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Abstract
In 1987, Alavi, Boals, Chartrand, Erd6s, and Oellermann con-
jectured that all graphs have an ascending subgraph decomposition
(ASD). In previous papers, we showed that all tournaments of order
congruent to 1, 2, or 3 mod 6 have an ASD. In this paper, we will

consider the case where the tournament has order congruent to 5
mod 6.

1 Introduction

In (1], Alavi, Boals, Chartrand, Erdos, and Oellermann defined a type of
graph decomposition called an ascending subgraph decomposition (ASD).

Definition 1. A graph G with (k'gl) + 7 edges where 0 < r < k has an
ascending subgraph decomposition if there exists a partition of the edge set
of G such that the graphs G1,Ga, ..., Gy induced by the sets of edges in the
partition satisfy the properties that G; is isomorphic to a subgraph of Gi4q
forall1<i<k—1and |E(G;)| =1 foralli=1,2,...k.

For digraphs, we can define an ASD similarly.

Definition 2. A digraph D with (k‘2"1) + 7 arcs where 0 < r < k has an
ascending subgraph decomposition if there exists a partition of the arc set
of D such that the digraphs Dy, D,,..., Dy induced by the sets of arcs in
the partition satisfy the properties that D; is isomorphic to a subgraph of
Dit1 forall1 <i<k—1 and |E(D;)| =1 foralli=1,2,...k.

Since in this paper we consider tournaments, there will be exactly (
arcs in our digraph. Specifically, we will show that all tournaments of order
6n + 5 for n > 2 have an ASD.
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We will also need the following definition of a 2-factorization of a graph.

Definition 8. A graph G on N wvertices has a 2-factorization if the edge
set of G can partitioned into subsets of N edges where all N vertices in the
subgraph induced by each set of edges in the partition have degree 2.

For oriented graphs, we use a similar definition as above, but we refer
to arcs instead of edges and the sum of the indegree and outdegree of each
vertex in the induced subgraphs is 2.

See [2] for all terms and notation not specifically defined in this paper.

2 Strategy and Definitions

In [6, 7], we showed that all tournaments of orders 6n 4 3, 6n+42, or 61 + 1
have an ASD. We used Kirkman Triple Systems guaranteed by the following
theorem by Ray-Chaudhuri and Wilson [4] to obtain 2-factorization of the
tournament of order congruent to 3 modulo 6.

Theorem 1. (Ray-Chaudhuri, Wilson) A complete graph on N vertices,
Kn, has a 2-factorization into factors containing only triangles if and only

if N = 3(mod 6).

We used the 2-factorization to construct an ASD with the terms in the
sequence first consisting of matchings, then directed paths of length 2 and
finally triangles.

In this paper, we will use the following result in [5] by Sui and Du.

Theorem 2. (Sui, Du) A complete graph on 6n + 5 vertices where n > 2
has a 2-factorization where each 2-factor contains ezactly one 5-cycle and

the rest triangles.

Since any orientation of a triangle or 5-cycle will contain a directed path
of length 2, we will construct the ASD using a similar method as in [6, 7).
We shall keep track of the number of each type of triangle in each 2-factor
by assigning each 2-factor an ordered pair (z,y) where z is the number of
transitive triangles and y is the number of cyclic triangles in the subgraph.

The following definition, first defined in [6], gives us a tool to construct
the terms containing triangles so that they meet the subgraph containment
condition of an ASD.

Definition 4. Let S be a finite multiset {(z;,vi)}i~, where z; and y; are
nonnegative integers for alli = 1,2,...,m. We say that S has an ascending
sequence of height h and cap c if there ezists a sequence S’ = {(a;, bj)};.'__*_‘lc‘l
satisfying the following:

1L aj+bj=g forall j=1,2-+: ;h
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2.a;+bj=hforallj=hh+1,--- ,h+c—-1
3. aj L ajy1 and by < bjyq forallj=1,2,---h4c—2
4. a; S zj and b; < y; for some ordering of S.

The value h from the definition will be the number of triangles in the
last term of the ASD. The cap ¢ will be the number of terms with exactly
h triangles. The values a; and b; from the definition will be the number of
transitive triangles and cyclic triangles in last terms of the ASD. For the
result in this paper, to form an ASD for a tournament of order 6n + 5, we
will need an ascending sequence with height of 2n and cap of 2.

We need to know the minimum number of transitive triangles in our
decomposition so that from the resulting multiset of ordered pairs, we can
find an ascending sequence of the desired height and cap. The following
theorem of Moon from (3] allows us to find a lower bound for the number

of transitive triangles.

