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Abstract

For a finite simple graph G, say G is of dimension n, and write
dim(G) = n, if n is the smallest integer such that G can be repre-
sented as a unit-distance graph in R™. Define G to be dimension-
critical if every proper subgraph of G has dimension less than G. In
this article, we determine exactly which complete multipartite graphs
are dimension-critical. It is then shown that for each n > 2, there is
an arbitrarily large dimension-critical graph G with dim(G) = n. We
close with a few observations and questions that may aid in future
work.
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1 Introduction

Define a finite simple graph G to he representable (or alternately embed-
dable) in R™ if G can be drawn with its vertices being points of R® where
any two adjacent vertices are necessarily placed at a unit distance apart.
Say G is of dimension n, and denote dim(G) = n, if G is representable in
R™ but not in R*~!. For a non-empty, connected graph G, define G to
be dimension-critical if for every e € E(G), dim(G) > dim(G — e). Note
that we are adding the qualifiers of G being hoth non-empty and connected
so that in the statement of any result, we have no need to address the
possibility of G having any isolated vertices.

This notion of graph dimension was initially put forth in a 1965 note by
Erdés, Harary, and Tutte [6]. There the authors establish the dimension
of a few common families of graphs and, as typical of a paper authored
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or co-authored by Erdés, conclude by stirring the pot with a number of
questions for future investigation. Indeed, one of these questions serves as
an impetus for our present work. Erdds, Harary, and Tutte ask the reader
to “...characterize the critical n-dimensional graphs, at least for n = 3
(this is trivial for n = 2).” Indeed, it takes only a moment’s thought to
conclude that if G is a dimension-critical graph with dim(G) = 2, then G
is either a cycle or the star K 3. For higher dimensions, the situation is
murkier, and for an arbitrary graph G, an efficiently-computed condition
that is both necessary and sufficient for G to be dimension-critical seems
unlikely to exist. We can, however, claim success in characterizing the
criticality of certain families of graphs.

In Section 2, we give a full description of which complete multipartite
graphs are dimension-critical. To more succinctly phrase our result, we will
implement notation similar to that seen in [7]. For non-negative integers
@, B, and v, define G(a, 3,7) to be the complete multipartite graph with
a + (B + v parts, a of which are of size 1, B of which are of size 2, and v of
which are of size 3. We first observe that any complete multipartite graph
having a part of size 4 or larger is in fact not dimension-critical, and then
determine exactly which assignments of o, 8, and v result in G(a, 8,4)
being dimension-critical.

In Section 3, for any n > 2 and positive integer ¢, we show through
an explicit construction the existence of a dimension-critical graph G with
dim(G) = n and |E(G)| > c. This generalizes a result of Boza and Revuelta
[2] where they show it is possible for n = 3. In Section 4, we conclude with
a few observations and questions that will hopefully re-stir the pot and

prompt future research.

2 Dimension-critical Complete Multipartite
Graphs

In [7), Machara determines the Euclidean dimension of all complete mul-
tipartite graphs. We ourselves will not be concerned with this particular
graph parameter, however for those interested readers, we remark that the
Euclidean dimension of a graph G is defined similarly to the dimension of G
with the added stipulation that in any representation in R", non-adjacent
vertices of G are forbidden to he placed a unit-distance apart. Regardless,
the following theorem is an easily established corollary of the work done in

7).

Theorem 2.1 Let G be a complete (4 B +1)-partite graph having exactly
a parts of size 1, exactly B parts of size 2, and ezactly v parts of size greater
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than or equal to 3. If B+7 < 1, then dim(G) = a+B+2y—1. If B+~ > 2,
dim(G) = a+ S+ 27y.

Theorem 2.1 will figure prominently in this section, and indeed it has
an immediate and relevant bearing. Letting G be a complete multipartite
graph containing a part of size 4 or larger, and letting G’ bhe the graph
formed by deleting from G a vertex of that part, we have that dim(G) =
dim(G’). This gives us the corollary below.

Corollary 2.2 Let G be a complete multipartite graph having at least one
part of size 4 or larger. Then G is not dimension-critical.

