05 d18 d27 036 047 137 146 258
type 2; |Autl =1 chr. index =6; APC =11

a27 be5 d36 148

ad4 b38 ¢26 057

acl bd7 046 258

a35 b16 c47 402

a68 b24 c03 d15

ab0 cd8 137

Some Cj4 5s-MPT(13)s

No.1

type 1; |Autl =1; chr. index =6; APC =7
abc d27 146 358

al3 b28 cd5 047

a24 bl15 c08 d36

a57 b06 c34 d18

268 bd4 c17 025

ad0 b37 c26
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No. 2  type2;|Autl =I1; chr. index =6; APC =11
a25 bd7 c08 134
ab0 c27 d16 358
268 b24 cd3 157
a37 b18 c46 d0S
ac] b36 d28 047
ad4 beS 026
No. 3 type 2; |Autl =1; chr. index =6; APC =11
acl bd5 024 368
a26 b34 c08 d17
a58 b27 cd3 146
ab0 c47 d28 135
a37 b18 c25 d06
ad4 beb 057
No4d  type 1;|Aud =2; chr. index =8; APC=0
ab0 ac6 ad1 a24 a38 a57 bed b17 b28 b35 b46 c08
c14 ¢25 c37 d05 d27 d34 d68 026 047 136 158
No.5.  type2;lAutl =2; chr. index =7; APC =6
ab7 ac2 ad8 be3 bd2 cd4 a06 al4 a35 b04 bl5 b68
c07 c16 c58 d0S5 d17 d36 028 138 246 257 347
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