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ABSTRACT. Let S be an orthogonal polygon and let Ay,..., A, rep-
resent pairwise disjoint sets, each the connected interior of an orthog-
onal polygon, A; C S,1 <i < n. DefineT =S\(A1U...UA). We
have the following Krasnosel'skii-type result: Set T is staircase star-
shaped if and only if S is staircase starshaped and every 4n points of
T see via staircase paths in T a common point of Ker S. Moreover,
the proof offers a procedure to select a particular collection of 4n
points of T such that the subset of Ker S seen by these 4n points is
exactly Ker T. When n = 1, the number 4 is best possible.

1. INTRODUCTION

We begin with some definitions and comments that also appear in [2].
A set B in R? is called a boz if and only if B is a convex polytope (possibly
degenerate) whose edges are parallel to the coordinate axes. A nonempty
set S in RY is an orthogonal polytope if and only if S is a connected union
of finitely many boxes. An orthogonal polytope in R? is an orthogonal
polygon. Let X be a simple polygonal path in R¢ whose edges are parallel
to the coordinate axes. That is, let A be a simple rectilinear path in R<.
For points z and y in S, the path A is called an = — y path if and only if
A lies in S and has endpoints z and y. The £ — y path A is a staircase
path (or simply a (staircase) if and only if, as we travel along A from z to
y, no two edges of A have opposite directions. That is, for each standard
basis vector e;,1 <1 < d, either each edge of A parallel to e; is a positive
multiple of e; or each edge of )\ parallel to e; is a negative multiple of
e;. In the plane, an edge (or subset of an edge) [v;—1,v;] of path A will be
called north, south, east, or west according to the direction of vector v;_1v..
Similarly, we use the terms north, south, east, west, northeast, northwest,
southeast, southwest to describe the relative position of points.
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For points = and y in a set S, we say v seesy (z is visible from y) via
staircase paths if and only if S contains an z —y staircase path. For W C §,
the set of all points seen (via staircase paths in S) by every point of W is
the common visibility set of W. A set S is staircase convez (orthogonally
convez) if and only if, for every pair of points z,y in S, z sees y via staircase
paths. Similarly, a set S is staircase starshaped (orthogonally starshaped) if
and only if, for some point p in S, p sees each point of S via staircase paths.
The set of all such points p is the staircase kernel of S, Ker S.

Many results in convexity that involve the usual notion of visibility
via straight line segments have interesting analogues that instead employ
the idea of visibility via staircase paths. For instance, the familiar Kras-
nosel’skii theorem [8] says that, for S a nonempty compact set in the plane,
S is starshaped via segments if and only if every three points of S see
via segments in S a common point. In the staircase analogue [1], for S a
nonempty simply connected orthogonal polygon, S is staircase starshaped
if and only if every two points of S see via staircase paths in S a common
point. Concerning the kernel itself, when S is starshaped via segments, it
is easy to show that the corresponding kernel is a convex set. Similarly,
when the simply connected orthogonal polygon S is staircase starshaped,
then its staircase kernel will be staircase convex. Moreover, a discussion in
[4] describes an easy way to locate the staircase kernel of the simply con-
nected orthogonal polygon S. Without the simple connectedness require-
ment, every component of the staircase kernel will be staircase convex, as
[4, Theorem 2] reveals.

To extend these results, let S be a simply connected orthogonal poly-
gon, and let A, ..., A, represent pairwise disjoint sets, each the connected
interior of an orthogonal polygon, with A; C S,1 < i < n. Define
T = S\(A1U...U A,). Theorems from [2] explore the relationship be-
tween Ker S and Ker T and obtain an upper bound on the number of
components of Ker T in terms of n. Considering the special case in which
the sets A; are open boxes, [3] has provided a Krasnosel’skii-type result
for T. Specifically, such a set T is staircase starshaped if and only if ev-
ery 4n points of T see via staircase paths in T' a common point of Ker
S. Furthermore, (3, Example 2] demonstrates that, independent of n, no
Krasnosel’skii-type number exists for T'.

