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ABSTRACT. Let G be a simple and finite graph. A graph is said
to be decomposed into subgraphs H; and Hy which is denoted by
G = H) @ Hy, if G is the edge disjoint union of H; and Hz. If
G=H1®H®- @ Hy, where Hy, Hj, ..., H) are all isomorphic to
H, then G is said to be H-decomposable. Futhermore, if H is a cycle
of length m then we say that G is C,-decomposable and this can be
written as Cm|G. Where G x H denotes the tensor product of graphs
G and H, in this paper, we prove that the necessary conditions for
the existence of Cg-decomposition of K, x Kn are sufficient. Using
these conditions it can be shown that every even regular complete
multipartite graph G is Ce-decomposable if the number of edges of
G is divisible by 6.

1. Introduction

Let C,., K., and K, — I denote cycle of length m, complete graph on m
vertices and complete graph on m vertices minus a 1-factor respectively. By
an m-cycle we mean a cycle of length m. All graphs considered in this paper
are simple and finite. A graph is said to be decomposed into subgraphs H
and H, which is denoted by G = H; & H,, if G is the edge disjoint union
of Hy and Hy. f G=H1®H, @ --- ® Hy, where Hy, Hs, ..., Hy are all
isomorphic to H, then G is said to be H-decomposable. Futhermore, if H
is a cycle of length m then we say that G is C,,-decomposable and this
can be written as Cp,|G. A k-factor of G is a k-regular spanning subgraph.
A k-factorization of a graph G is a partition of the edge set of G into k-
factors. A Ci-factor of a graph is a 2-factor in which each component is a
cycle of length k. A resolvable k-cycle decomposition (for short k-RCD) of
G denoted by Cy||G, is a 2-factorization of G in which each 2-factor is a
Ci-factor.

For two graphs G and H their tensor product G x H has vertex set V(G) x
V(H) in which two vertices (g1,h1) and (go,hz) are adjacent whenever
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9192 € E(G) and hyhy € E(H). From this, note that the tensor product

of graphs is distributive over edge disjoint union of graphs, that is if G =

H]@Hg@---@Hk, then G x H = (H1 XH)@(HQ XH)@"'@(H], X H)

Now, for h € V(H), V(G) x h = {(v,h)|v € V(G)} is called a column of

vertices of G x H corresponding to h. Further, for y € V(G), y x V(H) =

{(y,v)|v € V(H)} is called a layer of vertices of G x H corresponding to y.

The problem of finding Ci-decomposition of Kopt1 or Kon — I where I is

a 1-factor of Kjn, is completely settled by Alspach, Gavlas and Sagna in

two different papers (see 1, 13]). A generalization to the above complete

graph decomposition problem is to find a Ckx-decomposition of K * Kn,

which is the complete m-partite graph in which each partite set has n

vertices. The study of cycle decompositions of K, * K, was initiated by

Hoffman et al. [5]. In the case when p is a prime, the necessary and

sufficient conditions for the existence of C,-decomposition of K, * Ka,

p > 5 is obtained by Manikandan and Paulraja in (7, 8, 10]. Billington

[2] has studied the decomposition of complete tripartite graphs into cycles

of lenght 3 and 4. Furthermore, Cavenagh and Billington [4] have studied

4-cycle, 6-cycle and 8-cycle decomposition of complete multipartite graphs.

Billington et al. [3] have solved the problem of decomposing (Km * K.,)

into 5-cycles. Similarly, when p > 3 is a prime, the necessary and sufficient

conditions for the existence of Cy,-decomposition of K,, * K, is obtained

by Smith (see [14]). For a prime p > 3, it was proved in [15] that C3p-

decomposition of K, * K, exists if the obvious necessary conditions are

satisfied. As the graph Ko, x K, & K % K, — E(nKy,) is a proper regular

spanning subgraph of K, * K,. It is natural to think about the cycle
decomposition of K, x K. The results in [7, 8, 10] also give necessary and
sufficient conditions for the existence of a p-cycle decomposition, (where
p > 5 is a prime number) of the graph K,,, x K,,. In [9] it was shown that
the tensor product of two regular complete multipartite graph is Hamilton
cycle decomposable. Muthusamy and Paulraja in [11] proved the existence
of Cn-factorization of the graph Cj X Kun, where mn # 2(mod 4) and k is
odd. While Paulraja and Kumar [12] showed that the necessary conditions
for the existence of a resolvable k-cycle decomposition of tensor product of
complete graphs are sufficient when k is even.

In this paper, we prove that the obvious necessary conditions for K,,, x K,,
2 < m,n, to have a Cg-decomposition are also sufficient. Among other
results, here we prove the following main results.

