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Abstract: A graph G is k-frugal colorable if there exists a proper vertex
coloring of G such that every color appears at most k—1 times in the neighborhood
of v. The k-frugal chromatic number, denoted by x«x(G), is the smallest integer
[ such that G is k-frugal colorable with [ colors. A graph G is L-list colorable if
there exists a coloring c of G for a given list assignment L = {L(v) : v € V(G)}
such that ¢(v) € L(v) for all v € V(G). If G is k-frugal L-colorable for any list
assignment L with |L(v)| > [ for all v € V(G), then G is said to be k-frugal [-list-
colorable. The smallest integer [ such that the graph G is k-frugal [-list-colorable
is called the k-frugal list chromatic number, denoted by chx(G). It is clear that
che(G) > [%Gl—)] +1 for any graph G with maximum degree A(G). In this paper,
we prove that for any integer k > 4, if G is a planar graph with maximum degree
A(G) > 13k —11 and girth g > 6, then chi(G) = [%L_Gll-l +1; and if G is a planar

graph with girth g > 6, then chi(G) < [’i(_c';)] +2.

Keywords: k-frugal list coloring; Maximum degree; Planar graphs; Dis-
charging

Mathematics Subject Classification: 05C15

1 Introduction

We consider undirected, finite and simple graphs here. Definitions and
notations not given here may be found in [2]. For a vertex v, we use
dc(v), Ng(v) (or simply d(v), N(v)) to denote the degree of v and the
neighborhood of v. For a plane graph G, we use V(G) , E(G), A(G), 6(G)
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and F(G) to denote its vertex set, edge set, maximum degree, minimum
degree and face set, respectively. A k*-verter v (k~-vertez) is a vertex v
with degree at least k (at most k). Similarly, we can get the definitions
for d(f), k*-face and k—-face. The boundary of a t-face f is denoted by
O(f) = [v1,-++ ,v]). A proper l-coloring of a graph G is a mapping c from
V(G) to the color set {1,2,...,,l} such that no two adjacent vertices are
assigned the same color. We use c(v) to denote the color of the vertex v
and C;(v) to denote the set of colors which appears i times in N(v).

Frugal coloring of graphs is considered by Hind et al. in (8]. In a vertex
coloring ¢ of graph G, we say a vertex v is k-frugal if every color appears
at most k — 1 times in Ng(v). We say graph G is k-frugal colorable if every
vertices of G is k-frugal, and the coloring c is said to be a k-frugal coloring
of graph G. The k-frugal chromatic number, denoted by x«(G), of a graph
G is the least integer ! such that G is k-frugal colorable with ! colors.

The frugal coloring can be generalized to a list coloring version. Let L
be a function which assigns to each vertex v of G a set L(v) of positive
integers, called the list of v. A colouring ¢: V — N such that ¢(v) € L(v)
for all v € V is called a list coloring of G with respect to L, or an L- coloring,
and we say that G is L-colorable. A graph G is said to be k-list-colorable if it
has a list coloring whenever all the lists have length k, i.e., G is L-colorable
for any k-list L. The k-frugal list chromatic number, denoted by chi(G),
of a graph G is the least integer [ such that G is k-frugal L-colorable for
any l-list L.

A linear k-coloring of a graph G is a proper k-coloring of G such that
the subgraph induced by the vertices of any two color classes is the union
of vertex-disjoint paths. The linear chromatic number, denoted by le(G),
of the graph G is the smallest number k such that G admits a linear k-
coloring. The concept of linear coloring was introduced by Yuster [11].
Obviously, a linear coloring is just a 3-frugal coloring. But the converse
may not be true since in a 3-frugal coloring, bicolored cycles are permitted.

Esperet et al. [7] generalized the linear coloring of graphs to a list
coloring version and got many results on the linear list chromatic number

(denoted by A'(G)) of some special graphs. It is easy to see that for each

graph G, [i‘(_cl)] + 1 is a lower bound of xx(G).