Now let G be equal to some G(e, 3,7), and let e € E(G). In deciding
whether or not G is dimension-critical, we will often consider G —e as a sub-
graph of some other complete multipartite graph. As an example, consider
G = G(1,0,2). Label the partite sets of G as {a}, {b1,c1,d1}, {b2, c2,d2},
and let e = b1bs. Then G — e is a subgraph of G(1,3,0) whose partite sets

are {a}, {bl,bz}, {CI,dl},{C2,d2}. :
We list those dimension-critical complete multipartite graphs in the the-

orem below.

Theorem 2.3 Each of the following complete multipartite graphs are
dimension-critical.

(i) Ko fora>3
(iz) Cy
(i) K1
(iv) Ka3
(v) G(e,0,7) fora>0 and v > 2

Proof In [6], it is observed that dim(K,) = a —1 and that dim(Ky —e) =
a — 2, so we have that K, is dimension-critical. It is obvious that the cycle
C4 and star K, 3 are dimension-critical. It is also fairly easy to see that
dim(K23) = 3 and dim(K» 3 — €) = 2, although it is noted as well in [4]
that K3 is a dimension 3 graph with minimum edge-set, which in turn
implies that K 3 is dimension-critical.

Now let G = G(«,0,7) for & > 0 and v > 2, and note that Theorem
2.1 gives dim(G) = a + 2v. Label the partite sets of G as {a,},...,{aa},
{bl,cl,dl},. Fe s {b.,,c,,da,}. Let €1 = a1a2, €2 = b1b2, and ez = albl. For
any e € E(G), there is an automorphism of G mapping e to one of e;, e,
or ez, so to show that G is dimension-critical, we just need to show that for
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i € {1,2,3}, dim(G) > dim(G —e;). First note that G — e is a subgraph of
G(a —2,1,v) which by Theorem 2.1 is of dimension a + 2y — 1. Secondly,
note that G — ey is a subgraph of G(, 3,7 — 2) which again by Theorem
2.1 is of dimension a4 2y — 1. Finally, we have that G —e3 is a subgraph of
G(a—1,2,v—1) which is of dimension a+2v—1 as well. Since for arbitrary
graphs H and K, H being a subgraph of K implies that dim(H) < dim(K),
we have now shown that for any e € E(G), dim(G —¢) < a+2y-1 <
dim(G). This completes the proof that G is dimension-critical. O

Theorem 2.4 Let G = G(a,p,v) where a > 0, B > 1, and B +7v = 3.
Then G is not dimension-critical.

Proof Let v € V(G) where v is contained in a part of size 2. Then G\ {v}
= G(a+1,8—-1,7) and by Theorem 2.1, dim(G \ {v}) = a4+ B +2v. Since
dim(G) = a + B + 2v as well, we have that G is not dimension-critical. O

In light of Theorems 2.3 and 2.4, the only remaining complete multipar-
tite graphs that we must investigate are K3, G(a,1,0) for a > 1, G(a,1,1)
for a > 1, G(a, 2,0) for @ > 1, and G(e,0,1) for a > 2. We show that each
of these graphs are not dimension-critical in the theorem helow.

Theorem 2.5 Each of the following complete multipartite graphs are not
dimension-critical.

(i) Ko
(ii) G(a,1,0) for o> 1
(iii) G(a,1,1) for a > 1
(iv) G(,2,0) for o >1
(v) G(a,0,1) for o >2

Proof We consider each of these cases individually, and apply Theorem
2.1 throughout.

(i) Quite obviously dim(K3) = 1, however deletion of the only edge of
K, results in a graph just consisting of two isolated vertices which
cannot be embedded in R® (which by convention consists of a single
point). So K> is not dimension-critical.

(ii) Let G = G(e,1,0) for & > 1. Then dim(G) = a. Letting v € V(G)
where v is contained in the part of size 2, G \ {v} is equal to Kq41-
Since dim(Ka+1) = @, we have that G is not dimension-critical.
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(iii) Let G = G(a,1,1) for o > 1, and note that dim(G) = a + 3. Label
the partite sets of G as {a1},...,{aa}, {b1,c1}, {b2,c2,d2}. Form a
new graph G’ by deleting from G the edges a;b; and ajc;. Observe
that G’ = G(a — 1,0,2) and dim(G’) = a + 3. Again, we have that
G is not dimension-critical.