It is not surprising that the conditions in Theorem 1.1 are "symmetric”
with respect to m and n since K, X K = K, x Kn.

Theorem 1.1. For2 < m,n,Cs|Kmn X Ky, if and only if m = 1 or 3 (mod 6)
orn=1or 3 (mod6).
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Theorem 1.2. Let m be an even integer and m > 6, then Cg|K,, — I x K,,
if and only if m =0 or 2 (mod 6)

2. Cgs Decomposition of C3 x K,
Theorem 2.1. For all n, Cg|C3 x K.

Proof. Following from the definition of tensor product of graphs, let Ul =
{u1,v1, w1}, U2 = {uz,v2,w2},..., U™ = {un, Un, wn} form the partite set of
vertices in C3 X K,,. Also, Ut and U’ has anedgein C3x K, for1 <4,j5 <n
and i # j if the subgraph induce K33 — I, where I is a 1-factor of K3 3.
Now, each subgraph U® U U7 is isomorphic to K33 — I. But K33 — I is a
cycle of length six. Hence the proof. O

Example 2.2. The graph C3 x K7 can be decomposed into cycles of length
6.

Solution. Let the partite sets (layers) of the tripartite graph C3 x K7 be
U = {uy,ug,...,ur}, V = {v1,v2,...,u7} and W = {w;,ws,...,wr}. We
assume that the vertices of U,V and W having same subscripts are the
corresponding vertices of the partite sets. A 6-cycle decomposition of C3 x
K7 is given below:

{u1, vo, w1, ug, vy, wa },{u1,v3, w1, u3, v1, w3}, {uz, v3, wa, u3, va, w3},
{UhU4,wl,U4,Ul,w4},{U2,U4,w2,U4,Uz,’w4},{us,v4,w3,u4,U3,w4},
{U1,Us,whus,vhws},{uz,Us,wz,us,112,ws},{us,vs,ws,us,vs,ws},
{'u,4,’U5,’U)4,U5,U4,1U5},{U1,'Us,'wl,u6,’l)l,w6},{U2,U6,w2,U6,’U2,'LU6},
{Us,Ue,’w3,Ue,Us,’w6},{u4,Us,w4,u6,U4,w6},{us,Ue,'ws,us,vs,we};

{u1, vz, w1, ur, v1, wr }t,{ug, v7, w2, uz, vo, wr},{us, v7, ws, uz, v3, wr},
{U4,v7,’w4,u7,U4,w7},{us,ths,U7,,Us,w7},{u6,v7,’w6,u7,1}6,w7}-

Theorem 2.3. [6] Let m be an odd integer andm > 3. If m =1 or 3 (mod 6)
then C3|K,,.

Theorem 2.4. [13] Let n be an even integer and m be an odd integer with
3 <m < n. The graph K,, — I can be decomposed into cycles of length m
whenever m divides the number of edges in K, — I.

3. Cgs Decomposition of Cs x K,

Theorem 3.1. [13] Let n be an odd integer and m be an even integer with
3 < m < n. The graph K, can be decomposed into cycles of length m
whenever m divides the number of edges in K.

Lemma 3.2. Cg|Cs x K,

Proof. Let the partite set of the bipartite graph Cg x K3 be {u1,u2, ..., ug},
{v1,v2, ..., vg}. We assume that the vertices having the same subscripts are
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the corresponding vertices of the partite sets. Now Cg x K7 can be decom-
posed into 6-cycles which are {1, vg, u3, v4, us, ve} and {v1, uz, vs, u4, Vs, ug}-

O

Theorem 3.3. For all n, Cg|Ces X Kn.

Proof. Let the partite set of the 6-partite graph Cg x K, be U = {u1,u2, «-+s
unt, Vo= {v,v2,..tn}, W o= {wwe, . wp}, X = {z1,Z2,.-»Tn}s
Y = {y1,¥2,-»¥yn} and Z = {z1,22,...,2n}: we assume that the ver-
tices of U,V,W, X,Y and Z having the same subscripts are the corre-
sponding vertices of the partite sets. Let U' = {uj,vi,ws,z1,¥1,21}>
U? = {ug,vg,Wa, T, Y2, 22}, ooy U™ = {Un, VU, Wn,Tn,Yn,2n} be the sets
of these vertices having the same subscripts. By the definition of the ten-
sor product, each Ut, 1 < i < n is an independent set and the subgraph
induced by each U*U U7, 1 <i,j < n and i # j is isomorphic to Cg x Ka.
Now by Lemma 3.2 the graph Cg x K, admits a 6-cycle decomposition.
This completes the proof. O

