A generalization of Dirac’s Theorem for
claw-free graphs

Zhi-Hong Chen; Ashley Dale! Sarah Dale?
Butler University, Indianapolis, IN 46208

Abstract

For a graph H, let §,(H) = min{| Uj.; Nu()! | {v1, -+, v} are ¢ vertices in H}.
We show that for a given number € and given integers p > ¢t > 0 and k € (2, 3},
the family of k-connected Hamiltonian claw-free graphs H of sufficiently
large order n with 6(H) > 3 and 6,(H) 2 t(n + €)/ p has a finite obstruction set
in which each member is a k-edge-connected K3-free graph of order at most
max{p/t + 2t,3p/t + 2t - 7} and without spanning closed trails. We found
the best possible values of p and € for some ¢ > 2 when the obstruction set is
empty or has the Petersen graph only. In particular, we prove the following

for such graphs H:
(@) Fork = 2 anda givent (1 < t < 4),if §,(H) > "' and 6(H) > 3, then H

is Hamiltonian.

() Fork = 3and t = 2, (i) if &(H) > ™?, then H is Hamiltonian; (ii) if

6, (H) > %91, then either H is Hamiltonian, or H can be characterized by the

Petersen graph.
(c)Fork = 3andt = 3, (i) if 63(H) 2 @9 then H is Hamiltonian; (ii) if

&(H) > (’"’6) , then either H is Hamxltoman or H can be characterized by the

Petersen graph

These bounds on 6;(H) are sharp. Since the number of graphs of orders
at most max{p/t + 2t,3p/t + 2t — 7} is finite for given p and ¢, improvements
to (a), (b) or (c) by increasing the value of p are possible with the help of a

computer.
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1 Introduction

In Hamiltonian graph theory, a classical result is Dirac’s Theorem.
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Theorem 1.1 (Dirac [8]) A graph H of order n > 3 with 5(H) > n/2 is Hamilto-
nian.

This result inspired much research on degree conditions for Hamiltonian prop-
erties in graphs. Many generalization of Dirac’s Theorem have been obtained (see
[12, 14]). Faudree et al. [10] define the generalized t-degree of a graph H by

U Ny (vi)

| {vi,:+, v} is aset of t vertices in H} "
i=1

85:(H) = min{

In [11], they used & to give a sufficient condition for the hamiltonicity of claw-
free graphs.

Theorem 1.2 (Faudree et al. [11]). Let H be a 2-connected claw-free graph of
order n and §;(H) 2 (n + 1)/3. Then for n sufficiently large, H is Hamiltonian.

For given constants p > 4, t and €, many graphs H with 6,(H) > t(n+ €)/p are
Hamiltonian, however these traditional results cannot distinguish between non-
Hamiltonian graphs and Hamiltonian graphs that share these conditions.

In this paper, we generalized Dirac’s Theorem in two ways. First, we show that
similar to the planar graphs have the obstruction set {Ks, K3 3}, for given constant
p,t, €and k € {2, 3}, k-connected claw-free Hamiltonian graphs H of order n with
6;(H) 2 t(n + €)/p have a finite obstruction set in which each graph has order at
most max{p/t + 2t,3p/t + 2t — 7}. Second, we obtain new &,(H) conditions for
claw-free graphs to be Hamiltonian by determining the best possible values of p
and € when the obstruction set is empty or has only one graph for some ¢ > 2.

1.1 Notation

We shall use the notation of Bondy and Murty [1], except when otherwise stated.
Graphs considered in this paper are finite and loopless, but multiple edges are al-
lowed. As in [1], ¥’(G) and dg(v) denote the edge-connectivity of G and the degree
of a vertex v in G, respectively. For a vertex v € V(G), let Eg(v) be the set of edges
incident with v in G. We define 0(G) = min{dg(x) + dg(y) | for every xy € E(G)}
and Di(G) = {v € V(G) | dg(v) = i}. An edge cut X of a graph G is essential
if each component of G — X has some edges. A graph G is essentially k-edge-
connected if G is connected and does not have an essential edge cut of size less
than k. An edge e = uv is called a pendant edge if min{dg(u),dg(v)} = 1. A set
with ¢ vertices is called a t-vertex set. A graph H is claw-free if H does not contain
an induced subgraph isomorphic to K; 3. A connected graph V¥ is a closed trail if
the degree of each vertex in ¥ is even. A closed trail ¥ is called a spanning closed
trail (SCT) in G if V(G) = V(¥), and is called a dominating closed trail (DCT) if
E(G - V(¥)) = 0. A graph is Hamiltonian if it has a spanning cycle. Throughout
this paper, we use P for the Petersen graph and use P4 for the graph obtained
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from P by replacing a vertex v in P by a K33 such that the three edges incident
with v in P are incident with the three degree 2 vertices in K3 3, respectively.

For a graph G, the line graph L(G) has E(G) as its vertex set, where two ver-
tices in L(G) are adjacent if and only if the corresponding edges in G are adjacent.

1.2 Ryjacek closure concept

For a claw-free graph H, a vertex v € V(H) is locally connected if its neigh-
borhood Ny (v) induces a connected graph. The closure of a claw-free graph H
introduced by Ryj4¢ek [16] is the graph obtained by recursively adding edges to
join two nonadjacent vertices in the neighborhood of any locally connected vertex
of H as long as this is possible and is denoted by cl(H). A claw-free graph H is
said to be closed if H = cl(H).

Theorem 1.3 (Ryjdcek [16]). Let H be a claw-free graph and cl(H) its closure.
Then

(a) cl(H) is well defined, and «k(cl(H)) > x(H);

(b) there is a K3-free graph G such that cl(H) = L(G);

(c) both graphs H and cl(H) have the same circumference.

The following theorem shows a relationship between Hamiltonian cycles and
DCTs.

Theorem 1.4 (Harary and Nash-Willams [13]). The line graph H = I(G) of a
graph G with at least three edges is Hamiltonian if and only if G has a DCT.

It is known that a connected line graph H # K3 has a unique graph G with
H = L(G). For a claw-free graph H, the closure cl(H) of H can be obtained in
polynomial time [16] and the preimage graph of a line graph can be obtained in
linear time [15]. We can compute G efficiently for cl(H) = L(G) and call G the
preimage graph of H. By Theorems 1.4 and 1.3, finding a Hamiltonian cycle in a
claw-free graph H is equivalent to finding a DCT in the preimage graph G of H.

1.3 Catlin’s reduction method

For X ¢ E(G), the contraction G/X is the graph obtained from G by identifying
the two ends of each edge e € X and deleting the resulting loops. G/X may not be
simple. If " is a connected subgraph of G, then I is contracted to a vertex in G/T’
and we write G/T” for G/E(I).

