Semi Williamson Type Matrices and the W(2n,n)
Conjecture

Jennifer Seberry
and
Xian-Mo Zhang

Department of Computer Science
University College
University of New South Wales
Australian Defence Force Academy
Canberra, ACT 2600, AUSTRALIA

Abstract

Four (1, -1, 0)-matrices of order m, X = (z;;), Y = (%), Z = (i), U = (u;)

satisfying

() XXT+vYT 4+ 22T + UUT = 2ml,,

(i) = +y + 2 +uf=240j=1....m,
(iii) X,Y,Z,U mutually amicable,
will be called semi Williamson type matrices of order m. In this paper we prove
that if there exist Williamson type matrices of order ny,...,n; then there exist
semi Williamson type matrices of order ¥ =[] =1 n;’, where r; are non-negative
integers. As an application, we obtain a IV(4.V,2N).
Although the paper presents no new W(4n,2n) for n, odd, n < 3000, it is a
step towards proving the conjecture that there exists a W (4n, 2n) for any positive
integer n. This conjecture is a sub-conjecture of the Seberry conjecture [4, page
92) that W(4n, k) exist for all k = 0,1,...,4n. In addition we find infinitely many
new W(2n,n), n odd and the sum of two squares.

1 Introduction and Basic Definitions

Definition 1 Let 4, B, C, D be four (1, -1)-matrices of order n. If AAT + BBT +
CCT + DDT = 4nl, and UVT = VUT (U and V are amicable), where U,V ¢
{A,B,C,D}. We call 4, B,C, D Williamson type matrices of order n.

Definition 2 Let W be a (1, -1, 0)-matrix of order of order n satisfying WW7T = cI,.
We call W a weighing matriz of order n with weight ¢, denoted by W(n,c).
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Definition 3 Four (1, -1, 0)-matrices of order m, X = (zy5), Y = (5:;), € = (zi5),
U = (ui;) satisfying

() XXT+YYT 4227 + UUT = 2mI,,

(ii) 3,2,‘}‘!/.2) + z?)"'“?) =27 1’] = l|”'7m$

(iii) X,Y, Z, U mutually amicable,

will be called semi Williamson type matrices of order m. In particular, if X, Y, Z, U
are circulant and symmetric we call X, Y, Z, U semi Williamson matrices of order m.

Let M = (M;;) and N = (N,) be orthogonal matrices with 2 block M-structure (see
[6]) of order tm and tn respectively, where M;; is of order m (i,j = 1,...,t) and Ny,
is of order n (g,k = 1,2,...,t). We now define the operation O as the following:

In Lz -+ Ly
MON = Ln Lxn L2
Lll L(2 ot Ltt
where M;;, Ni; and L;; are of order of m,n and mn, respectively and

Lij = My x Nyj+ Mia X Noj + -+- + Mg X Nij,

where X is Kronecker product, i,j = 1,2,...,t. We call this the strong Kronecker mul-
tiplication of two matrices (see [7]).

Lemma 1 Let A = [Ay,Az, A3, A4] be a (1, -1, 0)-matriz of order m X 4m, where A;
is of order m, satisfying T3, A;AT = pl, and BT = [B],B],B], B]|, where B; is
of order n X 4n, be a W(4n,q). Set C = 23!:, A; x Bj. Then CCT = plpn.

Proof. CCT = (Tiay AjxB;)(Tizy ATxBT) = =41 A;ATxB; B = (T4, 4;AT)x
9l = pI X qln = pglmn.

A B C D
Notation 1 Write OD(4,B,C,D) = g _CA -bB :2
C -D -A B



2 Preliminaries

Lemma 2 Let a,b,c,d € {1,-1,0}, a® + 6> + 2 + d? = 2 and k,m,l,q € {1,~1}. Set
(2, v, 2,4] = }[a,,c,d]OD(k,m,1,q). Thenz,y,z,u € {1,-1,0}, 22+ y? + 2%+ u? = 2.

Proof. By Lemma 1,2? +y?+22+22=1.2-4=2. Each of z, y, z, u is half the
sum of four numbers, two of which are zero, and the other two of which are units. It
follows that z, ¥, 2, u € {1, -1, 0}.

We note that the operation of Lemma 2 is norm preserving.

Lemma 3 If there exist Williamson type matrices of order m then there ezist semi
Williamson type matrices of order m.

