Domination Number and Hamiltonicity of Graphs

Rao Li

Dept. of mathematical sciences
University of South Carolina Aiken
Aiken, SC 29801
Email: raol@usca.edu

Submitted on Dec. 26, 2017; accepted on May 19, 2018

Abstract

Let G be a k - connected $(k \ge 2)$ graph of order n. If $\gamma(G^c) \ge n - k$, then G is Hamiltonian or $K_k \lor K_{k+1}^c$, where $\gamma(G^c)$ is the domination number of the complement of the graph G.

2010 Mathematics Subject Classification: 05C45, 05C69

Keywords: Hamiltonicity, domination number

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow those in [2]. Let G be a graph. We use G^c to denote the complement of G. We also use $\gamma(G)$, $\omega(G)$, and $\alpha(G)$ to denote the domination number, the clique number, and the independent (or stability) number of G, respectively. We use $G \vee H$ to denote the the join of two disjoint graphs G and H. If G is a cycle of G, we use \overrightarrow{C} to denote the cycle G with a given direction. For two vertices G, G in the direction specified by G. We use G and G is denote respectively the successor and predecessor of a vertex G on G along the direction of G. We also use G if G contains all the vertices of G. A graph G is called Hamiltonian cycle of G if G contains all the vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle.

In this note, we will present a sufficient condition for the Hamiltonicity of graphs. The main result is as follows.

Theorem 1. Let G be a k - connected $(k \ge 2)$ graph of order n. If $\gamma(G^c) \ge n - k$, then G is Hamiltonian or $K_k \vee K_{k+1}^c$.

2. The Lemmas

We will use the following results as our lemmas. The first one is from Theorem 1 in [3].

Lemma 1. Let G be a graph of order n. Then $\gamma(G) + \chi(G) \leq n+1$.

Notice that in Theorem 1 in [3] it is claimed that $\gamma(G) + \chi(G) = n + 1$ if and only if G is a complete graph of order n. It seems that this claim is not completely correct since if G is the disjoint union of a complete graph and a collection of isolated vertices then we still have $\gamma(G) + \chi(G) = n + 1$.

The second one is the main result in [1].

Lemma 2. Let G be a k - connected $(k \ge 2)$ graph with independent number $\alpha = k + 1$. Let C be the longest cycle in G. Then G[V(G) - V(C)] is complete.

3. Proofs

Proof of Theorem 1. Let G be a k - connected $(k \ge 2)$ graph satisfying the conditions in Theorem 1. Assume that G is not Hamiltonian. Since $k \ge 2$, G contains a cycle. Choose a longest cycle C in G and give a direction on C. Since G is not Hamiltonian, there exists a vertex $x_0 \in V(G) - V(C)$. By Menger's theorem, we can find s $(s \ge k)$ pairwise disjoint (except for x_0) paths P_1 , P_2 , ..., P_s between x_0 and V(C). Let u_i be the end vertex of P_i on C, where $1 \le i \le s$. We assume that the appearance of u_1 , u_2 , ... u_s agrees with the given direction on C. We use u_i^+ to denote the successor of u_i along the direction of C, where $1 \le i \le s$. Then a standard proof in Hamiltonian graph theory yields that $T := \{x_0, u_1^+, u_2^+, ..., u_s^+\}$ is independent (otherwise G would have cycles which are longer than C). Since $s \ge k$, we have an independent set $S := \{x_0, u_1^+, u_2^+, ..., u_k^+\}$ of size k+1 in G and a clique S of size k+1 in G^c . From Lemma 1, we have that

$$n+1 = n-k+k+1 \le \gamma(G^c) + \alpha(G)$$
$$= \gamma(G^c) + \omega(G^c) \le \gamma(G^c) + \chi(G^c) \le n+1.$$

Then $\gamma(G^c) = n - k$ and $\alpha(G) = \omega(G^c) = \chi(G^c) = k + 1$. Next we will present two claims and their proofs.

Claim 1. $G^{c}[V(G) - S]$ is an empty graph. Namely, G[V(G) - S] is a complete graph.

