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Abstract

Let G be a k - connected (k > 2) graph of order n. Ify(G°) > n -k,
then G is Hamiltonian or Kix V Ki.,, where v(G°) is the domination
number of the complement of the graph G.
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1. Introduction

We consider only finite undirected graphs without loops or multiple edges.
Notation and terminology not defined here follow those in [2]. Let G be a graph.
We use G° to denote the complement of G. We also use v(G), w(G), and a(G)
to denote the domination number, the clique number, and the independent (or
stability) number of G, respectively. We use G V H to denote the the join of
two disjoint graphs G and H. If C is a cycle of G, we use T to denote the cycle
C with a given direction. For two vertices z, y in C, we use 6[x,y] to denote
the consecutive vertices on C from z to y in the direction specified by C. We
use ¥ and z~ to denote respectively the successor and predecessor of a vertex
z on C along the direction of C. We also use z*++ to denote (z*)*. A cycle C
in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of
G. A graph G is called Hamiltonian if G has a Hamiltonian cycle.

In this note, we will present a sufficient condition for the Hamiltonicity of
graphs. The main result is as follows.

Theorem 1. Let G be a k - connected (k > 2) graph of order n. If v(G°) >
n —k, then G is Hamiltonian or Ky v K¢ ;.
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2. The Lemmas

We will use the following results as our lemmas. The first one is from The-
orem 1 in [3].

Lemma 1. Let G be a graph of order n. Then 4(G) + x(G) < n + 1.

Notice that in Theorem 1 in [3] it is claimed that 7(G) + x(G) = n + 1 if
and only if G is a complete graph of order n. It seems that this claim is not
completely correct since if G is the disjoint union of a complete graph and a
collection of isolated vertices then we still have 7(G) + x(G) =n + 1.

The second one is the main result in [1].

Lemma 2. Let G be a k - connected (k > 2) graph with independent number
a = k+1. Let C be the longest cycle in G. Then G[V(G) — V(C)] is complete.

3. Proofs

Proof of Theorem 1. Let G be a k - connected (k > 2) graph satisfying the
conditions in Theorem 1. Assume that G is not Hamiltonian. Since k& > 2,
G contains a cycle. Choose a longest cycle C in G and give a direction on
C. Since G is not Hamiltonian, there exists a vertex zo € V(G) — V(C). By
Menger's theorem, we can find s (s > k) pairwise disjoint (except for zo) paths
P, P, ..., P; between zp and V(C). Let u; be the end vertex of P; on C,
where 1 <7 < s. We assume that the appearance of u;, ug, ... us; agrees with
the given direction on C. We use u;" to denote the successor of u; along the
direction of C, where 1 < ¢ < s. Then a standard proof in Hamiltonian graph
theory yields that T := {zo,u],vJ,...,u}} is independent (otherwise G would
have cycles which are longer than C). Since s > k, we have an independent set
S := {zo,u},us,...,uf} of size k + 1 in G and a clique S of size k + 1 in G°.
From Lemma 1, we have that

n+l=n—-k+k+1<v9G°)+ aG)

=9(G°) +w(G) < (G°) +x(G°) <n+ 1.

Then 4(G¢) = n — k and &(G) = w(G®) = x(G°) = k + 1. Next we will present
two claims and their proofs.

Claim 1. G¢[V(G) — S] is an empty graph. Namely, G[V(G) — S] is a complete
graph.

Proof of Claim 1. Suppose, to the contrary, that G¢[V(G)—S] is not an empty
graph. Then there exist vertices z, y € V(G) — S such that zy € E(G°). Notice
that G¢[S] is complete. Then (V/(G)—S—{=z})U{ 2} is a domination set in G¢,
where z is a vertex in S. Thusn—k =(G°) < |[V(G)-S|-1+1=n-k -1,
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a contradiction. "

Claim 2. There are no edges between S and V(G) - § in G¢. Namely, for any
vertex z € S and any vertex y € V(G) - S, zy € E(G).

Proof of Claim 2. Suppose, to the contrary, that there exist vertices z € §
and y € V(G) — S such that zy € E(G®). Notice that G°[S] is complete. Then
(V(G) - S - {y})U{z} is a domination set in G°. Thus n - k = ¥(G°) <
[V(G) - S| -14+1=n—k -1, a contradiction. o

Set T; := _C-)[uj'+,ui+1], where 1 < i < k and the index k + 1 is regarded as
1. Obviously, |T;| > 1 for each ¢ with 1 <4 < k. Set T := {4 : |T;| > 2}. Next
we, according to the different sizes of |T, divide the remainder of the proofs
into three cases.

Case 0 |T| =0.

Since |T| = 0, we have C = wufuguy .. ugufuy. Next we will prove that
V(G) - V(C) = {zo}. Suppose, to the contrary, that V(G) — V(C) # {zo}.
Then there exists a vertex, say z, in V(G) — V(C) — {zo }. Since a(G) =k +1,
we have, by Lemma 2, that G[V(G) — V(C)] is complete. Thus zoz € E(G)
Since z € V(G) — S and up € V(G) — S, we, by Claim 1, have that zus € E(G).
Therefore G has a cycle uzozugug ...uku;ul which is longer than C, a contra-

diction. Now we, by Claim 2, have that G is Ky V K} ;.
Case 1 [T|=1.

Without loss of generality, we assume that |T7| > 2, |T;| = 1 for each r with
2<r<k Sinceuf €S,uf €8,u; € V(G)- S, and u; € V(G) - S, we,
by Claim 2, have that ufu, € E(G) and u;uj € E(G). Then G has a cycle
zonuga[uf, Uy ]6[uj , u1)Pyzo which is longer than C, a contradiction.

Case 2 |T| > 2.

Notice that T; C V(G) — S for each 7 with 1 < i < k. We, by Claim 1, have
that G[Ty UT U--- U Ty] is complete. Since |T| > 2, there exist two different
indexes ¢ and j such that u; € Tj, u; € T} and therefore u; u; € E(G), where

1 <4, j < k. Then we can easily find a cycle in G which is longer than C, a
contradiction.

So the proof of Theorem 1 is completed.
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