Theorem 3. (Moon ) Any tournament on 2k + 1 vertices contains at least
(2k+ 1)(';) transitive triangles. Any tournament on 2k vertices contains at
least k(k — 1)? transitive triangles.

We will use the following result that was proven in [6] using Theorem
3.

Lemma 4. Let T be a tournament of order n > 2 with V(T) = [n]. Let F
be a decomposition of T. Then there is a permutation o € S, where o[F]
3(n=3) proportion of the triangles being transitive if n is odd

has at least 1))

and has at least 27(25% portion of the triangles being transitive if n is even.

3 ASD for tournaments of order 6n + 5

We now begin a series of technical lemmas that show that we have the
needed ascending sequence of height 2n and cap 2.

Lemma 5. Let n be a positive integer. If the multiset of ordered pairs

S = {(z1, 1), (22,92), .- -, (T2n+1,Yon41)} With T +y; = n for all i =
1,2,...,2n+ 1, then S has an ascending sequence of height n and cap 2.

Proof. We will prove the lemma by induction on n. Suppose first that n =1
and so the multiset S consists of 3 ordered pairs of which there are only
two possibilities (1,0) or (0,1). By the pigeonhole principle, at least two of
the ordered pairs is the same. These two ordered pairs are the ascending
sequence of height 1 and cap 2.
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Now suppose that n > 2 and that the lemma holds for all values less
than n. By the pigeonhole principle, at least n+1 of the ordered pairs have
z; > [3] or at least n 41 of the ordered pairs have y; > [§]. Without loss
of generality, suppose that at least n+ 1 of the ordered pairs have z; > [%]
and the ordered pairs are (z1,1), (Z2,92), s (Tnt1, Yn+1)-

Consider the multiset S' = {z; — [£],3:)}}; which has z; +y; = | 3.
By the induction hypothesis multiset S’ (or if n is odd, a subset of it) has an
ascending sequence of height |5] with cap 2. Suppose without loss of gen-
erality, that the ascending sequence is (ai,b1),..., (aL%JH’bl%Hl) where
a; < z;—[%] and b; < y;. Since each of the values z| 2|41, %2 41,. .., Tnyq

is at least [%], we can obtain from the multiset S the ascending sequence
(1,0),(2,0),---,([%1,0),(01'+ [%]1b1%°"a(a[§J+l'+ [%]abL%J+1) VthCh
has height n and cap 2.

O

Lemma 6. Let S be a multiset of ordered pairs {(z:,y:)}:nf? where z; and
Yi are nonnegative integers with the following properties:

1. z;+yi=2n foralli =1,2,...,3n 4+ 2.

3n42
(3n+1)(3n +2)n
2. i > = 5
; A o+ 1 f(n)

Then S contains an ascending sequence of height 2n and cap 2.

Proof. First order the multiset so that that z; > z;41 for all i. We will
prove, by induction on n, that we can construct the ascending sequence
required using the first 2n + 1 elements in the ordered multiset S.

If n = 1, by Property 2 in the statement of the lemma, we have that

5 5
Zmi > 2—30 Thus, sz > 7. Then, we must have ; = o = 2 and
i=1 i=1
z3 > 1. Thus, we can take (1,0),(2,0),(2,0) to be our ascending sequence
of height 2 and cap 2.

Now let n > 2 and suppose that we can find an ascending sequence of
height 2(n—1) and cap 2 using the first 2(n—1)+1 elements of any ordered
multiset S with z; > x;41 for all values of i that satisfy the conditions of
the lemma. Now consider an ordered multiset S with 3n + 2 elements that
satisfies the conditions of the lemma.

Claim: The term z3,41 > 2.

Proof. Suppose instead that z5,4+1 < 1. Since

o 2n. if i< 2n
=L T B iondl
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we have that

3n+42
Z:v,-§2n(2n)+(n+2)=4n2+n+2.

So, by Property 2 in Lemma 6,

3n+42

an?+n+22 > @i
i=1

A
8 8(2n+1)

(Bn+1)(3n+2)n _ 9n? n In
2n+1 ok

2
Note that for all n > 2, 9%+9—4'1—§+8—(—2;1m > 4n?2 4+ n+2. Thatis a
contradiction. Hence, T2,4+1 > 2. O

We consider two cases:
Case I: Suppose the term 3,7 <n —1.

Consider a new ordered multiset S’ = {(z/,y/)}3";! formed from S as
follows: if z; > 2, then z! = z; — 2 and y} = y;. If z; = 1, then z; = 0 and
yi =yi— 1. If 2; = 0, then 2} = 0 and y; = y; — 2. Clearly, S’ satisfies
Property 1 from Lemma 6. Property 2 is proven in the following claim.

