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Abstract

An [talian dominating function on a digraph D with vertex set
V(D) is defined as a function f : V(D) — {0, 1,2} such that every
vertex v € V(D) with f(v) = 0 has at least two in-neighbors assigned
1 under f or one in-neighbor w with f(w) = 2. The weight of an Ital-
ian dominating function is the sum }°, .y (py f(v), and the minimum
weight of an Italian dominating function f is the Italian domination
number, denoted by v7(D). We initiate the study of the Italian dom-
ination number for digraphs, and we present different sharp bounds
on 47(D). In addition, we determine the Italian domination number
of some classes of digraphs. As applications of the bounds and prop-
erties on the Italian domination number in digraphs, we give some
new and some known results of the Italian domination number in

graphs.
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1 Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes,
Hedetniemi and Slater [6]. Specifically, let D be a finite digraph with
neither loops nor multiple arcs (but pairs of opposite arcs are allowed)
with vertex set V(D) = V and arc set A(D) = A. The integers n =
n(D) = |V(D)| and m = m(D) = |A(D)| are the order and the size of the
digraph D, respectively. For two different vertices u,v € V(D), we use uv
to denote the arc with tail © and head v, and we also call v an out-neighbor
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of u and u an in-neighbor of v. For v € V(D), the out-neighborhood and
in-neighborhood of v, denoted by N} (v) = N*(v) and Ny (v) = N~ (v),
are the sets of out-neighbors and in-neighbors of v, respectively. The closed
out-neighborhood and closed in-neighborhood of a vertex v € V(D) are the
sets Np[v] = N*[v] = N*+(v) U {v} and Np[v] = N~[v] = N~ (v) U
{v}, respectively. In general, for a set X C V(D), we define N3 (X) =
N+(X) = Uyex N*(v) and Np(X) = N=(X) = Uex N~ (v). The out-
degree and in-degree of a vertex v are defined by d,(v) = d*(v) = [N*(v)|
and dp(v) = d~(v) = |N~(v)|. The mazimum out-degree, marimum in-
degree, minimum out-degree and minimum in-degree of a digraph D are
denoted by A+(D) = A+, A=(D) = A, §¥(D) = é* and 6~ (D) = 6,
respectively. A digraph D is r-out-reqular when A*(D) = §*(D) = r and
r-in-reqular when A=(D) = §=(D) = r. If D is r-out-regular and r-in-
regular, then D is called r-regular. The underlying graph of a digraph D is
that graph obtained by replacing each arc uv or symmetric pairs uv, vu of
arcs by the edge uv. If X is a nonempty subset of the vertex set V(D) of
a digraph D, then D[X] is the subdigraph of D induced by X. A digraph
D is bipartite if its underlying graph is bipartite. Let K} be the complete
digraph of order n, C, the oriented cycle of order n and K , the complete
bipartite digraph with partite sets X and Y, where |X| =p and |Y| = q.

A set S C V(D) of a digraph D is a dominating set of D if N*[S] =
V(D). The domination number y(D) of a digraph D is the minimum
cardinality of a dominating set of D. The domination number of a digraph
was introduced by Fu [5]. A set S C V(D) of a digraph D is a 2-dominating
set of D if every vertex of V(D) \ S has at least two in-neighbors in S. The
2-domination number vy2(D) of a digraph D is the minimum cardinality of
a 2-dominating set of D.

In (1], a 2-rainbow dominating function of a digraph D is defined as a
function f from V(D) to the set of all subsets of the set {1,2} such that
for any vertex v € V(D) with f(v) = @ the condition |J,cn-(,) f(u) =
{1,2} is fulfilled. The weight of a 2-rainbow dominating function f is the
value 3° v p) |f(v)|. The 2-raimbow domination number v,2(D) is the
minimum weight of 2-rainbow dominating function of D.

A Roman dominating function on a digraph D is defined in [8] as a
function f : V(D) — {0,1,2} such that every vertex v € V(D) with
f(v) = 0 has an in-neighbor w with f(w) = 2. The weight of a Roman
dominating function is the sum 3 .y (p) f(v), and the minimum weight of
a Roman dominating function f is the Roman domination number, denoted

by yr(D).