Let O(G) be the set of vertices of odd degree in G. A graph G is collapsible if
for every even subset R C V(G), there is a spanning connected subgraph 'z of G
with O(T'g) = R. When R = 0, I'g is an SCT in G. As always, K| is regarded as a
collapsible graph.
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In [2], Catlin showed that every graph G has a unique collection of maximal
collapsible subgraphs I'y, 'y, - -+ ,['c. The reduction of G is G’ = G/(Us_, ), the
graph obtained from G by contracting each I'; into a single vertex v; (1 < i < ¢).
For a vertex v € V(G'), there is a unique maximal collapsible subgraph I'g(v) such
that v is the contraction image of I'o(v) and I'g(v) is the preimage of v. A vertex
v € V(G’) is a contracted vertex if [o(v) # K;. A graph G is reduced if G’ = G.

Theorem 1.5 (Catlin, et al. [2, 3]). Let G be a connected graph and let G’ be the
reduction of G.

(a) G € CL ifand only if G’ = K,, and G has an SCT if and only if G’ has an
SCT.

(b) G has a DCT if and only if G’ has a DCT containing all the contracted
vertices of G'.

(c) If G is a reduced graph, then G is simple and K3-free with §(G) < 3. For
any subgraph H of G, H is reduced and either H € (K}, K>, K, ,(t = 2)} or
|E(H)| < 2|V(H)| = 5.

Let k > 1 be an integer. Let H be a k-connected claw-free graph with 6(H) > 3.
By Theorem 1.3, there is a K3-free graph G such that ci(H) = L(G). Then V(H) =
V(cl(H)) and 6(cl(H)) = 6(H) > 3. For an edge e = xy in G, let v, be the vertex in
H defined by e in G. Then d¢ymy(ve) +2 = dg(x) +dg(y). Thus, G is an essentially
k-edge-connected K3-free simple graph with 05(G) > 5 and D{(G) U D,(G) is an
independent set. Let E; be the set of pendant edges in G. For each x € D»(G),
there are two edges e! and e? incident with x. Let X5(G) = {e! |x € D2(G)}. Define

Go = G./ (E1 VU X3(G)) = (G - D1(G))/ X»(G).

In other words, Gy is obtained from G by deleting the vertices in D;(G) and re-
placing each path of length 2 whose internal vertex is a vertex in D,(G) by an
edge. Note that Go may not be simple.

Let W = D1(G) U D5(G). In [18], Gy is denoted by Iw(G). In [17], Shao
defined Gy for essentially 3-edge-connected graphs G. Following [17], we call Gy
the core of G.

Let G; be the reduction of Gy. For a vertex v € V(Gj), let I'o(v) be the maxi-
mum collapsible preimage of v in Gy and let I'(v) be the preimage of v in G which
is the graph induced by edges in E(I'o(v)) and some edges in E; U X>(G). For a
vertex v in Gy, v is a contracted vertex if |[E(T'(v))| > 1 and visa nontrivial vertex
if [EC(v))| = 1 or v is adjacent to a vertex in D1(G) U Dy(G).

Convenience Assumption: In the definition of Gy, each edge in X5(G) is selected
arbitrarily from two edges incident with a vertex x € D,(G). To avoid unnecessary
cases in our proofs, we assume that the edges in X(G) are chosen such that the
number of nontrivial preimages ['(v) for each v € V(Gy) is as large as possible-
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For instance, if uv is an edge in Gj, that is obtained from G by replacing the path
uxv in G by uv, I'(«) has edges other than ux and I'(v) may be equal to K if xv
is not counted, then we assume that e} = xv and so both I'(«) and I'(v) contain at

least one edge.
Using Theorem 1.5, Veldman [18] and Shao [17] proved the following:

Theorem 1.6 ([18, 17]) Let G be a connected and essentially k-edge-connected
graph (k > 2) with 02(G) 2 5 where L(G) is not complete. Let Gy be the core of
graph G. Let G be the reduction of Go. Then each of the following holds:

(a) Gy is well defined, nontrivial and K'(Gy) 2 k'(Go) = min(3, k).

(b) (Lemma 5 [18]) G has a DCT if and only if G, has a DCT containing all the

nontrivial vertices.

2 Main Results

Let Qy(r, k) be the family of k-edge-connected K3-free graphs of order at most r
and without an SCT. It is known that Qy(5,2) = (K33} and @y(13, 3) = {P} (see
Theorem 3.1). For a given integer p > 0 and a real number ¢, define

N(p, €)=max{36p>-34p—ep—¢, 10p(2p-1)-€ep—€,3p+1)(-e-4p)}. (1)

The following two parameters are closely related to 6,(H). For a graph H and

t > 1, we define
e o(H) = nlin{Z§=ldH(v,-) | {v1,v2,--, v} is an independent set in H} (if t >

a(H)) UI(H) = OO),

o U,(H) = min{| J!_; Ny | {v1,v2, -+, v} is an independent set in H}.

Let Q(H) = {o(H), U,(H)}. Degree conditions involved parameters in Q(H)
for the hamiltonicity of claw-free graphs have been the subjects of many papers
(see [7, 9, 12, 14]). Recently, we obtained a result which unifies several prior

results.

Theorem 2.1 ([4]) Let H be a k-connected claw-free graph of order n (k > 2)
and §(H) > 3. For given integers p > t > 0 and a given number ¢, if d(H) >

t
(n46) where d,(H) € Q(H) and n > N(p, €), then either H is Hamiltonian or

p
cl(H) = L(G) where G is an essentially k-edge-connected K-free graph without

a DCT and Gj, satisfies one of the following:
(a) ifk =2, G € Qo(c,2) where c < max{4p -5, 2p+ 1),
(b) ifk =3, G € Qo(c,3) where ¢ < max{3p -5,2p + 1}.

Since o (H) > U,(H) > 6,(H), we have the following corollary.
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Corollary 2.2 Let H be a k-connected claw-free graph of order n (k > 2) and
6(H) 2 3. For given integers p > t > 0 and a given number e, if 6,(H) > aet)

and n > N(p,€), then either H is Hamiltonian or cl(H) = L(G) where G g an
essentially k-edge-connected K3-free graph without a DCT and G, satisfies one of
the following:

(a) ifk =2, G} € Qo(c,2) where ¢ < max(4p —5,2p + 1};

(b) ifk =3, G) € Qo(c, 3) where ¢ < max(3p - 5,2p + 1}.

Since the condition 6,(H) 2 6 defines the structure of graphs differ-

ently than conditions involving parameters in Q(H), we have a much better upper
bounds on |V(Gj)| in Theorem 2.3.

Note that it is not necessary to use Corollary 2.2 and (1) to prove Theorem
2.3 and other results in this paper. One may obtain a different expression on
N(p, €) other than the one defined by (1) from [4] to prove Theorem 2.3. However,
Corollary 2.2 provides a good starting point for our proofs and allows us to avoid
some tedious arguments. So in this paper when we say “n is large enough™ or “‘n
is sufficiently large”, we mean “n > N(p, €)”.

