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Abstract. If the non-zero entries of an incidence matrix X of BIBD(v, b, r, k, 2) have
been signed to produce a (0, 1, —1) matrix Y such that

YYT =11,

then we say it has been signed. The resulting matrix ¥ is said 1o be a Bhaskar Rao
design BRD(v, k,2). We discuss the complexity of two signing problems, (i) given
v, k and ), decide whether there is a BRD (v, k,2)), (ii) givena BIBD (v, k,2))
decide whether it is signable. The paper describes related optimisation problems. We
show that the signing problems are equivalent to finding the real roots of certain multi-
variable polynomials. Then we describe some linear constraints which reduce the size
of the second problem, we show certain special cases have polynomial complexity, and
we indicate how in some cases the second problem can be decomposed into smaller
independent problems. Finally, we characterise signable Steiner triple systems in terms
of their block-intersection graphs, and show that the complexity of deciding whether a
twofold triple system can be signed is lincar in the number of blocks.

1. Introduction
In this paper, we study the complexity of two problems associated with the signing
of balanced incomplete block designs (BIBD) with even index.

Notation and Definition 1.1: We let D denote a BIBD (v, b, 7, k,2)) with
blocks B, B,,..., B and treatments u;,u3,...,u,. D is said to have been
signed over Z, if the non-zero entrics of an incidence matrix X of D have been
signed to produce a (0,1, —1) matrix Y such that

YYT = 7],
The matrix Y is said to be a Bhaskar Rao design, BRD(v, b, r, k, 2 )\), and, in this
paper, D will simply be said to be signable. 1

The class of Bhaskar Rao designs is a subclass of the class of Generalised
Bhaskar Rao designs, and Hadamard matrices and weighing matrices are special
types of Bhaskar Rao designs. These designs have numerous interesting connec-
tions with coding theory, cryptography, finite geometry and experimental design.
We investigate the complexity of the following problems.

(i) Given v, k and )\, decide whether there is a BRD(v, k,2)).

(ii) Given aBIBD (v, k,2)), decide whether it is signable.
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P. B Gibbons and R. A. Mathon ([4] and [5]) have implemented back-tracking
algorithms employing on-going isomorph rejection to reduce the work needed to
complete a search for a design based on a given incidence matrix. These tech-
niques have allowed them to enumerate the signings over a number of groups of
a number of interesting designs. Indeed, they found the apparently “sporadic”
BRD(19,9,4). In this paper, we focus on the complexity of the problems. We
will also be interested in alternative formulations of these problems.

One of the more interesting results in this paper is a characterisation of the
signable twofold Steiner triple systems in terms of their block intersection graphs.

Definition 1.2: Using the notation of 1.1, the sth block inersection graph G;( D)
of D is the graph on b vertices 1,2, ..., b where ( s, t) is an edge if and only if the
blocks B, and B; have precisely 1 treatments in common. ]

P. B. Gibbons, R. A. Mathon, and D. G. Corneil [3] suggest that block inter-
section graphs might be a useful in distinguishing non-isomorphic BIBD’s. Our
result for BIBD(v, 3, 2) proves that signability will provide no additional power
to distinguish between non-isomorphic designs. It is an open question whether,
for k£ > 3 or A > 2, the signability of a BIBD is completely determined by its
block intersection graphs.

Finally, we show how graph theoretic arguments can be used to strengthen a
well known non-existence theorem for BRD(v, b, 7, k,2)).

2. Related Optimisation Problems

In this section we show that signing a BIBD (v, k,2)) which can be signed over
Z, is equivalent to solving an optimisation problem over the bk-dimensional real
cube [—1, 11%, We begin with a technical lemma.

Lemma 2.1. Let )\ > 1 be an integer and let f:[—1,1)>* — R be the map
f(",%,...,.Ya) = ) Yi¥p
1<i<j<2)

then f is minimised when half the Y; ’s equal 1 and the remainder equal - 1.
Proof: Observe that

2) 2 2

2f= (EY) - ¥,

i=1 i=1
and, hence, f > —), withequality if andonly if, foralli = 1,2,...,2),Y; = %1,
and 2 v; = 0. |
Theorem (Related Problem) 2.2. Let D be a BIBD (v, k,2)) which may be

signed over Z,. Then signing D to obtaina BRD Y is equivalent to solving the
optimisation problem: minimise

C(Y) = E E YisYjsYit¥jt,

ICicjv  1<s<tgh
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subject to the constraints

-1<ye<1 if u;€ By,
vie = O otherwise.