In this paper we continue the study of Roman dominating functions
in graphs and digraphs (see, for example, (2, 3, 4, 7, 9]). Inspired by an
idea of the work [2], we define the Italian domination number of a digraph
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as follows. An Italian dominating function on a digraph D is defined as
a function f : V(D) — {0,1,2} such that every vertex v € V(D) with
f(v) = 0 has at least two in-neighbors assigned 1 under f or one in-neighbor
w with f(w) = 2. The weight of an Italian dominating function is the value
w(f) = Lyev(p) f(v), and the minimum weight of an Italian dominating
function f is the Italian domination number, denoted by v;(D). An Italian
dominating function of D with weight (D) is called a ;(D)- function of D.
An Italian dominating function f of a digraph D can be represented by the
ordered partition (Vo, V1, V2) of V(D), where V; = {v € V(D)| f(v) = i}
for i € {0,1,2}. In this representation, its weight is w(f) = [Vi|+2|V5|. In
[9], we find the inequality chain

v(D) £ vr(D) £ 2¥(D).

Clearly, every Roman dominating function is an Italian dominating func-
tion of D and thus v;(D) < yr(D). Furthermore, since the set V; U V3 in
an Italian dominating function is a dominating set of D, we observe that
¥(D) < 71(D). Altogether, we obtain

v(D) < 41(D) £ yr(D) < 2v(D). (1)

Our purpose in this paper is to initiate the study of the Italian domi-
nation number for digraphs. We present different sharp bounds on (D).
In addition, we determine the Italian domination number of some classes
of digraphs. As applications of these results, we give some new and known
properties of the Italian domination number (also known as the Roman

{2}-domination number [2]) of graphs.
We make use of the following results in this paper.

Proposition A. [8] If D is a digraph of order n, then yr(D) < n -
A*T(D)+1.

Proposition B. [9] Let D be a digraph. Then yr(D) = 2y(D) if and

only if D has a Roman dominating function f = (Vo,Vi,V2) of weight
Yr(D) with V; = 0.

2 Bounds and properties on the Italian dom-
ination number

Theorem 1. Let D be a digraph of order n. Then v1(D) < nand y1(D) =
n, if and only if A*(D),A~(D) < 1.
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Proof. Define the function g : V(D) — {0,1,2} by g(z) =1 for z € V(D).
Obviously, g is an Italian dominating function on D of weight n and thus
71(D) < n. .

Assume next that vy;(D) = n. If A*(D) > 2, then v;(D) < vr(D) and
Proposition A lead to the contradiction

n=/(D)<yr(D)<n-AY(D)+1<n-1

If A=(D) > 2, then let w be a vertex with d=(w) = A™(D). Define the
function f : V(D) — {0,1,2} by f(w) =0and f(z) = 1forz € V(D)\{w}.
Then f is an Italian dominating function on D of weight n — 1 and thus
v1(D) € n — 1. This contradiction shows that A*(D),A™(D) < 1.

Now assume that A*(D),A~(D) < 1. Let f = (Vp, V1, V2) be a v1(D)-
function. Suppose to the contrary that y;(D) < n. Then

Vol + [Vi| + [Va| = n > 71(D) = [Vi] + 2|2

implies |Vp| >| Vo| + 1. If there exists a vertex w € Vo which has no in-
neighbor in V,, then w has at least two in-neighbors in V}, and we obtain
the contradiction A= (D) > d~(w) > 2. So we may assume that each vertex
of V, has at least one in-neighbor in V5. Since At (D) < 1, we obtain the
contradiction
V2| > ) d(z) 2 |Vo| 2| Val +1,
zeVs

and the proof is complete. O

Corollary 2. If D is a directed cycle or a directed path of order n, then
71(D) = n.

Proposition 3. Let D be a digraph of order n > 2. Then v1(D) = 2 if
and only if At(D) = n — 1 or there exist two different vertices v and v

such that N*t(u) N N*t(v) = V(D) \ {u,v}.