In this paper we extend the Krasnosel’skii-type bound mentioned above
to an arbitrary orthogonal polygon T, eliminating any restriction on the
shape of the open sets A;. In addition, the constructive argument offers
a procedure that allows us to locate a particular collection of 4n points of
T such that the subset of Ker S seen by these 4n points is exactly Ker
T. Since[4] has shown that Ker S is relatively simple to find, the new
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results yield a straightforward method to locate the staircase kernel of any
orthogonal polygon. When n = 1, the number 4 is best possible.

Throughout the paper, for S a set in R? bdryS,int S,relint S, and
¢l S will represent the boundary, the interior, the relative interior, and the
closure, respectively, for set S. If A is a simple path containing points a
and b, then \(a,b) will denote the subpath of A from a to b, ordered from
a to b.

Readers may refer to Valentine [10], to Lay [9], to Danzer, Griinbaum,
Klee (6], and to Eckhoff [7] for discussions concerning visibility via straight
line segments and starshaped sets.

2. THE RESULTS.

We begin with some preliminary material.
Preliminary notation, definitions, and observations:

Let S be an orthogonal polygon, and let A represent the connected
interior of an orthogonal polygon, with A C S. Let D denote the union of
all horizontal and vertical lines that meet A. We define Dy to be the subset
of D consisting of all points of D\ A that lie strictly north of some point
of A. Analogously, define sets Dg, Dg, and Dy consisting of all points of
D\ A that lie strictly south, east, and west, respectively, of some point of
A. (Of course, these sets need not be pairwise disjoint.)

For e an edge of cl A, we say that e is north facing if and only if points
of A near rel int e are north of e. That is, for every z € rel int e, every north
vector at £ meets A. Parallel definitions hold for south, east, and west
facing edges of cl A. Clearly all four edge types exist for each A. Certainly
no relatively interior point of a north facing edge of cl A sees any point
of Dy via staircase paths in S\A. Analogous statements hold for south,
east, west facing edges and Dg, Dg, Dw, respectively. (See edges n, s, w
in Figure 1 for examples of a north facing edge, a south facing edge, and a
west facing edge, respectively, of the set ¢/ A .)

Let B represent the smallest box containing A. Then R2\D is a union
of four closed (and pairwise disjoint) regions Ri, Rz, R3, R4, one at each
vertex of B. For convenience of notation, assume R; is northwest of B, Ry
southwest, Rz southeast, R4 northeast.
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Preliminary results.

The following results from (2] will be helpful. The first appears in (2,
Lemma 1], the second and third in [2, Theorem 1] and its proof, and the
fourth in 2, Theorem 2].

Result 1. With our preliminary notation, Ker (§\A) € Ker S.

Result 2. With our preliminary notation, let y belong to S\A and let
x, z belong to RN (Ker S). If z sees y via a staircase path in S\ A, then 2
sees y via such a path as well.

Result 3. With our preliminary notation, for each j,1 < j < 4, R;N (Ker
S) is either disjoint from Ker (S\A) or a subset of Ker (S\A). Furthermore,
Ker (S\A) is exactly the union of those sets R;N (Ker S)that lie in Ker

(S\A).

Result 4. Let S be an orthogonal polygon, with pairwise disjoint sets
Aj,...,An each the connected interior of an orthogonal polygon, A; C
S,1 < i< n. Then Ker (S\(4iU...UA,)) =N{ Ker (§\A4;) :1 <i< n}.

We are ready for a lemma.

Lemma 1. Using our preliminary notation, let point = belong to RiN
(Ker S). Then z belongs to Ker (S\A) if and only if z sees via staircase
paths in S\A every point of every north facing edge of cl A. A similar
statement holds for every west facing edge of cl A.

Proof. If = belongs to Ker (S\A), then certainly z sees via staircase paths
in S\ A every point of every edge of ¢l A. For the converse, assume that =
sees via S\ A every point of every north facing edge of ¢l A to prove that
ze Ker (S\A). That is, for ye S\ A, show that z sees y via staircase paths
in S\ A. If y is not south, east, or southeast of points in A, then any z —y
staircase in S will provide a suitable staircase in S\ A. Hence we assume
‘that y is south, east, or southeast of points in A. Consider any z — y
staircase A(z,y) in S. If A\(z,y) does not meet A, then again we have a
suitable z — y path in S\ A. Otherwise, A(z,y) N A will be a finite union
of relatively open segments. Following the order on \ from z to y, let 2
denote the last endpoint of the last of these segments. Then z € bdry A and
Az,y) C S\A.