Proof: The term 3, ., s cp Via¥je¥itWjt €QUALS F(Yit, Yjt, , Yits Yjtys -+ - » Yitar Yjtny) »
where By, , By, ..., B, are the blocks which contain the ith and jth treatments.
Hence C(X) is the sum of v(v—1) /2 terms of the form f(11,Y5,...,Y2)), and,
by Lemma 2.1, each of these terms is minimised precisely when D is
signed. |

It is possible to rephrase this result and other similar results, relating the exis-
tence of combinatorial designs to optimisation problems, as results involving the
roots of multivariate polynomials. In our case, we have the following.

Theorem (Related Problem) 2.3, There exists a BRD (v, k,2)) if and only if
the polynomial

2
Fiy)y= ) (( > y.-.y;ay«y;:) +A)

1<€igj<v 1<ty

z((z:y) —k)2+i§”:(y§,-y:.)’

s=l =1 s=1 i=1

(2.1)

has roots in R*, and a BIBIX v, k,2)) with incidence matrix X = (=z;;) is
signable if and only if the polynomial

F(Y)= Y (( > y.-.y,-.y«y}:) +X)2

1<i<j<v 1<a<t<h 2.2)
b v

Y (h - )’
s=1 {=1

has roots in R®.

Proof: We prove the firstresult only. If Y is aBRD (v, k, 2 )\), then all three major
summations in (2.1) are zero, and, hence, F(Y) is zero. Conversely, F(Y') is zero
if and only if each of the double summations is zero. The third term is zero if and
only if all entries of ¥ are 0,1, or -1, and the second term is zero if and only if
there are k non-zero entries per column of Y. Hence

b

S Y shvd=bk(k—1)/2= M(v—1)/2. 23)

s=1 1<i<i<y
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Also,

b
1
E YisYjsVitYje = 2 (E yiayja) Ey,,y,, . (24)

1<s<t<h =1

So, if, in addition, the first double summation is zero, then

b 2
» (Zys,y,-,) =0, 2.5)

1<igi<y \s=1

and, by (2.4) and (2.5),

Z vhvh =),

s=1
foralliand jsuchthatl < i< j < w. 1

Theorem 2.3 may allow methods for counting roots of multivariable polyno-
mials to be used to settle existence questions or to enumerate BRDs. Theorem
2.2 may allow general optimisation techniques such as simulated annealing to be
applied in generating random designs. Moreover, such an approach may uncover
some interesting approximate solutions-even when no solution exists.

3. Some Linear Constraints and a Polynomial Time Algorithm for Counting
BRD(v,k,2)s

Since any row or column of a BRD may be multiplied by -1 without destroying
the defining properies of a BRD, the space which we need to search to enumerate
BRD(v, k,2))s can contain no more than 2 ®=D-1 elements. In this section
we describe linear constraints which may be used to reduce the size of this space.
LetY = (yi;) be a BRD(v, k,2) which is based on a BIBD(v, k,2) D; then
foralli,j,sandt,wherel1 <i<j<vandl1<s<t<b,

-1 ifui,u; € B,, By,
0 otherwise.

YisYitYja¥is = { (3.1)

Hence finding all the BRD(v, k, 2) s which are based on a design D is equivalent
to creating and solving a system of v(v — 1) /2 linear equations in bk = v(v —
1)/2(k — 1) variables. Given the blocks of X, the system of equations can be
listed in order bk? operations, and using Gaussian elimination, the system can be
solved in order bkv* arithmelic operations. The system will be sparse, because
each equation involves only four variables; so there may be faster ways of solving
the system. In any case, if D can be signed, it can be signed in 2™ (where m is a
non-negative integer) ways.
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Theorem 3.1. Counting the numberof BRIX v, k,2) whichare basedona BIBD
(v, k,2) can be done in order bkv* operations. |

In general, for any BRD(v,k,2)) Y = (y;,), and any pair ¢ and j, where
1<i<j<y,
11 Yisjs = (— D (32

iJ,s such that B,D{u;,u;}

For certain designs D, these constraints alone may be enough to rule out the ex-
istence of a BRD based on D. For example [2], there is no BRD(10,4,2). This
is especially likely when the number of equations v(v — 1) /2 is greater than the
number of entrics (b — 1)(k — 1) which we are free to vary.