Proof. Since n > 2, we observe that vr(D) > 2. If A¥(D) = n — 1,
then let w be a vertex with d*(w) = A+ (D). Define the function f :
V(D) — {0,1,2} by f(w) = 2 and f(z) = 0 for z € V(D) \ {w}. Then
f is an Italian dominating function on D of weight 2 and thus v;(D) < 2
and so y7(D) = 2. If there exist two different vertices u and v such that
N+(u) n N*t(v) = V(D) \ {u,v}, then define the function g : V(D) —
{0,1,2} by f(u) = g(v) =1 and f(z) =0 for z € V(D) \ {u,v}. Then g is
an Italian dominating function on D of weight 2 and thus v;(D) = 2.
Conversely, assume that y;(D) = 2. Let f = (Vp, V4, V2) be a 4;(D)-
function. Then |V2| =1 and |V3]| = 0 or |V2| = 0 and |V;1| = 2. Assume
first that |V5| = 1 and |Vi| = 0, and let V2 = {w}. It follows that w is an
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in-neighbor of all vertices z € V(D) \ {w} and thus A*(D) = d*(w) =
n — 1. Second assume that |V3| = 0 and |Vi]| = 2, and let V; = {u,v}).
Then u and v are in-neighbors of all vertices z € V(D) \ {u,v} and thus
N*(u) N N+(v) = V(D) \ {1, v}. O

Proposition 4. Let D be a digraph of order n > 3 such that A*(D) < n-2
and there doesn’t exist two different vertices a and b such that N+(a) N
N*(b) = V(D) \ {a,b}. Then /(D) = 3 if and only if A*(D) =n—2or
there exist three pairwise different vertices u, v and w such that each vertex
z € V(D) \ {u,v,w} has at least two in-neighbors in the set {u,v, w}.

Proof. According to Proposition 3, we observe that v;(D) > 3.

If A+ (D) = n — 2, then let w be a vertex with d*(w) = A*(D), and
let {z} = V(D) \ N*[w]. Define the function f : V(D) — {0,1,2} by
f(w) =2, f(2) =1and f(z) =0 for z € V(D) \ {w,z}. Then f is an
Italian dominating function on D of weight 3 and thus 7;(D) = 3.

If there exist three pairwise different vertices u,v and w such that each
vertex T € V(D)\{u, v, w} has at least two in-neighbors in the set {u, v, w},
then define the function g : V(D) — {0,1,2} by f(u) = g(v) = g(w) =1
and f(z) =0 for z € V(D) \ {v,v,w}. Then g is an Italian dominating
function on D of weight 3 and thus v;(D) = 3.

Conversely, assume that v;(D) = 3. Let f = (Vo, V1, V2) be a v/(D)-
function. Then |V3| =1 and |Vj| =1 or |V2| = 0 and |V4| = 3. Assume
first that |[V5| = 1 and |V}| = 1, and let V2 = {w} and V1 = {u}. It
follows that w is an in-neighbor of all vertices z € V(D) \ {u,w} and thus
A*(D) = d*(w) =n—2. Second assume that |V2| = 0 and |V;| = 3, and
let Vi = {u,v,w}. Then each vertex z € V(D) \ {u,v,w} has at least two
in-neighbors in the set {u,v,w}. O

Proposition 5. For any complete bipartite digraph we have:
L (AT ,) = il s =,
2. y1(K3,)=3forn>3,
3. 11(K,,)=4forn >4

Proof. Propositions 3 and 4 imply 1. and 2. immediately.

3. By Propositions 3 and 4, we deduce that v;(Kp,,) > 4. If X,Y
is a bipartition of Ky, , then let u € X and v € Y. Define the function
f:V(Kr,) — {0,1,2} by f(u) = f(v) = 2 and f(z) = 0 for = €
V(K. ) \ {v,v}. Then f is an Italian dominating function on Ky, » of
weight 4 and thus v/(K7, ,) = 4. O

Propositions 3 and 4 also imply the next result.
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Example 6. Let G = K7, ..., De the complete r-partite digraph with
r>3andn; <ng <...<np Ifng <2 then v(D) =2, and if ny = 3,
then /(D) = 3.

Theorem 7. If D is a digraph of order n, then

") eyl

Proof. Let At = A*(D). If At = 0, then v;(D) = n, and the desired
lower bound is valid.

Let now At > 1, and let f = (Vp, V1, V2) be a v7(D)-function. Let
Vi ={z€V|N-(z)NVa # 0} and V' = Vo \ V. Since every vertex of
Vo can have at most At out-neighbors in Vy, we observe |Vj| < A+|Va|.
Using the fact that each vertex of V' has at least two in-neighbors in V3
and every vertex of V; has at most A* out-neighbors in Vy’, we deduce
that 2|Vy'| < At|V;|. Therefore we obtain

y(D)(AT +2) = ([Vi] +2[Va])(AT +2)

= AY|VI|+24%|V2| + 2|V ] + 4{V2|
2[Vy'| +2[Vg| +2|VA| + 4| V2|

2n + 2|Va| > 2n,

and thus yr(D) > [(2n)/(At +2)]. C

The proof of Theorem 7 leads to v;(D) > [(2n + 2)/(At + 2)] if ther
exists a 7y7(D)-function f = (Vo, V1, V2) with V3 # 0. Proposition'5 1. ane
2. and Example 6 show that Theorem 7 is sharp.