In this paper, we mainly talk about the upper bound of the k-frugal
list coloring of the planar graph with girth 6. We use g(G), or simply
g, to denote the girth of a graph G which is the length of the shortest
cycle of graph G. The linear coloring and frugal coloring of planar graphs
have been extensively studied in the past. In 2011, Li et al.[9] showed
that le(G) < |0.9A(G) + 5| if G is planar graph with A(G) > 52. In
2009, Raspaud et al. [10] proved that lc(G) < [%@] + 4 when G is
planar graph with g > 6. In 2010, Dong et al. (5] renewed the bound by
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le(G) < [_S—l] + 3. In 2014, Dong and Lin [6] got the sharp bound that

le(G) = [—(9-2] + 1 when G is a planar graph with g > 6 and A(G) > 39.
The list colormg version of planar graphs with girth 6 is also studied in
the past. In 2011, Cranston et al. [4] showed that the linear list chromatic

number AY(G) < [ ﬂﬁ,—cl] + 2 for every planar graph G with g > 6 and
A(G) > 9. Cohen et al. [3] showed that A'(G) < [é%f_;l‘, + 4 for every

planar graph G with g > 6.
What is the xx(G) and chi(G) for larger k? In [1], Amini et al. proved

that for all £ >1, every planar graph G with girth 6 has xx(G) < [50)—4’]
6. In this paper, we will investigate the k-frugal list coloring of planar graph
with g > 6 for larger k. We get a sharp bound on chi(G) as follows.
Theorem 1.1. Let G be a planar graph with mazimum degree A(G) >

13k — 11 and girth g > 6, then chi(G) = [%_%] + 1 for any integer k > 4.

If there is no restriction on the maximum degree, we get the following
bound on chi(G).
Theorem 1.2. Let G be a planar graph with girth g > 6, then chi(G) <
[%_GT)] + 2 for any integer k > 4.

2 Proof of Theorem 1.1

Suppose, by way of contradiction, that graph Gy is a planar graph with
A(Go) > 13k — 11, g(Go) > 6 and chi(Go) > [‘“G")] 1. Let L'be a
([A(G")] +1)-list such that Gg is not k-frugal L-colorable. In the following

proof, we just use A to denote the maximum degree A(Gp). By the assump-
tion, we know that the graph set G = {G|G C Go, 9(G) > 9(Go), A(G) <

A(Go) = A, chi(G) > [ ] + 1} is nonempty, since Go € G. Let G € G

be a graph with the fewest edges. Then we have chy(H) < [ -I + 1 for

any subgraph H C G, which implies that H is k-frugal L-colorable.
Now we will first present some structures of G and then apply a dis-
charging procedure to get a contradiction.

Lemma 2.1. G is connected, and §(G) > 2.

Proof. Suppose to the contrary that G has a 1-vertex v. By the choice of
G, G — v has a k-frugal L-coloring c. Let Ng(v) = {u}, then v can receive
any color except for ¢(u) and those colors that appear k —1 times in Ng(u)
(i.e. Ck—1(u)), so the number of forbidden colors of v is at most

d(u) — ﬂw] [z

k-1

1+ | J—f 1]+L
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We can extend ¢ to the whole graph G, a contravuvivar
O

Lemma 2.2. For any (k — 1)~ -vertez v of G with Ng(v) = {v1,v2, -1 Uz},
we have Z[%—_”—H > [&51+ 1.

Proof. Suppose to the contrary that Z [-éz-l] < [#2;]+ 1. By the choice

of G, G — v has a k-frugal L- colormg c. Then v can receive any colors
except for ¢(v;) and those colors that appear k — 1 times in Ng(v;), where
i=1,2,---,z. So the number of forbidden colors of v is at most

th‘”‘ Z[d("‘ < lposl+1

Thus, we can extend c to the whole graph G, a contraction.
O

Now we give some definitions and notations that we will use in the
following section.

Let v be a 2-vertex with u € N(v), then v is called a light 2-vertez if u
is also a 2-vertex. Suppose v is a 2-vertex with Ng(v) = {v1,v2}. If v; is a
(k —1)~-vertex, then d(vg) > A — (k—2) 213k —11-k+2 =12k — 9 by
Lemma 2.2. Each (12k — 9)*-vertex is called a A¢-verter. Let ujuvv; be a
path, if u and v are both 2-vertices, then the path is called an u,v; -thread
. For an edge uv € E(G), it is called a heavy-edge if u is a A¢-vertex and
v is a 4*-vertex.