Theorem 2.3 Let H be a k-connected claw-free graph of order n (k € (2,3}) and

O(H) 2 3. Let cl(H) = L(G). For given integers p > t > 0 and a number ¢, if
tin+

0(H) 2 (np ) and n > N(p, €), then either H is Hamiltonian or Gy € Qo(c, k)

where ¢ < max{p/t + 2t,3p/t + 2t — T} and G, does not have a DCT containing
all the nontrivial vertices.

For 2-connected claw-free graphs, we have

Theorem 2.4 Let H be a 2-connected claw-free graph of order n with 6(H) > 3
and n is sufficiently large. For given p and t with2 < t < 4 and p/t < 3, if
0(H) > '("p”) (ie, 5(H) > ":!), then H is Hamiltonian.

For 3-connected claw-free graphs and ¢ = 2, we have

Theorem 2.5 Let H be a 3-connected claw-free graph of order n and n is suf-
ficiently large. Let G be the preimage of H, i.e., cl(H) = L(G). Let G} be the
reduction of the core of G. Then each of the following holds:

(a) if6,(H) > "‘;‘2, then H is Hamiltonian;
(b) if 65(H) > ",'59, then either H is Hamiltonian or G, = P and one of the
following holds:
(i) for each v € V(P), the preimage T(v) is a Ky 5, with s, > "7 — 3 and
15+ Xyevip) Sy = 1;
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(ii) one preimage I'(u) is a K, and for each v € V(P) — (u) the preimage
[(v) isa Ky 5, with s, 2 "0 =3 and 16 + Tocy(p)—iu 5 = 1/

(iii) one preimage I(w) is not a tree with s,, = |[E(T'(w))| > 2 (";09) — 8, one
preimage I'(u) is a K, and for each v € V(P)~-(u, w) the preimage I'(v)
isa Ky 5, with s, > "1‘59 =3and 16 + sy + X cy(p)-(uw) Sv = I

For 3-connected claw-free graphs and t = 3, we have the following:

Theorem 2.6 Let H be a 3-connected claw-free graph of order n and n is suf-
Jiciently large. Let G be the preimage of H, i.e., c(H) = I(G). Let G, be the
reduction of the core of G. Then one of the following holds:

(a) If65(H) > %2, then H is Hamiltonian;

(b) If 65(H) > ""6 then either H is Hamiltonian or Gy = P and one of the
following holds
(i) there is a vertex vy € V(P) such that the preimage T'(v;) = K, 5, with
1<s5 <2 and for each v € V(P) — {v;), the preimage I (v)isa K, 5,
with Sy >z '_' —3and 15 + 5 + ZVEV(P)_h'l' S, =n;

(ii) there are two vertices (say vy and v;) in V(P) such that each preimage
T (i=12)isa K, andfar each v € V(P) — {v;,v2) the preimage
I(v)isa Ky s withs, > 2 =3 and 17+ T ,cyipy iy Sv = 1

(iii) there is a vertex w in V(P) such that the preimage T'(w) is not a tree
with s, = |[E(T(w))| > 2 (%) — 13, there are two vertices (say vy and
v2) in V(P) such that each preimage T(v;) (i = 1,2) is a K> and for
each v € V(P) — {u, w} the preimage T'(v) is a K, 5, with 5, > %2 -3
and 17 + Sw + vev(p)—ivyvom) Sy = .

(a)@) ¥! (a)(ii) W2 ®) ¥, © ¥,

Fig 1.1 Some extremal graphs related to Theorems 2.4,2.5 and 2.6

Remark 1 (a) Theorem 2.4 is an improvement of Theorem 1.2. The degree con-
ditions and t < 4 in Theorem 2.4 are the best possible. By the definition of 6,(H),

64(H) > 63(H) > 65(H). Thus 6,(H) > "3' implies 64(H) > "' but the re-
verse is not true. Theorem 2.4 shows that for a 2-connected claw free graph H if
64(H) > "t (even 8-(H) < ’”3" ), H is Hamiltonian.
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(i) Let G} = Y. as depicted in Fig 1.1 (a)(i), where the vertex marked by
@ is incident with 2r pendant edges and the one marked by & is incident with
r pendant edges. Let H) = L(G\). Then H} is a Hamiltonian graph with n =
IVHD| = |EGL)| = 3r+ 8, 64(H)) = 63(H)) 2 r+3 = 2L bur 6,(H)) = 4.
Theorem 2.4 can determine that H) is Hamiltonian but Theorem 1.2 cannot.

(ii) Let G2 = Y2 as depicted in Fig 1.1 (a)(ii), where each vertex marked by ©
or 9 is incident with r pendant edges. Let H> = L(G?%). Since G% does not have
a DCT, H? is not a Hamiltonian graph with n = |V(H?)| = |E(G2)| = 3r + 6. For
t>2 6,(H§) 2r+2=1%. Thus, 6,(H) 2 ";' in Theorem 2.4 is the best possible.

Next, we show that t < 4 cannot be extended to t > 5 for the degree condition.

Fort = 5, let G, = Y2 as depicted in Fig 1.1(ii), in which each of the two
vertices marked by ® is incident with r > 5 pendant edges and the vertex marked
by © is incident with 2 pendant edges. Let H, = L(Gg). Then n = |V(H,)| = 2r+8,
8(H,) = 3, 62(H,) = 4, 63(H,) = 6 and 64(H,) = 8 and 65(Hp) = r+2 = ”;4 >
(when n > 15). However, H, is not Hamiltonian. Thus, 6,(H) > ";' for2 <t<4
in Theorem 2.4 cannot be extended to t > 5.

(b) Let Gy, = ¥, as depicted in Fig 1.1(b), where each vertex marked by © or &
is incident with r pendant edges, and the vertex marked by 9 is incident with one
pendant edge. Let H, = L(Gp). Then Hy is a 3-connected claw-free graph of
order n = |V(Hp)| = |E(Gy)| = 9r + 16 with 62(Hp) = r + 3 = "!1. Since G}, does
not have a DCT, Hy, is not Hamiltonian. This shows that 6;(H) > '”9‘2 in Theorem
2.5(a) is the best possible.

(c) Let G, = ¥, as depicted in Fig 1.1(c), where each vertex marked by © or &
is incident with r pendant edges and the vertex marked by 9 is incident with one
pendant edge. Let H. = L(G.). Then H, is a 3-connected claw-free graph of
order n = |V(H,)| = |[E(G.)| = 10r + 22 with6,(H,) =r+3 = "1‘:)8. Since G, does
not have a DCT, H. is not Hamiltonian. However, (G.), = P14, not the Petersen
graph. Thus, 6,(H) > "}’ in Theorem 2.5(b) is the best possible.