The complement D of a digraph D is the digraph with vertex set V(D
such that for any two distinct vertices u,v the arc uv belongs to D if an
only if uv does not belong to D. As an application of Proposition A w
will prove the following Nordhaus-Gaddum type result.

v

Theorem 8. If D is a digraph of order n, then
v1(D) +~1(D) < n + 3.

If v1(D) + v1(D) = n + 3, then D is out-regular.
Proof. Since v1(D) < yr(D) and A*(D) = n — 1 — §*(D), Proposition .
implies that

1(D)+m(D) < (n—AY(D)+1)+(n—-A%D)+1)
(n—ATD)+ 1)+ (n—(n-1-6Y(D))+1
= n—AYD)+1+6"(D)+2<n+3,
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and this is the desired bound. If D is not out-regular, then A+(D) —
§%(D) > 1, and thus the inequality chain above leads to the better bound

Y1(D) + (D) <n+2. 0

If D is the directed cycle of order 3 or the regular tournament of order
5 with vertex set {v;, v, v3,v4,v5} and arc set

{UIUQa U1 V3, VaV3, Va4, U3V4, U3V5, UV4VUs, U4V}, U5V}, Usvz},

then we have equality in the inequality of Theorem 8.

If D is not out-regular, then Theorem 8 yields to y;(D)+7;(D) < n+2.
If P, is a directed path of order n > 2, then Corollary 2 implies that
(P) =n Since__A+(P_n) = n — 1, Proposition 3 implies v;(P,) = 2 and
thus y7(Pn) + 71(Pn) = n + 2. Therefore the inequality above is sharp.

3 Domination, Italian domination and 2-rain-
bow domination numbers

Proposition 9. Let D be a digraph. Then (D) = 2y(D) if and only if
D has a y;(D)-function f = (Vj,V;,V3) with V; = 0.

Proof. First assume that 7;(D) = 2y(D). Then the inequality chain (1)
implies that yg(D) = 2y(D), and therefore it follows from Proposition B
that there exists a Roman dominating function f = (V, V}, V2) of weight
¥r(D) with V; = 0. This is also a v;(D)-function with V; = 0.
Conversely, let f = (Vo, V1, V2) be a y7(D)-function with V; = 0. Then
71(D) = 2|Vs|, and V; is a dominating set of D. It follows that 2y(D) <
2|V3| = 71(D) and so (1) implies v7(D) = 2¢(D). a

Proposition 10. Let D be a digraph with the property that (D) =
v(D). If f = (Vo, V1, V2) is a 47(D)-function, then |V2| = 0 and the subdi-
graph D[V}] is empty.

Proof. Since v;(D) = (D), we observe that v(D) < |V4| + V2| < [Vi| +
2|Va| = 71(D) = 4(D). This leads to |V3| = 0. If |Vp| = 0, then (D) =
[V1| = n and thus the subdigraph D[V}] is empty. Let now |Vp| > 1. Then
each vertex v € Vj has at least two in-neighbors in V;. Suppose that there
exists and arc uv in D[V}].

If neither u nor v has an out-neighbor in V4, then we see that g =
(Vou {v}, W1\ {v},0) is dominating set of D, a contradiction. Using the
fact that each vertex v € Vp has at least two in-neighbors in V};, we observe
that the same is valid when u or v has an out-neighbor in V, and the proof

is complete. 0
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Example 11. Let H be a digraph consisting of an arbitrary digraph @
with vertex set V(Q) = {v1,v2,-..,vx} with k > 2 and a further vertex set
Vi = {z1,v1,%2,¥2,. .., Tk, Yk} such that z;v;,yivi € A(H) for 1 < i < k.
It is easy to see that y(H) = v1(H), and therefore equality in the first

inequality of (1).
Observation 12. If D is a digraph, then v;(D) < vr2(D).