Proposition 3.2. Let D be a BIBD(v, k,2)), and consider the inequalily
v(v=1)/2 >(b—1(k-1). (3.3)

(i) If D is symmetric, (3.3) holdsif and only if k < v/2 + 1.
(ii) If D is not symmetric, (3.3) holds if and only if 4 )\ < k.

Proof:
(i) Note b = v, and simplify (3.3).

bk(k - 1) =v(v=1)/2>(b—1D(k-1).
4
Equivalently,
k
473< k+ m,

and, since b > v > k and ) is an integer, this is equivalentto4X < k.

When D satisfies Proposition 3.2 we would expect the linear constraints to dra-
matically reduce the size of the space which would need to be searched to find
all possible signings. Preliminary investigations using a computer show that the
linear constraints reducc the search space when (v, k, ) = (40, 13,4) from 248
to 24, and when (v, k,\) = (19,9,4) from 214 1022,

The calculation of the space of solutions to these linear equations can be done
in polynomial time. This space merits further investigation. For example, the size
of the space may be a good polynomial-time equivalence discriminator. Also, it
would be particularly interesting to see how the group of auto-morphisms of a
design acts on the space, and an attempt to adapt Gibbons and Mathon’s back-
tracking and isomorph rejection techniques to this new search space would also
be worthwhile,
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4. Related Graph Theoretic Problems
Definition 4.1:

@

(i)

(i)

Let D be a BIBD(v, k,2)), and let G( D) denote the labelled multigraph
on the vertices 1,2,...,b, where (s,t)) is an edge (labelled by the un-
ordered pair (i, 7)) if i # j and B, N By D {u;,u;}.

Similarly, if X is an incidence matrix of D, define a labeled network N(X) ~
N(D), on vertices 1,2, ...,b, where (s, t); ) is an edge if z;,7;x;,2;¢ =
1.

Finally, if Y is a BRD(v, k,2 ), define an edge-coloured labelled net-
work N(Y), on vertices 1,2,...,b, where (s,t);; is a black edge if
VisYityjsyse = 1 and ared edge if yisyieyjayje = —1. |

Lemma 4.2.

®
(i)

(iid)

@iv)

N(D) is regular with degree (2X — 1) k(k—1) /2.

Forall i and j, where 1 < i < j < v, precisely \(2X — 1) edges of
N(D) are Iabelled with (1,j). Indeed, these edges form a clique. Given
the blocks of D, the vertices of each of these cliques may be listed in order
bk? operations.

Y is a BRIXv,k,2)) if and only if, for all 1 and j, where 1 < i <
7 < v, there are precisely )\? red edges of N(Y) which are labelled by
(4, 7) (while the black edges which are Iabelled with (1, j) form twodisjoint
cligues on ) vertices).

Ignonng Iabcllmg, edges in N(D) with multiplicity i(1 — 1)/ 2 where
i=1,2,...,k, corespond to edges in Gy D).

Proof:

@

(i)

(iii)
(iv)

Fix s; then (s, t)(gj) isin N(D) ifand onlyif B, D {u,-, u,-}, B: D {u.‘, u)'},
t # sandi < j. Since D is a BIBD(v,k,2)), there are (2X — 1) k(k —
1) /2 wiples (1, 7,t) which satisfy these constraints.

An edge labelled with (1, ) corresponds to a pair of blocks which contain
the th and jth treatments. There are 2 blocks which contain u; and u;; so
there are 2X(2 X — 1) /2 pairs of such blocks, and the corresponding edges
form a clique. Finally, to produce lists of the vertices in these cliques, it is
sufficient to build an array by processing each block once as follows. For
each pair of treatments u; and u; in B,, add an entry containing s to the
((i—1) v+ j)throw of the array. At the end of this process, the ((i — 1) v+
j) th row lists (in ascending order) the vertices of the clique formed by the
edges labelled with (1, 7).