Claim: The ordered multiset S’ satisfies:

3n—1
Z is (3n —223(En1— I)n Ztn— 1),
i=1

Proof. By definition of z and the fact that T3ny2 < Tangr < Tan <
Z3n—1 < n, we have

Z i: z; —2) > f(n) —2(83n — 1) = 3(n —1).
i=1

i=1

Note that f(n) —2(3n—1) —3(n—1)— f(n—=1) = %11;",—‘—3 >0 forn > 1.
3n—-1

So, we have Z gt > fla— 1) a
i=1

Thus, S satisfies Property 2 of Lemma 6. By induction, we can find an

ascending sequence of height 2n—2 and cap 2 using the first 2n—1 elements

of S'. Suppose this sequence is (Gky,bky )y (Ghyy bky )y -+ -y (@hpn Ny
where k; € [2n — 1], ax, < T}, = Tk, — 2, and by, < yj, = Yk, for all i,
Since z; > z9 > -+ > Top > Ton+1 = 2, We have

(I’O)a(z’o)’(akl'+'21bk1)’(ak2'+'2’bk2)"":(ak2n-1 +’2’bk2n—1)

as our ascending sequence of height 2n and cap 2 in S.
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Case II: Suppose the term xgn-1 2 n.

Note that for n > 2, 3n =1 > 2n+ 1, Then we have z; 2 73 2 « -+ 2
Tan41 2 N.

Let S” be the ordered multiset {z; — n,1;}?%,. By Lemma 5, S” has
an ascending sequence of height n and cap 2. Without loss of generality,
suppose the sequence is (ay,b1), ... (@n41ybnq1). But then,

(1,0),(2,0)...,(n,0), (a1 + myb1)y. oy (@ngt + 1y bnyr)

is our ascending sequence of height 2n and cap 2 in 9.
This completes the proof. O

We are now ready to show that we can find an ASD when the tourna-
ment has order 6n + 5 for n > 2. Note that the case where a tournament
has 5 vertices (n = 0) can also be done using a technique similar to what
is used in the following proof except that the 2-factorization will have no
triangles.

Theorem 7. For n > 2, any tournament of order 6n + 5 has an ASD.

Proof. Let n > 2 and T be a tournament with 6n + 5 vertices. By applying
Theorem 2, we obtain a 2-factorization of T' where each 2-factor contains
exactly one 5-cycle and the rest triangles. can

By Lemma 4, we may suppose that the 2-factorization has at least %}:—;—
portion of the triangles being transitive. Let z; and y; be the number of
transitive and cyclic triangles in F}; fori = 1,2, ...,3n+2 respectively. Note
that the multiset S = {(z;,y:)}>71? satisfies Part 1 of Lemma 6. Since the
decomposition contains 2n(3n + 2) triangles of which at least %;‘—}r‘—;— portion
of them being transitive, S satisfies Part 2 of Lemma 6 as well.

By applying Lemma 6, we can obtain from S an ascending sequence of
height 2n and cap 2. Without loss of generality, suppose that the ascending
sequence is (@2n4+1,b2n41), - (a1,01). Note the order of the terms are so
that the smaller subscript terms are the larger ordered pairs.

We will now construct the ASD.

First, we will use F; to construct both D; and D¢, 44. The term D, isa
single arc. Take this arc from the oriented 5-cycle in F} in such a way that
the remaining oriented path of length 4 contains a directed path of length
2 as a subgraph. What remains from F; will be the term Dy, 4.

For 2 <1 <2n + 2, let terms Dgp45-; and D; for 2 < i < 2n + 2 be
formed from F;. The term Ds, 45— consists of a; transitive triangles and b;
cyclic triangles (for 2n +2 — i triangles total), i — 1 directed paths of length
2 and an isolated arc. Note that the isolated arc and one of directed paths
of length 2 come from the oriented 5-cycle. What remains is the term D:
which consists of a matching of size 1.
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For convenience, we rename the 2-factors Fyn 43, Fontd, *+ , Fansa to he
- F!,F},-+, F, respectively.

For 1 < j < n, let the terms Dyn43-; and Dant24; be formed from Fj.
The term Dyn43—; will consist of 2n + 1 — j directed paths of length 2 and
a matching of size j 4+ 1. Note that one of the arcs in the matching and one
of directed paths of length 2 come from the oriented 5-cycle. What remains
is the term Dant24; which consists of j directed paths of length 2 and a

matching of size 2n + 2 — J.

As constructed, the terms Dy, Ds, ..., Dent4 form an ASD of the tour-

nament 7. O
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