Theorem 2.5(b) shows that when the degree condition on 8,(H) is lower, a
nonempty obstruction set will occur. For the condition given in Theorem 2.5(b),
the obstruction set contains the Petersen graph only. Graph ¥}, depicted in Fig.
1.1(b) can be used to construct the graphs defined in (i), (ii) and (iii) of Theorem
2.5(b), respectively.

For case (i), let G} be the graph depicted as ¥}, where each vertex marked by
©, © or & is incident with r pendant edges. Let H} = L(G,), which is the graph
defined in (i) of Theorem 2.5(b).

For case (ii), let Gﬁ be the graph depicted as ¥\, where each vertex marked by
@or 9 isincident with r pendant edges and the vertex marked by & is incident with
one pendant edge. Let H? = L(Gf,), which is the graph defined in (ii) of Theorem
2.5(b).

For case (iii), let Gi be the graph depicted as ¥, where each vertex marked
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by @ is incident with r pendant edges, the vertex marked by © is a K3 r+2 subgraph
and the vertex marked by & is incident with one pendant edge. Let Hg = L(G)}),
which is the graph defined in (iii) of Theorem 2.5(b).

(d) Let G4 be the graph obtained from V), (depicted in Fig. 1.1(b)) by subdividing
the edge e, where each vertex marked by © is incident with r pendant edges. Then
G, is a 2-edge-connected and essentially 3-edge-connected graph with |[E(G4)| =
8r+ 16. Let Hy = L(Gg). Then H, is a 3-connected non-Hamiltonian claw-free
graph of order n = |V(Hy)| = |E(Gg)l = 8r + 16 with 63(Ha) = ”;8. Thus,

63(H) = "§9 in Theorem 2.6(a) is the best possible.

(e) Let G, be a graph obtained from Y. (depicted in Fig. 1.1(c)) by subdividing the
edge e, where each vertex marked by © is incident with r and each vertex marked
by © or & is adjacent to a vertex of degree two. Let H, = L(G,). Then H, is a
3-connected non-Hamiltonian claw-free graph of order n = |V(H,)| = |E(G,)| =
Or +22 withd3(H,) = "§° and (G.)) = P14 Thus, 63(H) = "3® in Theorem 2.6(b)
is the best possible.

Similar to the discussion of case (c) above, the graph ¥}, depicted in Fig.
1.1(b) can be used to construct the graphs defined in (i), (ii) and (iii) of Theorem
2.6(b), respectively.

In Section 3, we give a brief discussion on reduced graphs and prove some
technical lemmas. The proofs of the main results will be given in Section 4.

3 Properties on reduced graphs and some lemmas

Some facts concerning reduced graphs are summarized in the following theorem.

Theorem 3.1 Let G be a connected reduced graph of order n and without an SCT.
(a) ifK'(G) 22, thenn>5andn =5 only if G = Ky 3,

(b) ([5]) if'(G) 22 and n <9, then |D,(G)| > 3;

(c) ([5]) if(G) 2 3 and n < 14, then G € {P, P14).

In the rest of the paper, we assume that H is a graph satisfying the assumptions
of Theorem 2.3 and G is the preimage of H, i.e., cl(H) = L(G). We use the
following notation related to Gj:

e So ={v e V(Gp) | vis anontrivial vertex in G};

o S;={veSo|IETW) =1};

e S1={veSo|1 L |ETW) <t-1}

o §*=80-(S5,US)), the set of vertices v € §¢ with I'(v) = K; and adjacent
to some vertices in D,(G);

e Vo = V(Gy) — (S: U S1), the set of vertices v in G with T'(v) = K, inG
which includes S *;
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O = Gy[Vo U §)];

Eo = E(®p) is the set of edges in ¥y;

Vi is the set of vertices incident with some edges in Eo;

Eg = Uses, E(T(v)) and ®* = G[Ep U Eg] (and Eo U Eg = E(®"));

Uo = Vo= Vg and so V(G(')) =S, US1uUVp=S,USUVgUUy. For v € Va.
E(T'(v)) =0. Then

EG) = | J ETO) | Exon| J £Gp. (2)

veS, veS)

Since 02(G) 2 5, D2(Gy) € S US. Up is an independent set and Ng; (x) <
S, for x € Up.

By the Convenience Assumption, we have the following easy lemma.

Lemma 3.2 For avertexv € S*, v must be adjacent to a vertex u € S| such thar
|[E(C(w))| = 1 and the edge (say xu) in E(I'(u)) is an edge in X»(G) and x is in
D,(G) and is adjacent to v in G.

Proof. By the definition of S*, v is adjacent to a vertex x in D,(G). Let vxy be a
path of length 2 in G. Since I'(v) = K|, xy € X(G). Thus, xy is one of the edges
in a ['(w) where u € Ng (v). By the Convenience Assumption, if [E(T'(w))| > 1,
then we shall use vx as an edge in X,(G) instead of xy. Thus, |[E(I'(x))| = 1. (=]

For an edge e € E(G), let Eg(e) be the set of edges incident with exactly
one end of edge e (so e ¢ Eg(e)). For cl(H) = L(G), if v in H corresponds to
edge e in G then deyy(v) = |Eg(e)l. If {vy,---,w} is a t-vertex set in H with the
corresponding t-edge set {e;,-- -, e;} in G, then

t
U Eg(e)
i=1

6:(H) < : 3)

t
U Neeny(vi)
i=1

Lemma 3.3 With the notation defined above, each of the following holds:
(a) foreachv € S,, |EC(v))| = 6,(H) —dg, (v),
(b) IS:l < p/t. IfIS/| = p/t then |E(Gy)| 2 € + Zyes, dg, (V) + Xyev, da (V) +
2ves, [ECCM)I;
(c) |Eol +|Er| = |[E(@*)| < t— 1 and |S1 U VE| < 2IS 1| + |Vl < 2(t - 1);
(d) U] < max{2,2|S,| - 5} < max{2,2p/t - 5};

Proof. (a) Forv € S,, |[ET(v))| = t. For {el,---,e!} ¢ ECW)), Ui-1 Ec(€l) c
ET(v))V Ec") (v). Then by (3),

!
6(H) < || ) Eo(e})| < IECO))| +1Eg, W) < IETW)] + dg, (). @)
i=1
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Thus, (a) is proved.
(b) Let s = |S4]. By (2), (4) and n = |EG)I,
n=IEG)| = Y IETO)+ ) BT +IEGy)

VES, VES |

> ) (6(H) —dg, ) + ) IECW)| + |EGy;

VES,; VeS|

no2 s6(H)= ) dg,0)+ ) [ETODI+IEGY.  (5)