Half the non-zero entries in the list y;,y;5, where s = 1,2,..., b, will equal
1 and the remainder of non-zero entries will equal -1.

An edge with multiplicity (¢ — 1) /2 corresponds to a pair of blocks whose
intersection contains exactly ¢ treatments. 1
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We now introduce the concept of an impression of a treatment-block incidence.

Definition 4.3:

(i) We say the edge (s,t);  of N(D) is supported by the four incidences
u; € B,,u; € By, uj € B,,u; € B, termed supports. (Each edge has
precisely four supports.)

(ii) With each incidence u; € B,, we associate a subnetwork of N( D) denoted
by F;, whose edges are those which are supported by u; € B,. F;, is called
the impression of u; € B,.
(iii) If u; € B,, let x;, denote the operation where the colour of each edge in F;,
is reversed.

Lemma 44. Let Y = (y;;) be a BRIXv,k,2)) based on X; then the edge-
coloured network N(Y') may be obtained from N(X) by applying, in any order,
the operations r;,, where y;, = —1.

Proof: Let sy denote the composition of the operations given in the lemma. The
edge e = (s,%);, in N(Y) is red if and only if y;,y:y;,y;: = —1. But the colour
of e is reversed by Ky, ifand only if m = torj,n= sort,and yn,, = —1. Hence
ry(e)1 = kg,rinjsnji(e) and the colour of e will be reversed by sy if and only
if YisYiryjsyje = — 1. [ ]
Theorem (Related Problem) 4.5. Signing D is equivalent to finding a sequence
of operations x;, which, for each i and j, where 1 < 1 < j < v, reverses the
colour of precisely \* edges which are labelled by (i, j).

|

A related problem would be to determine whether there is any vector of weight

2v(v—1)/2 in the vector subspace of the edge space of N(D) which is spanned

by the impressions. The general problem of determining whether a vector space

contains a vector of a given weight is N P-complete. Whenk =3 and A =2, a
complete solution 10 4.5 is easily stated.

Theorem 4.6. When k = 3 and X\ = 2, D may be signed if and only if all the
connected components of N(D) have an even number of edges (fe. G3(D) is
null and all the connected conponents of G,( D) have an even number of edges).

Proof: By Lemma 4.2 and Definition 4.3, when & = 3 and )\ = 2, the degree of
each vertex of N(D) is (2 — 1) k(k — 1) /2 = 3, and any pair of incident edges
comprises an impression. So, when & = 3 and A = 2, the Related Problem 4.5
reduces to the following: "given N(D), find a sequence of impression colouring
operations, each constituting the reversal of the colours of a pair of incident edges,
whose net effect is the reversal of the colour of every edge in N(D)". For there
to be a solution to this problem, it is clear no connected component of N( D) can
have an odd number of edges.
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Conversely, if (omitting the labels) (1,2), (2,3),...,(n—2,n—1),(n~1,7n)
is a path, then reversing the colours of the edges in the subnetworks {(1,2),
(2,3)}{(2,3),(3,9},... ., {(n=2,n-1),(n— 1,7m)} has the net effect
of reversing the colours of (1,2) and (n — 1,7) only. Hence, if each compo-
nent has an even number of edges, the edges may have their colours reversed in
pairs. |

The following result shows that the complexity of deciding whether a
BIBD(wv, 3,2) is signable is lincar in the amount of input.

Corollary 4.7. Deciding whether a BIBIXv,3,2) D is signable can be done in
order b (ie. order v* ) operations.

Proof: Deriving N( D) from an input listing the blocks of D is, by Lemma 4.2, of
at most order b complexity (k is fixed), and the complexity of listing the vertices
in the connected components of a network is proportional to the number of edges.
N(D) has 3b/2 cdges. 1

5. A Non-Existence Theorem

In this section we prove a non-existence result which improves on a non-existence
result which has been progressively developed in (11, [6) and [7]. The most in-
teresting feature of our treatment is the method of proof which involves a simple
counting argument applied to N (D). First we prove a lemma.