For convenient, we divided the faces of G in different types according
to its boundary.

For a 6-face f, it is Type-(I) if the boundary O(f) has 2 threads; it
is Type-(II) if O(f) has exactly 1 thread and at least 1 heavy-edge; it is
Type-(II1) if O(f) has exactly 1 thread and is not Type-(II) (that means
there exists at least one 3-vertex on the boundary 9(f)); it is Type-(IV) if
there is no threads on 9(f).

For a 7-face f, it is Type-(I) if the houndary 8(f) has 2 threads; Type-
(II) if 8(f) has exactly 1 thread; and Type-(III) if 8(f) has no threads.

According to the definitions and notations above, we can give some
lemmas now.

Lemma 2.3. Fach 3-vertex can be incident with at most two Type(I1I)-6-
faces.

Proof. Suppose f is a Type-(I1I)-6-face with boundary 0(f) = {v1, -+ ,ve}
where (v; - - - v4)-path is a v;vs-thread, then vy and vg are hoth 2-vertices, v
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Figure 1: uv-threads

and v4 are both A¢-vertices. Without loss of generality, let vs be a 3-vertex,
then vg must be a 3~-vertex since there is no heavy-edge on the boundary
of f. Suppose N(vs) = {v4,v6,w} and the faces incident with v4vs and
vsve (besides f) are f, and fa, respcetively. If fi is a Type-(III)-6-face,
then w is a 3~-vertex, which means that f; cannot be a Type-(III)-6-face.

O

Lemma 2.4. Let u and v be any two A¢-vertices of graph G, then the
number of uv-threads is at most 2k — 3.

Proof. Suppose there are at least 2k — 2 uv-threads in G, which are uu;v;v-
pathes, i = 0,...,2k — 3 (see Figure 1.). By the choice of G, G’ :=
G — {vo,uo} has a k-frugal L-coloring ¢, then the admit color set of vy
is |L*(v0)] = IL(wo)\(Ch-1(v) U {e@)})] 2[ {1 + 1 |25} =1 = 1.
Similarly, the admit color set of ug is |L*(ug)| > 1.

If |L*(vo)| > 1 or |L*(uo)| > 1, we can extend c to the whole graph G
easily.

Now let |L*(vp)| = |L*(uo)| = 1 with L*(v) = {a} and L*(uo) = {B}.
If a # B, we can color vp with @ and uo with 3, then we get a k-frugal
L-coloring of the whole graph G.

Thus, we assume a = B, L(vw) = {al,az,...,ahé_l],a} and L(u) =
{ﬁl’ﬂ2""’ﬂfr€—,]’a}' Morever, since |L*(vg)| = |L*(ug)| = 1, we know
that ¢(v) U Cr—1(v) € L(vo) and |c(v) UCk-1(v)| = |£=L] +1 = [2;]. It
is similar to u. Without loss of generality, suppose ¢(v) = ; and c(u) =
B, then we know that Va; C Ci_1(v) and VB; C Ck—1(u), where i

213,"' ) f‘k—A_—l]
On the other hand, dg/(v) £ A — 1, thus we have

[t

N )l - Cha@) - (k=) S A1~ (251 =D x (k=D S k-2,

which means that the numiber of vertices which satisfy w € Ng/(v) and
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c(w) ¢ {al,ag,...,ark_%]} is at most k — 2. We denote the veretx set
by W,. Similarly, the number of vertices which satisfy u € Ng/(u) and
c(p) ¢ {B1, B2, By a1} is at most k — 2, and the set is denoted by W,,.

According to the assumption, there exist at least 2k — 3 uv-thread in
G', and

2k —3 - W, UW,| >22k-3-2(k-2)=1.