VES, VES |

By 2|E(Gy)l = Zveviay) 46, (V) = Zyes, dcy (V) + Xyes, day (V) + e, dc; (v), (5)
and 6,(H) > 429,

s6,(H) = | 20EGp)l = D, dey (V) = D day ) [+ Y IEC W) + E(GY)]

n 2
ves, veVo VeS|
tin+e€ ’
S 5 ( ) . IE(Go)l o Z dG(',(V) + Z d66 W)+ Z |E(F(V))| (6)
P VES veVy VES

By Corollary 2.2 and p > 3, |V(G})| < 4p — 5. By Theorem 1.5, |E(Gy)l <
2|V(Gp)| — 4. Thus, |E(Gy)| < 8p — 14. By (6),

t(in+ e
Ry
p

< n+|EGy)l<n+8p-14;

p(n+8p—14) =P+p(8p—14—e).

st
n+e n+e

Since st is an integer, st < p whenn > p(8p — 14 — €) — €. Thus, |S,| = s < p/t.
IfIS,| = p/t, by (6) |[E(Gy)| 2 €+ Xyes, d,(v) + Tyey, dG, (V) + Zyes, [EC M)

(c) To the contrary, suppose that |[E(®*)| > ¢. Let X, = {e1,---, e} be a t-edge
setin E(@*) = ERUEy. Let W = {ve §; | EC()) N X, # 0). Then |W| < ¢ and

i-1 Eg(e) € Uvew EQC(v) U E(Gy).
Since |[E(T(V))| < ¢ — 1 for each v € W, by (3) and |E(G})| < 8p - 14,

< +|E(Gp)| < t(t— 1)+ 8p — 14,

| ETO))

veW

t(n + €) ;
<l |Eg(e
: u (e

a contradiction, since n > N(p, €) > 2W=D8p=ID _ ¢ Thys, |Eg|+|Eo| = |E(®@*)] <
p '

t—1.

Since |[E('(v))| > 1 forv € §1, 1S 1] < |ER|. In the worst case, Ej is a matching
and so |Vg| < 2|Ep| = 2(|E(D*)|—|ER]) < 2(t—1—|ER|). Then 2|Eg|+|VEg| < 2(t-1)
and S U Vel < IS1] + Vel < 2|8 1| + |VE| < 2|ER| + |VE| < 2(t - 1). (c) is proved.
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(d) If [Uo| < 2, the statement is true trivially. Thus, we assume that |Uo| =
Let Y = Ueu, Nc' (4). By the definition of Uy, Up is an independent set and
YcS. Let® = G’[Uo U Y). Then [V(®)| = |Uo| + |Y] < |Uol +1IS4l. Since
Dz(G ) € §,US )y, dg, (u) > 3 foru € Up. Then |[E(®)| = 3|Uol. Since |Ug| 2 3, ® 1
{Kl,Kz,Kzr} By Theorem 1.5, |E(®)] < 2|V(d))| —5. Then 3|Uy| < 2|Uo|+2|Y|-5
Hence, |Ug| < 2|Y| -5 <2|S,|-5 < 2p/t - (=

4 Proofs of Theorems 2.3, 2.4, 2.5 and 2.6

Proof of Theorem 2.3. Suppose that H is not Hamiltonian. By Theorem 1.6,
G, does not have a DCT containing all the nontrivial vertices. By Lemma 3.3,
we have |[V(Gp)| = IS, +IS1 U Vil + |Uo| < plt +2(t — 1) + max{2,2p/t — 5} =

max{p/t + 2t,3p/t + 2t = 7}. o

Proof of Theorem 2.4. Suppose that H is not Hamiltonian. By Theorem 1.6, G
does not have an SCT. By Theorem 3.1, [V(G})| = 5. By Lemma 3.3 and ¢ < 4,

and Eg = Uyes, EI(V))

|Eol + | Uyes, EC(W))| = |[E(®*)| <t—1=3and|S; UVE|<2(t-1)=6. (7)

Claim1. S, < p/t=3

To the contrary, suppose that |S,| = p/t = 3. Then |V(G})| = S| +|S 1]+ Vol =
3+|S11+[Vol. By Lemma 3.3 with € = 1, |E(Gp)| 2 1+ Tyes, dg, (V) +Zvevo dG, (V) +
Yves, [EA(W)|. Foreach v € Sy, dg; (v) 2 2 and |[E(T'(v))| 2 1. For each v € Vo,
dG'(V) > 3. Then |E(G' N=>1+ 2]51| + 3|Vol+IS11 =1+ 3|S1] + 3|Vol.

Since G}, ¢ [Kl,Kz} by Theorem 1.5, |[E(Gy)| < 2|V(Gp)|-4 = 2+2|S,|+2|Vol.
Then

24 2|8+ 2|Vl = 1+3|5,]|+3|Vol;
12181+ Vol

Hence, |V(Gy)| = |S:| + 1S 1| + |Vo| < 4, contrary to |[V(Gp)l = 5. Claim 1 is proved.

Then |S,| < 2. If Uy has a vertex x, then dg,(x) > 3 and Ng; (x) € S, a
contradiction. Thus, Up = 0 and V(Gj) = S, U S1 U Vg. By (7) V(Gp)l =
IS/ +1S1UVE|<2+6=28.

By Theorem 3.1, |Dy(G})| 2 3. Since D,(G) € S, U Sy, there is a vertex v; in
Dy(Gy) N §y. Since 02(G) = 5, |[ET’(v1))l = 2. By (7), | Uyes, EQ'(W))| < 3. Thus,
|Dz(G(’))ﬂSl| = 1,15, =2, |Eo] < 1and|S;| < 2. Then |S,| +|S,| < 4. Since
IV(Gy)l 2 5, Vol 2 1.

Let v be a vertex in Vy. Then dg,(v) 2 3. Since |S;| = 2 and |Eg| <
is adjacent to exactly one vertex u in S1 U Vp as well as the two vertices in §,.
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However, u must be also adjacent to at least one of the two vertices in §,, Gj
contains a K3, contrary to that Gj, is K3-free. The proof is complete. o

To prove Theorems 2.5 and 2.6, we need the following theorem in which P is
the Petersen graph.

Theorem 4.1 ([6]). Let G be a 3-edge-connected graph and let S € V(G) be a
vertex subset with|S| < 12. Then either G has a closed trail C such that S € V(C),
or G can be contracted to P in such a way that the preimage of each vertex of P
contains at least one vertex in S.

Suppose that Gj, is contracted to P. For each v € V(P), we use I'p(v) as the
preimage of v in G,.

Lemmad.2 Let G be an essentially 3-edge-connected graph and let Gy be the
reduction of the core of G. Suppose that G can be contracted to P. For a vertex
vin P, ifTp(v) # K, then ' (I'p(v)) = 2 and |Dy(T'p(v))| < 3.