Proof. For every 2-rainbow dominating function f on D, we define the
function g on D by g(u) = 2 if f(u) = {1,2}, g(u) = 1if f(u) = {1} or
f(u) = {2} and g(u) = 0 if f(u) = 0. Then g is an Italian dominating
function on D and thus v;(D) < vr2(D). a

Digraphs D of order n with A*(D) = n—1 or directed paths or directed
cycles demonstrate that Observation 12 is sharp. Using Observation 12 and
Theorem 7, we obtain the following known result.

Corollary 13. ([1]) If D is a digraph of order n, then

Tea(D) > [m%"m] .

Theorem 14. If D is a digraph of order n > 2, then 7,2(D) < 2v;(D) — 2.

Proof. Since n > 2, we observe that y,2(D),11(D) > 2. Let f = (Vo, V3, V3)
be a y7(D)-function. If V3| < 1, then define g by g(z) = {1,2} if f(z) = 2,
g(z) = {1} if f(z) =1 and g(z) = @ if f(z) = 0. Then g is a 2-rainbow
dominating function on D and thus v,2(D) < v1(D) < 2y1(D) - 2.

Let now V; = {v1,v2,...,v:} with t > 2. Define g by g(z) = {1,2} if
f(z) =2orz € {v1,vs,...,v—2}, g(ve-1) = {1}, g(ve) = {2} and g(z) = 0
if f(z) = 0. Then g is a 2-rainbow dominating function on D and therefore

waD) < 2Vl +2(V| —2)+2=2[Va| + 24| -2
< oVl +2Val) —2 = 2y1(D) - 2.

The next example will demonstrate that Theorem 14 is sharp.

Example 15. Let H be a digraph consisting of a vertex set A with |A| =
r > 3 and a vertex set Vj of (;) further vertices. Let each vertex of V have
exactly two in-neighbors in A such that the in-neighborhoods of every two
different vertices of V; are distinct.

The function f with f(z) =1forz € Aand f(z) =0forz e Vyis a
~1(H)-function and thus y7(H) =r.
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Let A = {v1,v2,...,v.}. The function g with g(z) = {1,2} for z €

{‘Ul,U2,- .o 1UT—2}1 g(vr—l) B {1}’ g('Ur) = {2} and g(:z:) = @ for r € Vo is
a 2-rainbow dominating function on H of weight v,o(H) = 2r — 2. This
shows that v, (H) = 2r — 2 = 2y;(H) — 2 and thus Theorem 14 is sharp.

Analogously to Proposition 5 in [2], one can prove the next observation.

Observation 16. If D is a digraph, then v;(D) < v2(D).

4 Graphs

In the last section we will present some new and some known results on the
Italian domination number of graphs. If G is a graph with vertex set V(G),
then one can define analogously the Italian domination number v;(G), the
2-rainbow domination number v,2(G), and the Roman domination number
Yr(G) (see, for example, [2]). Let Ng(v) be the neighbohood of a vertex v,
and let A(G) be the mazimun degree of the graph G.

The associated digraph of D(G) of a graph G is the digraph obtained
when each edge e of G is replaced by two oppositely oriented arcs with

the same ends as e. Since Nj () = Njg)(v) = Ng(v) for each vertex
v € V(G) = V(D(G)), the following observation is valid.

Observation 17. If D(G) is the associated digraph of a graph G, then
71(D(G)) = 11(G) and 1r2(D(G)) = 1r2(G)-

There are a lot of interesting applications of Observation 17, as for
example the following results. Since A*(D(G)) = A™(D(G)) = A(G),
Observation 17 and Theorem 1 or Proposition 3 or Theorem 7 or Theorem

14 imply the next corollaries.
Corollary 18. Let G be a graph of order n. Then v;(G) = n if and only
if A(G) L1

Corollary 19. Let G be a graph of order n > 2. Then v;(G) = 2 if and
only if A(G) = n —1 or there exist two different vertices u and v such that

N(u) N N(v) = V(G)\ {u,v}.
Corollary 20. [2] If G is a graph of order n, then

2n
7@ [ 575)

Corollary 21. If G is a graph of order n > 2, then v,2(G) < 271(G) - 2.

In [2], the authors proved that the associated decision problem for Ital-
ian domination is NP-complete for bipartite graphs. This result and Obser-
vation 17 show that this problem is also NP-complete for bipartite digraphs.
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