We will show that z sees z via staircase paths in S\ A. Again following
the order on A from z to y, certainly the edges of A(z,y) are all south or
east vectors. Thus z lies either on a north facing edge in bdry A or on a
west facing edge in bdry A. If z lies on a north facing edge in bdry A, then
by hypothesis z sees z via a staircase in S\A, the desired result. Hence we
assume that z is on a west facing edge w in bdry A and not on a north facing
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edge. Observe that, if z is an endpoint of edge w, then z lies on a south
facing edge s in bdry A. Since points of \(z, z) immediately preceding z lie
in A, s must lie east of w, so z is the south endpoint of w. Of course, if 2
is not an endpoint of w, then z is relatively interior to w. We assert that z
sees z by a path that travels north and east of A in S\ A: Otherwise, there
would be points of A north of z. But this situation would require points
of edge n of A to lie northeast of z, and = could not see such an edge via
staircase paths in S\ A, contradicting our hypothesis. (See Figure 1.)

8
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FIGURE 1. Point z cannot see point z via staircase paths in S\A

We conclude that z does indeed see z via a staircase u(z, z) in S\ A4, again
the desired result. Moreover, any two z — z staircases employ vectors
in exactly the same directions, namely south and east. Since A(z,y) =
Az,z) U X(2,9) is a staircase, so is p(z,2) U A(2,¥), supplying an z —y
staircase in S\ A. Therefore, x sees each point y of S\A via staircase paths
in S\4, and z € Ker (S\A).

The argument for west facing edges of ¢l A is similar to the argument
ahove, so we omit the details. This finishes the proof of Lemma 1.

Corollary. An analogue of Lemma 1 holds for each R;,2 < i < 4, using
south and west facing edges for R5, south and east for R3, north and east

fOI‘ R4 ;
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We have the following Krasnosel'skii-type result.

Theorem 1. Let S be an orthogonal polygon, with pairwise disjoint
sets Ajy,...,Apn each the connected interior of an orthogonal polygon, A; C
$,1<i<n. LetT = S\(A1U...UAp). SetT is staircase starshaped if
and only if set S is staircase starshaped and every 4n points of T see via
staircase paths in T a common point of Ker S. Moreover, some 4n points
may be selected so that the subset of Ker S seen (via staircase paths in T)
by all these points is exactly Ker T.

Proof. By our preliminary results, Ker T' C Ker S. Hence if T is staircase
starshaped, certainly the second statement holds. To establish the converse,
we will select 4n points of T' whose common visibility set in Ker S (via
staircases in T') is exactly Ker T. Recall that, by Result 4, Ker T' = N
{Ker(S\4;) : 1 <1 < n}. Moreover, by Result 3, for 1 < i < n, each set
Ker (S\4;) is the union of certain sets of the form R;;N (Ker §), where R,;;
is one of the four regions described in our preliminary remarks, one R;; at
each corner of the smallest box containing A;,1 < j < 4.

We will choose four points from each set bdryA; C T,1 < i < n,
according to the following procedure: For convenience of notation, let A
represent one of the A; sets, with Ry, Ry, R3, R4, the associated regions
described earlier. As in our preliminary discussion, let D represent the
union of all horizontal and vertical lines that meet A, with Dy, Dg, Dg, Dw
the subsets of D\A consisting of all points of D\ A that lie strictly north,
south, east, and west, respectively, of points of A. Recall that no point
relatively interior to a north facing edge of cl A sees via staircase paths
in S\A any point of Dy. Select ay relatively interior to such an edge.
Similarly, select ag,ag,aw relatively interior to a south, an east, and a
west facing edge of ¢l A, respectively. Then an,as,ag,aw see via staircase
paths in S\A only points of R; U R; U R3 U R4. Hence the only points of
Ker S seen by ay,as,ag,aw via staircase paths in S\ A must belong to
U{R:n (Ker S): 1< <4}