Proof. Since G is essentially 3-edge-connected, by Theorem 1.6 «'(Gj) > 3.
Since dp(v) = 3, only three edges join I'p(v) to G — V(I'p(v)), I'p(v) must be
2-edge-connected and |D,(I'p(v))| < 3. o

Lemma 4.3 Let G be a K3-free graph. Let ®; = Ky, (t > 2) be a subgraph of G

(i=1,2) and V(@) N V(@®;) = 0. Let E(®;) = (e}, ;). Then |(U], EG(e}.)) N

(Ul Ea(@)] <2+ 1.

Proof. Each edge in (U}, Eg (ejl.)) N (U= Eg(ei)) has one end in V(®,) and the

other end in V(®;). Let ® = G[V(®;) U V(0,)]. Then @ is a K3-free graph of

order 2(¢ + 1) and (U}, Ec(e})) N (U, Eg(e}) € E(®) — (E(©1) U E(©2)). By

Turdn’s Theorem, |[E(®)| < (¢ + 1)2. Then

(Ut Eoeh) (Ul Eo(e))| < IE@)I=E@1)UE®s)] < (t+1)2 -2t = 241,
m]

- In the following, we assume that G is a graph satisfying Theorem 2.3.

Lemma 4.4 Suppose that G does not have a DCT and G, = P and t € {2,3). For
v € V(P), let I'(v) be the preimage of v in G.
(a) IfT(v) is not a tree, then |E(T(v))| > 26,(H) -t - 4.
(b) If|S:| = p/t, thenI'(v) = K\ 5, with s, > §;(H) — 3 for each v € §,.
(c) If1S:| = p/t — 1, there is at most one vertex u in Gy = P such that T'(u) is
not a tree.
(d Vo—-S*=0andsoVg—-S*=0
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Proof. (a) We prove the case ¢ = 3 only (it is easier to prove the case t = 2). Then
6y(H) 2 ™),

Since Cf is K3-free, if ['(v) is not a tree then it contains a cycle of at least length
4, Let C = vieyvaeaviesvaes -+ vy be acycle in I['(v).

Since | U2, Eg(ep)] 2 63(H), max{|Eg(e)l, [Eg(ex)} [Ea(es)l) = 257 = %,
Without loss of generality, we assume |Eg(e1)| = max{|Eg(e1)|,|Eg(e2)l, |[EG (e3)l}
and dg(v1) > dg(v2). Then since [Ng(v1)| = dg(1) 2 (dg(V1) + dg(v2))/2

dg(V1) +d(v2) _ |Eg(e1)] +2 - 03(H) 175 "+€+2P.

2 AR =3P ®)

INg(v1)] 2

We need another vertex u # v, that satisfies (8).
If C is a cycle of length at least 5, then there is a vertex u € (v2,v3,v4, Vs, -}

such that |Ng(u)| > -*T;-ZB

Suppose that C = vje)v2eav3e3vaesvy, a cycle of length 4.

If one of the vertices in {va, V3, v4} (say vp) is not incident with any edges
in E(Gy) = E(P), then since dg,(v;) 2 3 there is an edge (say e, = uvz) in
E('(v)) = E(C) incident with v, in I'(v).

If every vertex in {v;,vs3,vs} is incident with an edge in E(P), then since
dG;,(V) = 3, v; is not incident with any edges in E(P). Since G is essentially
3-edge-connected, I'(v) — {e1, €4} is connected. Thus, there is a path joining v; to
C - {e1,e4) and so there is an edge (say e, = uv;) in E(T'(v)) — E(C) incident with
a vertex in {v,, v3, v4}.

Thus, in either case, we have |[Eg(e,) U Eg(e2) U Eg(e3)| = 63(H). Similarly to
the way we obtained (8), we have a vertex in {u, v, v3, v4} (say u) such that

n+e+2p

>
ING(w)| 2 2

Thus, when n is large enough (say n > 10p—¢), there are three edges incident with
v1 in [(v) (say €] = xvy, i = 1,2,3) and there are another three edges incident
with u in T'(v) (say e} = a;u).

By Lemma 4.3, | (U2, Ec(e})) N (U2, Eg(e"))1 < £ + 1. Since (UL, Eg(e})) U
(U2, E(e)) € ET(v)) U Eg, (v) and |[Eg, (v)| = 3,

263(H)-1* -1

IA

UL, Eg(e))| + Ui, Ec(e)| - |(u,?=,EG(e,?)) N (UL, Eg(ed))
< |EC) +|Eg,(0);
205(H)-1* -4 < |[ETO)).

Thus (a) is proved.

(b) By Lemma 3.3, for each v € S, [EC(V))| 2 6,(H) — dg, (v) = 6,(H) - 3. To the
contrary, suppose that there is a vertex w € S, such that I'(w) is not a tree. By (a)
above, |[E(T(w))| > 26,(H)—t*>-4. Since 6,(H) 2 'L"p’ﬁ, IS¢l = p/t and |[E(P)| = 15.
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n=IEG)| = [ECOW) + ), IECON+ D [ECK) + EP);
VESy

veS,~{w)
n = 25,(H)— -4 + (IS |-1)(6,(H) =3) + 15 = (IS,| + 1)6,(H) - >=3IS | +14;
N T LW e

a contradiction, since n > N(p,€) > £(1> + 3£ — 14 — ) — e where 1 € (2,3).
Thus, for each v € §,, I'(v) is a tree. Since G is essentially 3-edge-connected,

I'(v) = Ky, with s, = |E(T(v))| 2 6,(H) - 3. (b) is proved.
(c) The proof is very similar to case (b) above. Hence, we skip the details here.

(d) Since G does not have a DCT, G;, does not have a closed trail containing
all the nontrivial vertices. Since for any given 9 vertices, G, = P has a cycle
containing them, all the vertices in V(G;) must be nontrivial. Thus, Vo — §* =
V(G)) — (5:U §; US*) must be empty. O

For r < 3 and S* defined in Section 3 above, we have

Lemmad.5 Letp>8. Ift =2, thenS* = 0. Ift =3, then |S*| < 1. IfIS7| = 1,

then |S4| = 1.

Proof. By Lemma 3.2, for a vertex v € S*, there is a vertex u € NG;,(V) NS,
such that [E(TC(#))| = 1 and E(T'(w)) only contains an edge xu € X3(G) such that
x € D(G) and is adjacent to v in G. Then dg(v) = dg;(v) and dg(u) = dg; (u)
(we regard u as a vertex in G as well as in G). Let e = vx and e; = xu. Then
|Ec(e1) U Eg(e2)| = dg(v) + dg(u) = dg;(v) + dg, (). Since Gy is K;-free and
2-edge-connected, for any z € V(G}), by Theorem 2.3 withz € {2,3}and p = 8,

3
dg; (D) < [V(GY)| 2 < max{p/t+2t,3p/t + 21 =T} = 2 < 2” =5, )

Ift = 2, then by (9) and (3) with 7 = 2, 2(* —5) > dg; (v) + dg; (u) = |Eg(e)V
Eg(e))| = 62(H) 2 2(',',“) , a contradiction when n > N(p, €) = p( 32” —5)—€. Thus,
§*=0ift=2.