Proof Let A, B, C, D be the Williamson type matrices of order m then 2(A + B),
HA-B), 3(C + D), {(C - D) are semi Williamson type matrices.

Lemma 4 If there ezist semi Williamson type matrices of order m and Williamson
type matrices of order n then there ezist semi Williamson type matrices of order mn.

Proof. Let X = (zi;), Y = (%) Z = (2i;)s U = (ui;) be the semi Williamson type
matrices of order m and K = (ku), L = (l,), M = (my), @ = (gac) be the Williamson
type matrices of order n. We now construct four matrices, say B = (r,), § = (su.),
V=(vu), W= (w.)ij=1,...,mn, of order mn, where

1
[ruvs Suvy Vupy wyn] = 5[31';'7 YijrZisy uijIOD(k:h MstrQaty I:!)~

By Lemma 2, r,,,8,,, V4, w, € {1,-1,0} and r2, + sﬁ, +vi, +wd, =2 =
1,...,mn. By Lemma 1, RRT + §8T + VVT + WWT —8mnIm,. = 2mnl,,. Since
X, Y Z,U are mutually amicable and K, L, M, Q are mutually amicable, R, S,V,W are
also mutually amicable. a

3 Main Results

Throughout this section we write N = ]'],_.l i, where r; are non-regative integers.

Theorem 1 If there exist Williamson type matrices of order ny, ... , g then there ezist
semi Williamson type matrices of order N.

Proof. By Lemma 3, there exist semi Williamson type matrices of order n;. By
Lemma 4, there exist semi Williamson type matrices of order n1n;. Using Lemma 4
repeatedly, we prove the Theorem. a
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Corollary 1 If there ezist Williamson type matrices of order ny,....n; then there
erists a W(4N,2N).

Proof. By Theorem 1, there exist semi Williamson type matrices of order N, say
E,F,G,H. Then A=OD(E,F,G,F)isa W(4V¥,2N). a

Corollary 2 If there exist Williamson type matrices of order ny,...,nx and an Hadamard
matriz of order 4h then there exists a W(4Nh,2Nh).

Proof. By Theorem 1, there exist semi Williamson type matrices of order N, say
P,Q,R,S. Write H = (H;j), i,j = 1,2,3,4 for the Hadamard matrix of order 44,
where H;; is of order A. Set

B = ;0D(P,Q, R, 5) O (Hy).
From (ii) of Definition 3, B is a (1,-1,0)-matrix of order 4Vh. By Theorem 1, [7],
BBT = 2NhIny.
Hence B is the required W(4Nh,2NR). (u]

4 Numerical Results

To construct W(4n,2n) we can use the known result that if there exist Hadamard ma-
trices of order 4k; and 4A; then there exist two amicable and disjoint W(4hihz,2k h2)
(see [7], [3])- Thus we obtain many W(4n,2n) whenever n = hyh;, where 4h, and
4h, are the order of Hadamard matrices. In particular, let h; = 1, we give the simple
result that W(4h,2h) exists whenever an Hadamard matrix of order 4h exists (see [7],
(5]). However Corollary 1 is new result. To show the advantages of Corollary 1 and
Corollary 2, we now give new W(4n,2r). Leta =71-79-97,b=71-79,c = 71-97,
d = 79-97. Note Hadamard matrices of order 4b, 4¢, 4d and 4a are not yet known and
hence the method in [7] and [3} cannot be used. Since there exist Williamson type
matrices of order 79, 97 and an Hadamard matrix of order 71, by Corollary 2, there
exists a W(4a,2a). Similarly, we obtain new W(4n,2n), which cannot be obtained by
using the method given in (7] or (3}, for n = 73-83-89 and 83-89-103. Also Corollary
1 and Corollary 2 give infinitely new W(4h,2h) directly for example h = 57 or 3'5/7%,
where 1, j, k are non-negative integers.

Corollary 1 has many uses. First, this is a step towards proving the conjecture that
there exists a W(4n,2n) for any positive integer n. This conjecture is a sub-conjecture
of the Seberry conjecture [4, page 92] that W(4n, k) exist for all k = 0,1,...,4n. In
addition we find infinitely many new W(2n,n), n odd and the sum of two squares. It
is interesting that unlike the product of Hadamard matrices (see [1], [3]), where the
number of 2-factors will increase when the number of Hadamard matrices used to form
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the product increases, the factor 4 in the order 4V = 4['1_’,7:, n;’ of W(4N,2.V) will be
invariant no matter how large k and r; become.