4. Cg Decomposition of K,,, X K,

Proof of Theorem 1.1. Assume that Cg|K,, X K, for some m and n with
2 < m,n. Then every vertex of K, XK, has even degree and 6 divides in the
number of edges of K, x K;,. These two conditions translate to (m —1)(n —
1) being even and 6|m(m — 1)n(n — 1) respectively. Hence, by the first fact
m or n has to be odd, i.e., has to be congruent to 1 or 3 or 5 (mod 6). The
second fact can now be used to show that they cannot both he congruent to
5 (mod 6). It now follows that m =1 or 3 (mod 6) or n =1 or 3 (mod 6).
Conversely, let m = 1 or 3 (mod 6). By Theorem 2.3, C3|K,, and hence
KnxK,=((C3xK,)® - &(Cs x K,)). Since Cs|C3 x K,, by Theorem
2:1%

Finally, if n = 1 or 3 (mod 6), the above argument can be repeated with
the roles of m and n interchanged to show again that Cs|K,, x K,. This
completes the proof.

Proof of Theorem 1.2. Assume that C4|K,, — I x K,,m > 6. Certainly,
6|mn(m—2)(n—1). But we know that if 6|m(m—2) then 6|mn(m—2)(n—1).
But m is even therefore m = 0 or 2 (mod 6).

Conversely, let m = 0 or 2 (mod 6). Notice that for each m, ’-"—g"{gl is a
multiple of 3. Thus by Theorem 2.4 C3|K,, — I and hence K,, — I x K,, =
(C3x K,)® - ®(C3 x K)). From Theorem 2.1 Cg|C3 x Kn. The proof
is complete.

5. CONCLUSION

In view of the results obtained in this paper we draw our conclusion by the
following corollary.
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Corollary 5.1. For any simple graph G. If

(1) C3|G then Cg|G x Ky, whenever n > 2.
(2) Cs|G then Cs|G x K, whenever n > 2.

Proof. We only need to show that C3|G. Applying Theorem 2.1 gives the

result. O

Acknowledgments

The authors would like to thank the referees for helpful suggestions, includ-
ing the present form of the proof of Theorem 1.1.

REFERENCES

[1] B. Alspach and H. Gavlas, Cycle decompositions of Kn and K, — I, J. Combin.

Theory Ser. B 81 (2001) 7799.
[2] E.J. Billington, Decomposing complete tripartite graphs into cycles of length 3 and

4, Discrete Math. 197/198 (1999) 123-135.
[3] EJ. Billington, D.G. Hoffman and B.M. Maenhaut, Group divisible pentagon sys-

tems, Util. Math. 55 (1999) 211-219.

[4] N.J. Cavenagh and E.J. Billington, Decompositions of complete multipartite graphs
into cycles of even length, Graphs Combin. 16 (2000) 49-65.

[5] D. G. Hoffman, C. C. Linder and C. A. Rodger, On the construction of odd cycle
systems, J. Graph Theory 13 (1989) 417-426.

[6] C.C. Lindner and C.A. Rodger, Design Theory (CRC Press New York, 1997).

[7] R.S. Manikandan and P. Paulraja, Cp-decompositions of some regular graphs, Dis-
crete Math. 306 (2006) 429-451.

[8] R.S. Manikandan and P. Paulraja, Cs-decompositions of the tensor product of com-
plete graphs, Australas. J. Combin. 37 (2007) 285-293.

[9] R.S. Manikandan and P. Paulraja, Hamilton cycle decompositions of the tensor
product of complete multipartite graphs, Discrete Math. 308 (2008)3586-3606.

[10] R.S. Manikandan and P. Paulraja, C7-decompositions of the tensor product of com-
plete graphs, Discussiones Mathematicae Graph Theory 37 (2017) 523-535.

[11] A. Muthusamy and P. Paulraja, Factorizations of product graphs into cycles of
uniform length, Graphs Combin. 11 (1995) 69-90.

[12] P. Paulraja and S. S. Kumar, Resolvable even cycle decompositions of the tensor
product of complete graphs. Discrete Math. 311 (2011) 1841-1850.

[13] M. Sajna, Cycle decompositions III: complete graphs and fixed length cycles, J.
Combin. Designs 10 (2002) 27-78.

[14] B. R. Smith, Decomposing complete equipartite graphs into cycles of lenght 2p, J.
Combin. Des. 16 (2006) 244-252.

[15] B. R. Smith, Complete equipartite 3p-cycle systems, Australas J. Combin. 45 (2009)

125-138.
A. D. Akwu AND O. OYEWUMI
DEPARTMENT OF MATHEMATICS, FEDERAL UNIVERSITY OF AGRICULTURE, MAKURDI, NIGE-

RIA
E-mail address:  abolaopeyemi@yahoo.co.uk
E-mail address:  opeyemioluwaoyewumiQgmail.com

199