For t = 3 case, suppose that S* # 0. By Lemma 3.2, S; # 0. We only
need to show that S| = 1. To the contrary, suppose that |S| > 2. Let {u,u1} €
S*. Let e; = uix; be an edge in E(C(#1)). Then by Lemma 3.3 with ¢ = 3,
lEG(eJ)I < IE(r(ul)I + d(;(')(ul) <2+ daa(ul). Then by (9) and 3) witht = 3,
3(Y =5)+22 dg(») +dg; (u) + dg, (u1) = |Eg(e1) U Eg(e2) U Eg(e3)] 2 63(H) 2

3 18
(':'", a contradiction when n > N(p,€) > p(Z£ -5)+ 5 - €. o
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In the following, we assume ¢ € {2,3}. By Lemma 3.3, |Ep| = |[E(®p)| < 2.

Let Z be the set of vertices by selecting one end of each edge in Ey with both
ends in Vg — (S1 U S*); in the case that ®y = K;, and V(®p) € Vg - (S1 U S?),
only the center vertex is selected. Then |Z]| < |Vg — (S1 U §*)|/2. Define

Ve=S;USjUS*VZ

Since Uy is an independent set and Ng/(x) € S, foreach x € Up, V, is a
vertex-covering of G; containing all the nontrivial vertices and

IVE-(S1US")I

IS+ 1S 1] +1S™1 < [Val SISel +1S1| +1S7| + )

(10)

Proof of Theorem 2.5. Suppose that H is not Hamiltonian. Then G; does not
have a DCT containing all the nontrivial vertices and «'(G;) > 3. Since ¢t = 2,
by Lemma 4.5, §* = 0. By Lemma 3.3, |Eg| + |Eg| < |E(®*)| < 1. If|S4] = 1,
then Ey = 0 and Vg = 0. If |S4| = 0, since |Eg| < 1, |[Vg| £ 2. Then |S| +IS°| +
Ve-G15 < 1. Since 1 = 2 and p € (18,20}, by Lemma 3.3 and (10),

Vol ISl +1 < p/t+1< 11, (11)

If G, has a closed trail C such that V, € V(C), then by Theorem 1.6, G has a DCT,
a contradiction. Thus, G, does not have such closed trails C. By Theorem 4.1 and
by (11), we have

10<|Vg| <11 and (12)
G, can be contracted to Pand V([p(v)) NV, # @ foreachvin P,  (13)

where P is the Petersen graph.
Let V,, = V(Gp) — V., which contains all the vertices in Ug and the one vertex
in Vg — V, (if Vg # 0). For each u € Vj, Ng;(4) C Va.

(a) Since p = 18, € = 12 and t = 2, by Lemma 3.3, (11) and (12), |S,| =9 = p/t
and so |V,| = 10. Each I'p(v) contains only one vertex in Vj.

Claim1. V, =0and so Vg = 0.

To the contrary, let u be a vertex in V. Let I'p(v) be the preimage of a vertex
v in P containing u. Since I'p(v) contains a vertex in V, and vertex u, I'p(v) # K.
By Lemma 4.2, €'(I'p(v)) > 2. I'p(v) contains at least two vertices in Ng; (4) € Va,
contrary to that I'p(v) contains only one vertex in V,. Claim 1 is proved.

Thus, V(G)) = Va = S, U §; with [V(G})| = |V,| = 10. By Theorem 3.1,
G, = P. By Lemma 3.3, and by dg,(v) = 3 and 6,(H) 2 "%, [ECW)| 2
62(H) — dg;(v) > ™}2 - 3 for each v € S,. Let v, be the vertex in §1. Then
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|E(C(vs))| = 1. Therefore, with |S;| = 9 and |E(G))| = |E(P)| = 15,

= IBG) = Y, IECON + ETO) + 1EGI 29" Pog)eiis=n,

VeS,

a contradiction. Theorem 2.5(a) is proved.

(b) Since p = 20,e =9 and t = 2, by Lemma 3.3 and (12), |S;] < 10 = p/t and

10 < |Vo| = 11.
Let A ={ve V(P)|Tp(v)# K).

Case 1. |A| = 0. Then G, = P.
By Lemma 4.4, Vo - §* = 0. Since |S| < 1 and [S*| = 0, [V(Gy)| = |Val
IS/ +1S1] = 10and |S,| > 9. Either |S;| = 10 or|S,| =9 and || = 1.

Subcase 1. |S,| = 10 = p/t.
By Lemma 4.4, ['(v) =K 5, for eachv € V(P). Then |[E(G)| = Xyev(p) IET'(V))|+

|E(P)| = Xyev(p) v + 15. This is the graph defined in Theorem 2.5(b)(i).

Subcase 2. |S,| =9 and |§;]| = 1.

Let u be the vertex in S;. Since |E(T(w))| = 1, '(u) = K,. By Lemma 44,
there is at most one vertex w € V(P) such that I'(w) is not a tree.

IfT(v) = K, for all the vertices v in S, then n = |[E(G)| = Xyes, [ET (V)] +
|[E(C))| + 1E(P)| = Yyev(p)-(u Sv + 16. This is the graph defined in Theorem
2.5(b)(ii).

If there is a vertex w in S, such that I'(w) is not a tree, then by Lemma 4.4
$w = [ECw))| 2 2(%2) - 8 and for vertices vin S, — {w} T(v) = K15, Thus, n =
IEG)| = |[EC(W))+Zves,—iw) ECO)HETW)HEP) = sSw+Zvevp)-tum Sv+16.
This is the graph defined in Theorem 2.5(b)(iii).

Case 2. |A| > 1.

Let v; be a vertex in A. Let I'p(v;) be the preimage of v; in G;. Then
[V(Cp(v1))| 2 2. By Lemma 4.2, «'(T'p(vy)) > 2.

Since G, is K3-free and «'(Gp) > 3, |V(I'p(v1))| 2 5. Since [V,| < 11 and for
each v € V(P) I'p(v) contains at least one vertex in V,, ['p(v;) contains at most
two vertices in V,. There is a vertex u; in V(I'p(v1)) — V,. Since dca(ul) > 3 and
«'(Tp(v1)) 2 2, Tp(v1) contains at least two vertices in Ng; (1) C V,. Thus, I'p(v1)
contains exactly two vertices in V.