Proof of Claim 1. Suppose, to the contrary, that $G^c[V(G)-S]$ is not an empty graph. Then there exist vertices $x, y \in V(G)-S$ such that $xy \in E(G^c)$. Notice that $G^c[S]$ is complete. Then $(V(G)-S-\{x\})\cup\{z\}$ is a domination set in G^c , where z is a vertex in S. Thus $n-k=\gamma(G^c)\leq |V(G)-S|-1+1=n-k-1$,

a contradiction.

0

Claim 2. There are no edges between S and V(G) - S in G^c . Namely, for any vertex $x \in S$ and any vertex $y \in V(G) - S$, $xy \in E(G)$.

Proof of Claim 2. Suppose, to the contrary, that there exist vertices $x \in S$ and $y \in V(G) - S$ such that $xy \in E(G^c)$. Notice that $G^c[S]$ is complete. Then $(V(G) - S - \{y\}) \cup \{x\}$ is a domination set in G^c . Thus $n - k = \gamma(G^c) \le |V(G) - S| - 1 + 1 = n - k - 1$, a contradiction.

Set $T_i := \overrightarrow{C}[u_i^{++}, u_{i+1}]$, where $1 \le i \le k$ and the index k+1 is regarded as 1. Obviously, $|T_i| \ge 1$ for each i with $1 \le i \le k$. Set $T := \{i : |T_i| \ge 2\}$. Next we, according to the different sizes of |T|, divide the remainder of the proofs into three cases.

Case 0 |T| = 0.

Since |T|=0, we have $C=u_1u_1^+u_2u_2^+...u_ku_k^+u_1$. Next we will prove that $V(G)-V(C)=\{x_0\}$. Suppose, to the contrary, that $V(G)-V(C)\neq\{x_0\}$. Then there exists a vertex, say z, in $V(G)-V(C)-\{x_0\}$. Since $\alpha(G)=k+1$, we have, by Lemma 2, that G[V(G)-V(C)] is complete. Thus $x_0z\in E(G)$ Since $z\in V(G)-S$ and $u_2\in V(G)-S$, we, by Claim 1, have that $zu_2\in E(G)$. Therefore G has a cycle $u_1x_0zu_2u_2^+...u_ku_k^+u_1$ which is longer than C, a contradiction. Now we, by Claim 2, have that G is $K_k\vee K_{k+1}^c$.

Case 1 |T| = 1.

Without loss of generality, we assume that $|T_1| \ge 2$, $|T_r| = 1$ for each r with $2 \le r \le k$. Since $u_1^+ \in S$, $u_2^+ \in S$, $u_2 \in V(G) - S$, and $u_2^- \in V(G) - S$, we, by Claim 2, have that $u_1^+u_2 \in E(G)$ and $u_2^-u_2^+ \in E(G)$. Then G has a cycle $x_0P_2u_2\overrightarrow{C}[u_1^+,u_2^-]\overrightarrow{C}[u_2^+,u_1]P_1x_0$ which is longer than C, a contradiction.

Case 2 $|T| \ge 2$.

Notice that $T_i \subseteq V(G) - S$ for each i with $1 \le i \le k$. We, by Claim 1, have that $G[T_1 \cup T_2 \cup \cdots \cup T_k]$ is complete. Since $|T| \ge 2$, there exist two different indexes i and j such that $u_i^- \in T_i$, $u_j^- \in T_j$ and therefore $u_i^- u_j^- \in E(G)$, where $1 \le i, j \le k$. Then we can easily find a cycle in G which is longer than C, a contradiction.

So the proof of Theorem 1 is completed.

References

- [1] D. Amar, I. Fournier, A. Germa, and R. Häggkvist, Covering of verti of a simple graph with given connectivity and stability number, *Annals Discrete Mathematics* 20 (1984) 43 45.
- [2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macnlan, London and Elsevier, New York (1976).
- [3] D. Gernert, Inequalities between the domination number and the chroma number of a graph, Discrete Mathematics 76 (1989) 151 153.