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Abstract

Any dominating set of vertices in a triangle-free graph can be used to specify a graph
coloring with at most one color class more than the number of vertices in the dominating
set. This bound is sharp for many graphs. Properties of graphs for which this bound is

achieved are presented.
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1 Introduction

A k-coloring c is a partition of the vertices of a graph G into k independent
sets {c1,C2, ...k}, denoted as the color classes of c. The minimum number
of color classes required for a proper coloring is the chromatic number x(G).
For additional terminology and results on graph coloring see Chromatic
Graph Theory [1] by G. Chartrand and P. Zhang.

In a graph G, Ng(v) is the set of vertices adjacent to vertex v and
is known as the open neighborhood of v. The closed neighborhood of v
is Ng[v] = Ng(v) U {v}. When the underlying graph is understood, the
subscript is usually omitted. A graph is triangle-free when N(v) is an
independent set for every vertex v. Graphs considered throughout this
document are triangle-free.

A vertex dominates itself and its neighbors. That is, vertex v dominates
N[v]. This is extended to a set of vertices D where N[D)] is the union of the
closed neighborhoods of the vertices in D. Then, D dominates N[D]. A
dominating set of G is a set D where N[D] = V(G). The minimum number
of vertices in a dominating set of G is v(G) and such a set is referred to as
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a y-set. The minimum number of vertices in an independent dominating
set is a +;-set.

It is straightforward that 4(G) < 7(G) and, if 4(G) < %(G), every
7-set contains at least one pair of adjacent vertices. For additional termi-
nology and results concerning domination in graphs see Fundamentals of
Domination in Graphs (3] by T. Haynes, S. Hedetniemi and P. Slater.

A relationship between the chromatic number of a triangle-free graph
and its domination number is established by an algorithm in Section 2
which produces a coloring based upon a given dominating set and shows
X(G) € 9(G) + 1 for all triangle-free graphs. While the colorings of the
algorithm are not necessarily optimum for many triangle-free graphs, it
will give a proper coloring for every triangle-free graph and will be exact

in many cases.
Section 3 shows, for every k > 2, there are triangle-free graphs G with

x(G) = k and x(G) = ¥(G) + 1, referred to here as extremal graphs. In
Section 4, additional properties of extremal graphs are presented.

2 Coloring Algorithm

Assume G is a triangle-free graph with a dominating set D = {z1,Z2,...,Z,}.
A proper coloring ¢ of G is algorithmically constructible.

Algorithm
1. c; « N('Ll)

2. for2<i< s,
C; — {{'L‘,-l}UN(.’Ez)} — {cl Wieo Wl Uci_l}

3. if z, has no neighbor in D, then
Cs+1 — {Ts}

Note that cs4; is created only when N(zs) N D = (), for otherwise z,
will have already been placed in ¢; for some j < s — 1, and the color class
cs+1 1s not created. Also notice that there is no specification on the size of
the dominating set or of the order in which the vertices are examined.

Lemma 1 The Algorithm provides a proper s- or (s + 1)-coloring of G.

Proof: It must be shown that each ¢; is independent and every vertex of
G is in exactly one of the sets.

Since G is triangle-free, for every vertex v, N(v) is an independent set.
Thus from Step 1 of the algorithm, ¢; is an independent set of vertices. In
Step 2 every vertex in N(x;) is either in ¢; orin {¢;UcpU...Uc;—1}, but not
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in both. When i > 2, ;_, has no neighbors in N(z;) - {c;jUczU...Uci-1}.
Thus, if z;—1 is not previously colored, it will be colored i. Then, ¢; is
independent and every vertex in N(z;) is assigned to exactly one color
class in {¢1,¢2,...,¢i}.

Therefore, Steps 1 and 2 assign colors to every vertex in G' except x,
when z5 has no neighbor in D. When that occurs, Step 3 places z, in ¢,41.
Thus, ¢ is either a proper s-coloring or (s + 1)-coloring of G. O

As far as the correctness of the algorithm is concerned, the choice of
the dominating set D and the ordering of the vertices in D are irrelevant,
although different dominating sets and different orderings of the vertices

may alter the colorings produced.

Theorem 2 For a triangle-free graph G, if there is a non-independent ~y-
set then
X(G) £7(G) £ 7(G).

Otherwise, every v-set is independent and
xX(G) £v(G) +1=7v(G) + 1.

Proof: Assume D = {z,72,...,%,} is a y-set of G that is not indepen-
dent. Since the order of the vertices in D is irrelevant, assume z is a vertex
with a neighbor in D, say z;. Then, from Step 1 of the algorithm, z; is in
c1, Therefore, in Step 3, c,41 will not be created. From Lemma 1, c is an
s-coloring of G. By assumption s = v(G). Therefore,

X(G) < s =9(G) < 7(G).

When every v-set is independent, v(G) = 7:(G). Regardless of the
minimum dominating set and the ordering of the vertices in the set, z, will
not be colored hy Steps 1 and 2 of the algorithm. Therefore, Step 3 assigns
, to cs+1 and, from Lemma 1, c is an (s + 1)-coloring of G. Thus,

X(G) < s+1=9(G) +1=x(G) +1.

There are graphs with a significant difference between their chromatic
and domination numbers. For instance, let G be the graph obtained by
subdividing each edge of K, exactly once. Then

X(G) =2 and 7(G) = %(G) = n.