So we can find a pair of vertices v; and u;, (¢ = 1,2,...,2k — 3), such that
c(v;) € {ou, a2, ..., .01} and c(u;) € {Br, By, By o}

Now, we can erease the color of v; first, then color v with ¢(v;), uo with
a, and recolor v; with a color in L(v;) \ {e(us), c(v)(= on), @2, ..., 0p_a_q} if
there exists one. And then we obtain a k-frugal L-coloring of G. Similarly,
we can extend the coloring c to the whole graph G if |L(u;) \ {c(v:), e(u)(=
B1), By s Br oy} 2 1

Now suppose that L(vi) = {¢(w;), ¢(v)(= e1), @, ..., 0,41} and L(w;) =
{e(vi), c(u)(= Br), B, “"ﬂfr‘l‘—l]}' We can first erease the colors of v; and
u;, then color vp with ¢(v;), color ug with o, and recolor v; with ¢(u;) and
u;with c(v;). It is easy to see that the obtained coloring is a k-frugal L-
coloring of G, so we can also extend the coloring ¢ to the whole graph G,
a contradiction.

O

Now we apply a discharging procedure to get a contradiction. We assign
an original weight w(v) = 2d(v) — 6 to each vertex v and a weight w(f) =
d(f) — 6 to each face f. By Euler’s formula |V/(G)| —| E(G)| + |F(G)| = 2,

we get !
Y w(E) = 12,

reVUF

If we obtain a new weight w*(z) for all z € VUF by transferring weights
from one element to another, then we also have

> w(z) =-12

zeVUF

If these transfers result in w*(z) > 0 for all z € V U F, then we get a
contradiction and the theorem is proved.
Our procedure has two steps. In the first step, we discharge the weight
hy the following rules in order.
2d(v)—6

(R1). Each 4% -vertex v transfers 4G to each adjacent 37 -vertex.

(R2). Each 3-vertex transfers ;2= to each adjacent 2-vertex.

: (R3). Each 3-vertex transfers 1 — ﬁf’_—3 to each adjacent Type-(I1I)-6-
ace.
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(R4). For each heavy edge e = uv and e € 9(f), if u is a A*-vertex,
then u transfers 3 to the incident face f; if u is not a A¢-vertex, then u

transfers 1 to f.
Let w'(z) be the weight of z € V U F' after the first step.

Claim 2.1. w'(v) > 0 for all v € V(G) except light 2-vertices. If v is a
light 2-vertex, then w'(v) > — 2.

Proof. For a 4t-vertex v, if v is not a A¢-vertex, we assume that v is
adjacent to zo 3~-vertices and (d(v) — zo) 4*-vertices. Then, by R1 and
R4, we have that w'(v) = 2d(v) —6 — 2—%)& x g — (3 + 3) x (d(v) — 7o) >
(3 - d(ﬁv))(d(v) — xg) > 0. If v is a Ac-vertex, then d(v) > 12k — 9. Let
v be adjacent to zo 3~ -vertices and (d(v) — zo) 47-vertices, then we have
’(v) = 2d(v) — 6 — 22008 x 75 — (3 + 2) x (d(v) — z0) = 2d(v) — 6 (2~

767) X To — § x (d(v) — z0) > 2d(v) — 6 - (2 - 1&y) * (zo +d(v) — o) =
by Rl and R4.

Let d(v) = 3 and Ng(v) = {z,v, z} with d(z) < d(y) < d(z2).

Case 1. Suppose v is not incident with any Type-(III)-6-face.

If d(z) > 3, then w'(v) = w(v) = 0.

If d(z) = 2 < d(y), then [21] + [29] 4+ [£2] > [:2;]+1 by Lemma

9.2, which implies that d(y) + d(z) > fd<y>] +[Ee)) > ri3k=ll] = 14,
Thus y and z cannot be 3-vertices at the same time.

By R1 and R2, we have w’(v) > w(v) + 2da(,?y))_6 P Qdflfz))_ﬁ =2

t-Es-6x (g +a) >4-5-6x(3+1) >0

If d(z) = d(y) = 2, then [2] + fk_J + 921 > [,2.]+1 by Lemma
2.2, which implies that d(z) > fd(z)] [43£=11] — 1 = 13. Thus, we have

()>w()+2—’%—§—6—2x 5 > 0.