Lemma5.1. Let D bea BIBD(v,k,2)),and let E, ={e; | j =1,2,...,d} be
the set of edges which are incident with the vertex s in N(D). Let W = (wyj)
be the k x d (0, 1)-matrix where

1 if e; is contained in F,
wy =
Y7L 0 otherwise

Then W is the incidence matrix of a BIBD (k,2,(2) - 1)).

Proof: By Definition 4.3(ii), there are exactly k impressions centred on the vertex
s. Morcover, by Definition 4.3(i) and (ii), any edge in E, is contained in precisely
four impressions, exactly two of which are centred on s. Finally, any pair of treat-
ments u; and u; in B, arc contained in 2 X — 1 other blocks; so F}, and F;, have
precisely (2 — 1) cdges in common, [ |

Theorem 5.2, Let by, bs,...,b, be the the respective numbers of vertices in the
connected components of N(D); then for ecach m = 1,2,...,n, there exist

nonnegative integers Tym, Tam, - .. , Tk—1,m Such that
k-1
> ik = 1) Zim = brk(k — 1) /4 (.1)

i=1

80



and
k-1
§ :a,-..,,. < bnk. (5.2)

i=1
Proof: Let C,,( D) denote the mth connected component of N( D), and Cp,,(Y)
denote the corresponding component of N(Y). (Cy,(D) will correspond to a
subset of blocks in D.) Also let z;, be the number of vertices in Cp,, (D) which
correspond to a column of Y which contains exactly 1 negative entries. (So in-
equality (5.2) follows immediately.

By Lemma 4.4, C,,(Y) may be obtained from Cr, (D) by applying, in any
order, the operations «;, where y;, = —1. Foreachs=1,2,...,b,let

Ks = I I Ris,

§Yie==1

where ] denotes map composition. Then

cm(Y>={ 11 n,}(cm(Dn.

3€Cw(D)

We now count, in two ways, the number of colour-reversals of edges which
occur when the operations x, are applied in sequence. The (mod 2) sum of any 1
rows of W in Lemma 5.1 gives a vector of weight (2 — 1)i( k — 1) ; so, for some
1, the net effect of &, is to reverse the the colour of (2) — 1)i(k — 1) edges, and
the number of colour-reversals is given by (2X — 1) times the left-hand side of
(5.1).

Note that an edge has its colour reversed by x,, if and only if it has supports
of the form u; € B, and u; € B, where y;,y;, = —1. So an edge with supports
ui € B,,u; € B,,u; € By, and uj € By will have its colour reversed z times,
where z is the number —1s in the set {y;sY;s, ¥ity;e }. But, for any 1 and j, where
1 < i< j < v,thereare ) values of s for which y;,y;, = —1 and X values of s for
which y;,y;, = 1. Soeach pair of rows will correspond to 22 edges whose colour is
changed once and to A(\ — 1) /2 edges whose colour is changed twice. Hence the
number of colour-reversals is given by (A2 +2 x A\(A—1)/2) X b k(k—1) /4 ) =
(2X = Dby k(k—1)/4. |

It is quite easy to derive [6,theorem 1] from (5.1) and (5.2). The improvement
over the earlier results stems from the application of the theorem to the sets of
blocks which correspond to the connected components of N( D) instead of the
entire design.

Because each component of N (D) can be examined scparately, the amount of
work done using exhaustive methods to decide whether a design is signable will
in gencral decrease as the number of components of N( D) increases.
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6. Concluding Remarks

In this paper an attempt has been made to investigate the complexity of deciding
whether, (i) given v, k£ and )\, whether a BRD(v, k,2)) exists, and (ii) given
design, whether it can be signed over Z,.

Some reformulations of the original problems or easier related problems are
described: partly in an attempt to gain information about the complexity of the
original problems, and partly because of their intrinsic interest. In particular, we
discussed linear constraints which may, in some cases, lead to a complete res-
olution of the second problem and its associated enumeration problem. Finally,
certain graph-theoretical ideas gave insight into a known non-existence result, and
allowed us to show that, when A = 1 and k = 3, the complexity of the second
problem is linear in b.
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