Thus, |A] = 1, [V,| = 11, |S,| = 10 and |S;| = 1, and so |[E(®*)| = 1. This
also shows that if u € V(I'p(v;)) — V4, u is only adjacent to the two vertices in
V(Tp(v1)) N Vg, i€, drpy(u) = 2. Since only three edges join I'p(v;) to Gy —
['p(v1), there are at most three vertices of degree two in V(I'p(v)) = V,. Thus,
IV(Tp(v1)) = Val < 3 and so [V(Tp(1))] = [V(Tp(v1)) = Val + [V(Tp(v1)) 0 Val <5
Thus, [V(Tp(v;))| = 5 and |D2(I'p(v1))| = 3. By Theorem 3.1, I'p(vy) = K23.
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Hence, Gy = Py4. Then for each v € S,, |[E(T(v))| > a9 _ 3, Since IS/ = 10
and |[E(®*)] = 1,

n=1EG) 2 )[BT +E@")| + |EP1a)l = 10

ves t

(";9—3)+22=n+l.

a contradiction. This shows that Case 2 is impossible. The proof is completed. o

Proof of Theorem 2.6. Sincet =3 and p = 24 or p = 27, p/t = 8 or 9.

By Lemma 3.3, |Eol + |Eg| < |[E(®*)|<2. By Lemma 4.5, if |S|=2, then Eg =
0,|Vel=0and |S*|=0; if |S1]=1 then |Eg|< 1 and s0 |S*|+ 5" 615 <2; if IS 41=0
then |Eo|< 2, 1S°| = 0 and 50 |5+ VE=6 %N <2 Thus, |5 +15 |+ V=4 ' <2,
By (10),

Val <IS:1+2<p/t+2<11. (14)

Let V, = V(G;) — Ve. Thus, for each vertex u € Vj, Ng,(w) € V,.
Similar to the proof of Theorem 2.5, G, does not have a DCT containing V,
and we have

10< Vol £ IS/ +2 <11 and (15)

G, can be contracted to P and V(I'p(v)) NV, # 0 foreach vin P. (16)

(a) In this case, t = 3, p = 24 and € = 9. By Lemma 3.3 and (15), |S,| = 8 and
[Val = 10. Thus, each I'p(v) contains exactly one vertex of V,. By Lemma 3.3,
IEC())| = "3° -3 foreachveS,.

Following the same arguments in the proof of Claim 1 in Theorem 2.5, we
have V;, = 0. Then |V(Gj)| = |Va| = 10. By Theorem 3.1, G;, = P.

If S| # 0, then |Eg| = X5, IEQC(W))| = 1. Hence,

n=|EG) = ) [ECO)+ ) IECONI+EG)| = 8 (" ; : -3)+1 +15 = n+1,

VES, VES

a contradiction.

Thus, S; =0. By Lemma 4.5, S* =0. By Lemma 4.4(d), Vo = Vo - S* = 0.
However, since |S,| = 8 and [V(Gy)| = |Vol = 10, Vo = V(G)) - S # 0, a
contradiction. Theorem 2.6(a) is proved.

(b) In this case we have P = 27, €e=5andt = 3. By Lemma 3.3 and (15)’ |S:| <
9 = p/t and 10 < |V,| < 11. For each v € §,, by Lemma 3.3, [E(C())| = "$® - 3.

Let A = {ve V(P)|Tp(v) # Ki}.
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Case 1. |A| = 0. Then Gj = P and |V(G})| = |Va|. By Lemma 4.4, Vg — §* = 0.
By (10), [Val = IS:] +1S 11 +15*] = 10. Since S| +|5°| £ 2,9 > |S;| > 8. We have
three subcases.

Subcase 1. |S;| =9 and |§,| = 1.

Let v be the vertex in §|. Then I'(v;) = K5, where 1 < 51 < 2. By Lemma
44, foreachv € §;,I'(v) = K 5, with s, = |E(T(v))| 2 "—;—6 - 3. Thenn = |[E(G)| =
Yves, ECW)| + |ET (1) + |E(P)| = Yyes, Sv + 51 + 15. This is the graph defined
in Theorem 2.6(b)(i).

Subcase 2. |S;| = 8 and |S;| = 2.

Let S| = {vi,v2}. Since |[E(®*)| <t-1=2,|[ECW)=1(@ = 1,2).

By Lemma 4.4(c), there is at most one vertex w € §; € V(P) such that I'(w) is
not a tree.

If for all the vertices v in §; ['(v) is a tree, then I'(v) = K, and son =
IEG)| = Zves, ECO) + TZ, IEC W) + |E(P)| = Tyev(py-tu Sv + 17. This is the
graph defined in Theorem 2.6(b)(ii).

If there is a vertex w in S, such that I'(w) is not a tree, then s, = |E(I'(w))| >

2(";6) — 13 and for all vertices v in S, — {w}, ['(v) = K\ and so n = |[E(G)| =

JECW))| + Zves,—w) ECO) + Iy IEC )|+ |EP)| = Sw + Zvevip)—um Sv + 17
This is the graph defined in Theorem 2.6(b)(iii).

Subcase 3. |S,|=8,[Sy|=1and |S*| = 1.

This is similar to Subcase 1 above. In this case we have ['(v;) = K5, = K>
where s; = 1 and the edge in E(I'(v;)) is an edge in X5(G). This is a graph defined
in Theorem 2.6(b)(i).

Case 2. |A| > 1.
Let v, be a vertex in A. By the same argument in the proof of Case 2 in
Theorem 2.5, we have [V,| = 11, [S,| = 9 and 'p(v1) = K33 and 50 G = Py4.
Since for any 9 vertices which includes v; in P, P has a dominating cycle that
can be extended as a dominating cycle in G{) = Py4. Since G, does not have a
DCT containing all the nontrival vertices, all the vertices in V(P) — {v;} must be
nontrivial. By Lemma 4.5, |S | > 1 and so |E(®*)| > 1. Thus,

n=|EG)| 2 Z [ECCW))| + |E(D*)| + |[E(P14)| = 9(n ; v % 3) +22=n+1,

VES,

a contradiction. Case 2 is impossible. The proof is complete. m]

Remark 2 Using the similar arguments in proofs of Theorems 2.4, 2.5 and 2.6,
one can obtain new 6,(H) conditions with other values of p or t for the hamiltonic-
ity of k-connected claw-free graphs (k € {2,3}). For given t, when p is increasing,
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the number of graphs in the obstruction set will increase as well. For k = 3, in ad.-
dition to the Petersen graph, P\4 may be included in the obstruction set for larger
values of p. For k = 2, the smallest graph in the obstruction set is K»3. Since for
any given p and t the obstruction set is finite, the members of the obstruction set
can be determined with the help of a computer. Thus, the problem of finding new
0/(H) for the hamiltonicity of k-connected claw-free graphs is solvable by using
computers.
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