Furthermore, let ¥, be the W(4.V,2N)for N = Hf=l n;’, where r; are non-negative in-
tegers, mentioned in Corollary 1. Suppose we have another W(4N,2N), say W, disjoint
with W;. Using Craigen’s [2] orthogonal pairs, we would obtain a powerful result: there
exists an Hadamard matrix of order AN whenever there exists an Hadamard matrix of
order h. In particular there exists an Hadamard matrix of order 8N, N = I'[;Ll n;’ ,
where r; are non-negative integers. H = W) x [ i i ] + W, x [ —11 _11 ] is the

required Hadamard matrix.

The state of the W(4n,2n) conjecture, for small n, can be summarized by noting that
a W(2'q,2'"1q) exists for ¢, odd, ¢ < 3000 for precisely those ¢ and ¢ for which an
Hadamard matrix exists in the Appendix of Seberry and Yamada [5).

The conjecture that a W(2n,n) for every odd n where n is the sum of two squares has
previously been resolved in the affirmative for n = 5,9,13 and 17 (see [4]).

Lemma 5 Let Ay, A,, A3, Aq be type 1 (1, -1)-matrices of order n satisfying
4
z AAT = 4nl, (1)
=1
and
AAT + AQAT + A3AT + A4l =o. (2)

Then there ezists a W(2n,n).

Proof. Set W =} :3;:::,- _’:1311‘“_'1’;2,

=]

is a W(2n,n). Then W is a W(2n,n).

We note that if n is odd in Lemma 5 then by Corollary 2.11 [4] n is the sum of two
squares. We call four (1, -1) type 1 matrices that satisfy (1) and (2) tight Williamson-
like matrices.

Corollary 3 Let M = ]'[;-‘=l p;", where p; = 3(mod4), a prime and r; is a non-
negative integer, j = 1,...,k. Then there exists a W(2n,n), wheren = 5.9'M, 13.
9'M, 25.-9'M.

Proof. By Theorem 2, [10], there exist four type 1 (1 , -1)-matrices of order 5 - 9¢,
13 . 9%, 25.9¢, satisfying (1) and (2). From [8), There exist four symmetric, mutu-
ally commutative type 1 (1, -1)-matrices of order M, say By, B;, B3, By, satisfying
>4 BiBT = 4nl,, BB} + ByB =0, B\BY + B;BT = 0, B, BT + B,BT = 0. By
Theorem 1, [10], there exist four type 1 matrices of order 5-9* M, 13-9*M, 25-9* M, satis-
fying (1) and (2). By Lemma 5, we have a W(2=n,n), where n = 5.9*M, 13-9* M, 25-9' M.
a

69



We now give tight Williamson-like matrices of order 5, 13 and 25. By the method given
by Xia [9], we construct cyclic (1, -1) tight Williamson-like matrices of order 5 and 13
with first rows

+—++—, ++-++ -—++-, ++++-and

thm——dm—tt—t4, ——tt -ttt 4,
+-=—+=-+++-—-=-+—-, +-++++++ - -+ + — respectively.

From [9] we also construct type 1 tight Williamson-like matrices of order 25. Any
element in the abelian group Zs ® Zs can be expressed as (a,b), where a, b € Z5, and
the additive addition in Zs @ Zs can be defined as (a,b) + (¢,d) = (a + b,¢ + d). Set

S1 = {(0,0),(0,1),(1,2), (3,3), (0,3), (4,4), (3,4), (2,0), (2,2), (1,0), (1,4), (0,2), (3,0)},
52 = {(0,1),(4,0), (3,1), (4,4), (0,4), (4,2), (1,0), (1,1), (3,2)},

53 = {(1!2)’ (37 3)’ (1’3)' (4’1), (3’ 4)’ (2‘ 0)’ (21 3)’ (4’ 3)1 (1’4)’ (012)’ (2‘ 4)’ (2| 1)},

54 = {(31 3)’ (4» l)a (0,3), (2$0)7 (4, 3); (2) 2)’ (09 2)) (2, 1)’(3v 0)}-

Hence the type 1 (1, -1) incidence matrices of S, S2, S3, S4 form the tight Williamson-
like matrices of order 25.

Finally we note that if N + I is a symmetric conference matrix of order n = 2(mod 4)
then N+ I, N-I,N+1I, —N + I are tight Williamson-like matrices of order n.
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