Another case is when G is obhtained by adding an edge between the roots
of two K1 ,'s. In this case
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X(G) =v(G) =2 and v;(G) = n + 1.
Simple examples of triangle-free extremal graphs include
1. Ky, for n > 1, where x(Kj,n) = 2 and v(K1,n) = vi(K;,n) = 1, and
2. a 5-cycle Cs, where x(Cs) = 3 and 7(C5) = 7:(Cs) = 2.

A more complex version is shown in Figure 1, where G is the well known
Grotzsch graph where x(G) = 4 and 4(G) = 4i(G) = 3. The numbers on
the vertices in Figure 1 are the colors assigned by the Algorithm based
upon the indicated v-set z, x3, and zj.

Figure 1: Grotzsch graph

3 Extremal Graphs

In 1955, Jan Mycielski [5] described a graph u(G), constructed from a base
graph G as follows: V(u(G)) = VU W U {z} where V = {v1,v2,...,vn}
and W = {w;,ws,...,w,}. The subgraph induced by V is isomorphic to
G, and W is a set of n independent vertices. For every combination of
vertices w; and v;, w; is adjacent to v; if and only if v; is adjacent to v;.
Finally, N(z) = W.

Mycielski showed x(u(G)) = x(G) + 1, u(G) is triangle-free when G
is triangle-free and, for any positive integer k, there is a triangle-free
graph with chromatic number k. Fisher, McKenna and Boyer (2] showed
Y(4(G)) = v(G) + 1. Furthermore, Mojdeh and Rad [4] showed a corre-
sponding result for independent domination v;(u(G)) = v:(G) + 1.

To iterate Mycielski graphs from a base graph G, let u°(G) = G and
for i > 1, p*(G) = u(p*~1(G)). Lemma 3 then follows directly from the
results cited in the last paragraph.

Lemma 3 For any graph G and integer i > 0,
1. x(b(G)) = x(G) + 1,
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2. y(1'(G)) = ¥(G) + 1, and
9. 7i(n'(G)) = ¥(G) + 1.

Theorem 4 shows the existence of extremal graphs having chromatic
number k for any integer k > 2.

Theorem 4 For k > 2, there is a triangle-free graph G such that
x(G) = k and x(G) =v(G) + 1.

Proof: Let G = uk—2(K, ) for any n > 1 and k > 2. From Lemma 3,
X(pF2(Kyn)) = x(Kyn) + (k—2) =2+ (k—2) =k, and
Y A(Kin)) = y(Kin) + (k=2) =1+ (k=-2) =k -1
Therefore x(G) = 4(G)+1=k. O

A supergraph of a triangle-free graph G is a triangle-free graph H such
that G is an edge-deleted subgraph of H. The fact that the extremal graphs
constructed in Theorem 4 have diameter 2 follows from Theorem 7 of (2],
diam(u(G)) = min{max{2, diam(G)}, 4}.

The graph in Figure 2, without the dotted edge, is a diameter 3 extremal
graph with x(G) = 3 and 7(G) = ¥;(G) = 2. When the dotted edge
is added, G + zy is a supergraph of G, and is also an extremal graph.
Theorem 5 shows that every supergraph of an extremal graph is also an
extremal graph.

Y

Figure 2: A diameter 3 extremal graph

Theorem 5 If G is a triangle-free graph where x(G) = v(G) +1, then for
every supergraph H, x(H) = x(G) and x(H) = v(H) + 1.

Proof: Assume x(G) = v(G) + 1 and let H be a supergraph of G. Since
G is a subgraph of H, x(G) < x(H) and every dominating set of G is
also a dominating set of H. Therefore, y(H) < 7(G) and, by Theorem 2,
Y(H)+1 2> x(H). It follows that x(H) > x(G) =v(G) +1>~v(H)+1 >
x(H). Thus,

x(H) = x(G) and x(H) = y(H) + 1.
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4 Properties of Extremal Graphs

For a dominating set D, if there is a vertex w in V(G) — D for which
N(w)ND = {v}, then w is said to be a private neighbor of v. A vertex v is
color-critical if x(G —v) = x(G) — 1. Equivalently, there is a x(G)-coloring
with a color class containing only vertex v.

Theorem 6 If G is a triangle-free graph and x(G) = v(G) + 1 then, for
any y-set D,

~

. D 1is independent,
9. every vertex in D is color-critical,
3. every vertex in D has a private neighbor, and

4. every pair of vertices in D have a common neighbor.

Proof: Let s = y(G) and D = {z1,%2,...,Ts}.

1. If G has a y-set that is not independent then, from Theorem 2, x(G) <
v(G) and contradicts x(G) = v(G) + 1.

2. Since x(G) = 4(G) + 1, from Part 1, every v-set is independent and
the Algorithm produces an (s+ 1)-coloring c of G where c,41 = {Zs}.
Thus, z, is a color-critical vertex. Since the ordering of the vertices
in D is unspecified, every vertex in D is color-critical.

3. Suppose all vertices in N(z,;) are dominated by D — {z,}. In Step
2 of the coloring algorithm ¢, will contain no neighbors of z, since
they will have already been placed in color classes c; UcoU...Ucs—1-
Therefore, x5 can be moved from c,41 to ¢s. Since ¢cs41 is now empty,
Xx(G) < s, a contradiction. Again, since the ordering of the vertices
in D is unspecified, every vertex in D has a private neighbor.

4. If s has no common neighbor with =, in Step 1 of the algorithm
zs can be added to c; rather than c;4; and implies x(G) < s, a
contradiction since it is assumed that X(G) = s+1. Since the ordering
of vertices in D is not an issue, this applies to every pair of vertices
inD. O
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