Case 2. If v is incident w1th some Type-(III)-6-face f, where 9(f) =
vv Vs - - - Us, then, by Lemma 2.3, the number of Type-(III)-6-faces is at
most 2. Morever, one of {v;,vs} is A¢-vertex. Without loss of generality,
let vs be a Af-vertex, then v; is a 3~ -vertex since f is Type-(III)-6-face.

Thuswehavew’(v)Zw(v)+2—xq—§7¢k_;g)—§—2x_—2x(1"4k w=3)=0.

Now let d(v) = 2 and Ng(v) = {z, y} with d(z) < d(y).

If d(z) = 2, then v and z are light 2-vertices, which implies that d(y) >

2x (12k—9)—6

12k2— 9 by Lemma 2.2. By R1, we have that w'(v) > -2 + i(m% =
IR UEN

Ifd(z) = 3, then d(y) > 12k—9and w'(v) > —24 220296, 2 _

by Lemma 2.2 , R1 and R2.
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If d(z) > 4, then we have Fu'] + [ ,-}:2] 2> fk 7] + 1 by Lemma 2.2,
wlnch implies that M > [;‘-l'l + H“——) 1 > (8] + 1 = 15. Thus,
+

3-(1—5)>0

) > 2+2%}{l)-_‘i ﬂ%—_ﬁ—z 6 x ( : "

Now we consider the faces.

Claim 2. 2 w'(f) > 0 for every face f € F(G). In detail,

>0 If f is a Type-(I)-6 or (IV)-6-face
>4 If f is a Type-(I1)-6 or (I1)-7 or (III)-7-face
w'(f)ﬁ >1- g2 If f is a Type-(I1])-6-face
>2 If f is a Type-(I)-7-face
| >d(f) - If f is a 8%-face

Proof. If f is a 8*-face, then w/(f) > w(f) =d(f) -6 > 2.

Let d(f) = 7. If f is Type-(I)-7-face, then there must be a heavy-
edge on 6( f) since O(f) has two threads. Thus, by R4, we have w’/(f) >
w(f) + 1+ 3 =2. If f is Type-(II) or Type-(III), then w'(f) > w(f) = 1.

Let d(f) = 6 now. If f is a Type-(I)-6-face, then w (f) = w(f).= 0.
If f is a Type-(II)-6-face, then by R4, w'(f) > w(f)+3+3 = 1. If
f is Type-(III), then there exists a 3-vertex incident with f. By R3, we
have w'(f) > w(f) +1 - 25 = 1 — ;2. If f is a Type-(IV), then

W' (f) > w(f) =0.
O

After the first step, we can see that only light 2-vertices have negative
weights.

Now we will give the second step of the discharging.

We define a thread-combine-transformation of graph G. For each Type-
(I)-6-face f = [vviuiuugvy), where vviuju-path and vvpusu-path are both
uv-threads. We delete v and add its charge to vy, delete u; and add its
charge to u;. Note that the total weight does not change in the transfor-
mation since w’(f) = 0. Repeat this process until there are no Type-(I)-6-
faces any more, then we get a new graph G’ with erV(G,)UF(G,) w'(z) =

ZxEV(G)UF(G) w'(z).
For the new graph G’, we discharge the weights as follows.

(R5). Each face f of G’ transfer 1 — =2 to each light 2-vetex which
is incident with f.

For each z € V(G')U F(G’), let w*(z) be the new weight of = after the
second step.
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Let v be a light 2-vetex of G’. By Claim 2.1 and Lemma 2.4, for any
vertex a and vertex b, the number of ab-threads is at most 2k — 3, so
w'(v) > =725 % (2k — 3) = —(1 — 725). By RS, the new weight of v is
w*(v) 2 (1-—r-)+2x( — g025) = 0. By Claim 2.1, we know that all
the new weights of vertices in G’ are nonnegative now.

Now consider the weights of the faces in F'(G’). We can see that w'(f)
will not change if there are no threads on the boundary of f, which means
that we can only talk about the faces with threads on the boundary.