(iv) Let G = G(a,2,0) for a > 1, and note that dim(G) = o 4+ 2. Just
as in the last case, let G’ = G\ {a1b1,a1c1} and note that G’ =
G(a —1,1,1). We have that dim(G’) = o + 2 which implies that G
is not dimension-critical.

(v) Finally, let G = G(«,0,1) for @ > 2, which gives dim(G) = a+1. Let
{a1} and {az} both be partite sets of size 1, and let G’ be formed by
deleting edge a;a; from G. Then G' = G(a — 2,1,1) and dim(G’) =
o + 1. We conclude that G is not dimension-critical. O

Theorem 2.5 concludes that the graphs shown to be dimension-critical
by Theorem 2.3 are in fact the only dimension-critical complete multipartite

graphs.

3 Arbitrarily Large Dimension-critical
Graphs

In this section, we show that for any n > 2, there exists an arbitrarily large
dimension-critical graph G with dim(G) = n. This is immediate for n = 2
as the cycle Cy is of dimension 2 for any k£ > 3, and deletion of any edge of
C,, results in a path which has a unit-distance representation on the real
number line R. In [2], Boza and Revuelta construct an arbitrarily large
dimension-critical graph of dimension 3. However, the authors of [2] do not
comment on the existence of such graphs in higher dimensions, and it does
not appear that their construction has a clear generalization.

We will obtain our result by considering the graph G = K,, + C,,,. That
is, G is formed by starting with the cycle C,, for some m > 3, then placing
n vertices adjacent to each other and to each of the vertices of the copy of
Cp. Along the way, we will employ a number of lemmas and theorems of
a geometric sort. Lemma 3.1 is observed in the previously mentioned [6].

Lemma 3.1 For anyn > 1, dim(K,) =n—1.

Regarding Lemma 3.1, it is well-known that if n points are equidistant
in R™~!, then these points must constitute the vertices of a regular (n —1)-
dimensional simplex. This representation of K, in R*~! is unique up to
Euclidean movements - that is, unique up to rotations, reflections, and
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translations. This fact will play a key role in our current work. Lemma 3.2
is also well-known and can be found, for example, in [3].

Lemma 3.2 Let S be a regular n-dimensional simplex embedded on a unit
sphere. Then for any vertices Py, Py of S, |Py — Py| = /2 + 2.

Since, in any representation of a graph in R™, we require edges to be
of unit length, a quick calculation allows Lemma 3.2 to be restated as the
following corollary.

Corollary 3.3 Let K, have a unit-distance representation in R*~! on a
sphere of radius r. Thenr = /%=L,

Theorem 3.4 is found in [9] and will be implemented in the proof of
Lemma 3.5 below.

Theorem 3.4 Let r € Q with 0 < T < 1. The number X arcsin(/7) is

rational if and only if r is equal t0 0, 1, 2, 3, or1.

Lemma 3.5 Let S be a circle of radius r = 4/ 1‘-2%1 for some integer n > 2.
Then no cycle of edge-length 1 is embeddable on S.

Proof Consider a cycle C,,, and assume to the contrary that C,, is em-
heddable on S. We then must have that, for some integer z € Z*, the angle
6 given in the figure below satisfies mf = z(2r).

Solving for 6, we have sin(%) = —21; Combining this with the equality given
above, we have that

n : n —- Tz n s _
= arcsin <1 /——-—2<n+1)> Z, or in other words, - arcsm (, /———2(n+1)> is ra

tional. By Theorem 3.4, we see 5(-""717 € {3,5,3,1}. However, letting
f(z) = 2(z Ty e have f’ (2) = 5(-—1{—17; which implies that f(z) is strictly
increasing. Since f(2) = 3 and hrn f(n) = 3, we have a contradiction. O
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We now determine the dimension of G = K, + C,,,.

Theorem 3.6 Let G = K, +Cy, form >3, n>2. Thendim(G) =n+2,

Proof Label the vertices of K, as ay,...,a, and those of C,,, as wy, ..., w,,.
Our first goal is to find an embedding of G in R"*2, We can represent
ai,...,an as the vertices of a regular (n — 1)-dimensional simplex of edge-
length 1 centered at the origin. Let r; be the radius of this simplex, and

by Corollary 3.3, we have r; = \/-’12_71. Each of the vertices wy, ..., w,, will

then he represented as R"*? points of the form (0,...,0, Ti,¥i, z;) where
;1:?+yi2+zt-2 =1—7‘% forie {1,...,m}. Let ro = \/1—7‘15, and note that

ro = /4 + 5. To complete our embedding of G in R™*?, it now suffices

to show that the cycle C,, is representable in R3 with each of its vertices
lying on a sphere of radius rs.