Recall that, if RyN (Ker S) # ¢, then R;N (Ker S) is either disjoint from
Ker (S\A) or a subset of Ker (S\A). In case R;N (Ker S) is nonempty and
disjoint from Ker (S\A), choose z; in RijN (Ker S). By Lemma 1, there is
some boundary point y; on a north facing edge of ¢l A such that z; cannot
see Y1 via a staircase in S\ A. Since (by an argument in [5, Lemma 1]) the
visibility set of z; in S\A is closed, we may choose y; relatively interior to
a north facing edge of ¢l A. Moreover, by Result 2, no point of RN (Ker
S) sees y; via staircase paths in S\ A. Hence y; sees no point of RiN (Ker
S) as well as no point of Dy via such paths. We exchange ay for y;. In
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case RiN (Ker S) is empty or RiN (Ker S) C Ker (S\A), we leave ay as
our selected point.

Continue the process for Ry, R3, R4. Specifically, if Ryn (Ker S) is
nonempty and disjoint from Ker (S\A), we swap a for a point y; relatively
interior to a west facing edge of ¢l A such that y sees no point of RaN (Ker
S) and no point of Dw via a staircase in S\A. If R3N (Ker S) is nonempty
and disjoint from Ker (S\A), we swap ag for y3 relatively interior to a
south facing edge of ¢l A such that y3 sees no point of B3N (Ker S)and no
point of Dg via a staircase in S\A. Finally, if R4N (Ker S) is nonempty
and disjoint from Ker (S\A), we swap ap for some y4 relatively interior to
an east facing edge such that y4 sees no point of R4N (Ker S) and no point
of Dg via a staircase in S\A. Of course, if R;N (Ker S) were either empty
or disjoint from Ker (S\A) for every j,1 < j < 4, then we would obtain
four points that see no common point of Ker S via staircase paths in S\A
(and neither S\A nor T could be starshaped via staircase paths). However,
this would violate our hypothesis. Hence for at least one j,1 < j < 4, R;N
(Ker S) is nonempty and a subset of Ker (S\A). Thus the process above
produces four points in bdry A C T whose common visibility set in Ker S
(via staircase paths in S\A) is exactly Ker (S\A) # ¢.

We repeat the procedure for every A; set, 1 < i < n. In this way we
obtain 4n points of T whose common visibility set in Ker S (via staircase
paths in N{S\4; : 1 <1 < n} =T) is a subset of N{ Ker (S\A;) : 1 <
i < n} = Ker T and hence is exactly Ker T. Since, by hypothesis, these
4n points of T see via staircase paths in T a common point of Ker S, Ker
T is nonempty, and T is indeed staircase starshaped. This establishes the
converse and finishes the proof of the theorem.

a

Note: In the argument above, we could have selected y; on a west facing
edge of cl A and appropriately altered subsequent choices for y2,y3, ys.

As in [2], if orthogonal polygon T' (not simply connected) is a union
of fully two dimensional boxes, then T may be represented as the set in
Theorem 1. Otherwise, T will be the union of such a set (or sets) with line
segments contained in U{4; : 1 <1 < n}. If we replace these segments with
sufficiently thin boxes, we produce a new set to which our theorem applies
and whose staircase kernel is Ker T'.

In conclusion, the following example shows that the Krasnosel’skii-type
number 4n in Theorem 1 is best when n = 1.

Example 1. Let T represent the orthogonal polygon in Figure 2, a
rectangular region S with an open set A removed. Every three points of T
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see via staircase paths in T a common point of Ker S = S. (For example,
points z,y, z see, via staircase paths in T, a common point w of R;.)
However, Ker T is empty.

R, i R3

FIGURE 2. The number 4n is the best when n =1

Although the constructive argument in Theorem 1 gives a useful tech-
nique to locate the staircase kernel of an orthogonal polygon, the Krasnosel’skii-
type number 4n might not be best in general, leaving an open problem for
future work.
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