Designate by S a sphere of radius ;. First, we claim that for any points
Py, P; lying on S with |P, — P,| = 1, there exists a point P3 on S at distance
1 from each of P;, P5. To see this, we will show that there exists a point
on S at distance less than 1 from each of P;, P, and also a point on S at
distance greater than 1 from each of Py, P2, whereby continuity guarantees
the existence of the desired P;. Consider the great circle of S containing
both P; and P, and then label distances as in the figure below.

We have the relationships hy + he = 79, by = /73 — 1, and |P, — Q|* =
|P, — Q|* = h%+%. We claim that |P; —Q|? < 1 which amounts to showing

that hy < @ To see this, combine the above equalities to write hy =

T

ra— 73— b Leting f(s) = 5~ /2% — §, we have f'(z) = 1- —Er <0
4

which implies f(z) is decreasing. Since 32@ <1y and f (-‘?) = _\/_52:_1 < ;@ :
we have established that there is a point on S at a distance less than 1 from
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each of P; and P,. To see that there is a point on S at a distance greater
than 1 from each of P, and P, just take an endpoint of the diameter of S
that is orthogonal to the plane containing this great circle. The distance
from this point to each of P, and P; is ro1/2 which is greater than 1. This
completes proof of our claim. We note also that a similar argument shows
that for any two points on S that are a distance less than 1 apart, there is
a point on S at distance 1 from each of them as well.

Now, to embed a cycle C,, on S, we perform the following procedure.
If m is odd, place w;, w3, ws,...,Wn On & great circle of S where w; and
w,, are a Buclidean distance 1 apart, and w3, ..., wn_2 lie on the arc of
the great circle between w; and wy,. For each pair of consecutive vertices
in {wy,ws,...,wn}, there is a point on S at distance one from each of
them. We may select these points to be the wa,wy, ..., w,_1 and we have
completed the embedding. If m is even, we may embed the cycle C,,_; in
the fashion as just described, then delete the edge wjws, and place new
edges w; P and Pw; where vertex P is a point on S at distance 1 from each
of w; and we. This completes the proof that G is representable in R™*2,

Now suppose to the contrary that G is embeddable in R®*!, In such
an embedding, we again have that a,,...,a, must be represented as the
vertices of a regular (n — 1)-dimensional simplex of edge-length 1 which
we may freely assume is centered at the origin. It follows that each of
w1, ..., W must be represented as R™*1 points of the form (0,...,0, z;, y;)
where 2 + y? = %L, In other words, the cycle C,, must have a unit-

distance representation on a circle of radius 4/ %‘1}} This contradicts Lemma
3.5. 0

We are now ready for the main result of this section.

Theorem 3.7 Let n > 2, and ¢ € Z*. Then there ezists a dimension-
critical graph H satisfying dim(H) =n + 2 and |E(H)| > c.

Proof Again, consider the graph G = K, + C,, where m > ¢, and label
the vertices of G as in the proof of Theorem 3.6. For any edge of the form
w;wj, there is an automorphism of G mapping that edge to e = wywp,.
We aim to show then that e is critical to the dimension of G — in other
words, that dim(G) > dim(G — e). In light of Theorem 3.6, this amounts
to showing that G — e is representable in R™*1,

Just as in the proof of Theorem 3.6, we represent ai,...,a, as vertices
of a regular (n —1)-dimensional simplex which is centered at the origin and

has radius r; = y/2=*. Each of the vertices wy,..., wnm will be points of

the form (0,...,0,z;,y;) where 2? + y? = 2tk for i € {1,...,m}. To see
that this does indeed give a valid representation of G — e in R"*1, we need
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only show that a path of arbitrary length has a unit-distance embedding

on a circle, call it S, of radius r, = \/’—'2*,;—1 Since 73 > 4, for any point
p on S, there are two points on S at distance 1 from p. Since Lemma 3.5
guarantees that no cycle is embeddable on S, we have established that G —e
is embeddable in R**1,

To then create a dimension-critical graph H with dim(H) = n + 2,
start with G and iteratively delete any edges that are not critical to the
dimension of the graph. As observed above, all edges of the form w;w; are
critical, so no matter how many edges of the form a;a; or a;w; are deleted,

we have that dim(H) =n+2 and |[E(H)| > c. ]

4 Further Work

In this section we scrape together a few observations and questions that
have arisen during our investigations into the topic of dimension-critical
graphs. To the best of our knowledge, each of these are open. We begin
with a question in computational complexity. A full digression into the
terminology, history, and methodology of this subject would take us far
afield, so we will make do with assuming some familiarity of our readers,
and point those uninitiated to the introductory texts [1] and [5].

Questic;n 1 For an arbitrary graph G, what is the complexity of determin-
ing whether G is dimension-critical?

In [8], Schaefer proves that for a general graph G, it is NP-complete to
determine whether or not G has a unit-distance representation in R2. An
immediate extension is the fact that it is NP-hard to precisely determine
dim(G). However, one can also use Schaefer’s result to prove that for a
given e € E(G), it is NP-hard to decide if dim(G) > dim(G — e). We do
this below.

First, observe that a graph G has a unit-distance representation in R if
and only if G is acyclic and contains no vertices of degree greater than 2 —
in other words, if and only if every component of G is a path. There are
linear-time algorithms for deciding if G has either of these two properties.
Secondly, we note the impossibility of the existence of a graph H with
dim(H) = 1 where the creation of a graph H' by placing an edge hetween
two non-adjacent vertices of H results in dim(H’) > 2. This is easy to
see considering that H' would have at most one non-path component with
that component being a tree, a cycle, or a cycle with one or two paths
attached to single vertices of the cycle. In either case, that component, and
by extension the entirety of H’, is embeddable in R2.
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Now suppose to the contrary that there does exist a polynomial-time
algorithm to decide whether e € E(G) is critical to the dimension of G.
Label the edges of G as e,...,e,, and, starting with i = 1, implement
this algorithm to decide if e; is critical. If it is not, delete e; from G, and
implement the algorithm again to decide if e;4 is critical to the dimension
of G\ {e1,...,€e}. Eventually we must reach some edge, call it e;, that is
critical to the dimension of graph G' = G\ {ey,...,e;_1}. We may now
run polynomial-time algorithms to decide whether G’ is representable in R.
If dim(G’) = 1, we have that dim(G) = 2, and if dim(G’) # 1, we have that
dim(G) # 2. The existence of this polynomial-time algorithm to determine
whether or not G has a representation in R? contradicts Schaefer’s result.

From the above observations, the existence of a polynomial-time algo-
rithm to determine if G is dimension-critical seems very unlikely. However,
we (somewhat abashedly) remark that we see no way to completely resolve
Question 1. '

Question 2 For an arbitrary graph G and e € E(G), is it true that
dim(G) — dim(G —e) <17

Of course, there are myriad examples of G and e € E(G) where the
deletion of e either does not change the dimension of the graph or reduces
the dimension of the graph by 1. However, we were unable to find a single
instance of a graph G where dim(G) — dim(G — e) > 2. Our guess is that
such graphs do not exist, and we would be very interested to see a proof.
Incidentally, if one instead considers the deletion of a vertex of G, there is
a little more that can be said.

Question 3 Does there exist an integer ¢ such that for all graphs G and
v € V(G), we are guaranteed to have dim(G) — dim(G \ {v}) < c? If so,
can we let c =27

Again, there are numerous examples of G and v € V(G) where dim(G) —
dim(G \ {v}) is equal to 0 or 1. However, if we let G be the graph K5+ Cs,
we have by Theorem 3.6 that dim(G) = 4. Designating by v one of the
vertices of G of degree 7, we have that G\ {v} is isomorphic to Ws. The
wheel W; is embeddable in R? with the usual representation of a regular
hexagon of edge-length 1 along with a vertex placed at its center, so here,
dim(G) —dim(G\ {v}) = 2. We were unable to construct an example where

dim(G) — dim(G \ {v}) > 3.
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