Let d(f) = 6, then f is not Type-(I). If f is a Type-(II)-6-face, then

o(f) has only 1 thread and w'(f) > 1 by Claim 2.2. Thus, w*(f) 2 l~2 X
(3 = g 3 )= 4k 5 > 0. If f is a Type-(I1I)-6-face, then W(f) 21— 72 %)
and f has only 1 thread, which implies there at most two llght 2-vertices
on the boundary. Thus we have w*(f) > 1 — —-2x (- g25)=0.

Let d(f) = 7. If f is a Type-(I)-7-face, then w’(f) >2 by Claim 2 2, and
8(f) has at most two threads. Thus, w*(f) > 2- —4X (5 — 5= d2)=m=3 0.
If f is a Type-(II)-7-face, then w'(f) > 1 by Claim 2 2, and 9( f) has only
one thread. Thus, w*(f) >1-2x (3 — 525) = 7055 =2 0-

Let d(f) = 8, then, by Claim 2.2, we know that w’(f) > 2 and f has at
most two threads Thus w*(f) > 2-4x (3 — 525) = =5 2 0.

If f is a 9%-face, then w/(f) > d(f) — 6, and 9(f) has at most LE%QJ
threads. Thus w*(f) > d(f) —6— %L | x 2 x (3 — 525) > %d(f) -6 > 0.

Now we get a contradiction since

=49 = Z w(z) = Z w'(z) = Z w*(z) > 0.

z€V(G)UF(G) zeV(G)UF(G) zeV(G')UF(G’)

The proof of Theorem 1.1 is completed.

3 Proof of Theorem 1.2

Assume to the contrary, suppose that G is a minimal counterexample with
the fewest vertices. Let L be a ([ k%l] + 2)-list such that G is not k-frugal

L-colorable.
We first present some structures of the plane graph G, then apply a
discharging procedure to get a contradiction.

Lemma 3.1. G is connected and §(G) > 2.

We omit the proof here since it is completely similar to that of Lemma
2.1:

Lemma 3.2. G cotains no 2-vertex which is adjacent to a 3™ -vertex.
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Proof. Suppose to the contrary that G has a 2-vertex v which is adjacent
to a 3—-vertex u. By the choice of G, G — v has a k-frugal L-coloring e,
Let Ng(v) = {u,w}, then v can receive any color except for c(u), c(w)
and those colors that appear k — 1 times in Ng(w) (i.e. Ck—1(w)), so the
number of forbidden colors of v is at most

d(w) — 1 d(w)

A
S SRR - At Tt T L

1+14|

We can extend the coloring ¢ to the whole graph G, a contraction.

0

Lemma 3.3. G cotains no 4-vertex which is adjacent to three 2-vertices.

Proof. Suppose to the contrary that G has a 4-vertex v which is adjacent
to three 2-vertices z, ¥, z. Let z1, y1, z1 be the other neighbor of z, y,
z, respectively, and v; be the fourth neighbor of v. By the choice of G,
G — {v,z,y, 2z} has a k-frugal L-coloring c. Let the vertex w € {v,z,y, 2},
then w can receive any color except for ¢(w;) and those colors that appear
k — 1 times in Ng(w;) (i.e. Ck—1(w;)), which 1mphes that the number of
forbidden colors of w is at most 1 + Ld = [ L] < [55].

Let L*(w) = L(w)\({c(w1)} U Ck- 1(w1)) then we get |L*(w)| > 2,
where w € {v, z,y, z}

We can first color z with a color ¢(z) € L*(z) \ {c¢(v1)}, then color v
with a color c(v) € L*(v) \ {c(z)}, color y with a color in L*(y) \ {c(v)}
and z with a color in L*(z) \ {c(v)}. This is just a k-frugal L-coloring of

G, a contradiction.
a

Lemma 3.4. G cotains no 5-vertex which is adjacent to five 2-vertices.

Proof. Suppose to the contrary, dg(v) = 5 and Ng(v) = {z1,%2, -+ ,Zs5},
wehre dg(z;) = 2 and y; is the other neighbor of z; foralli =1,--. ,5. By
the choice of G, G\ {v, 21, - - , x5} has a k-frugal L-coloring ¢. For V1 < i <
5, the vertex z; can receive any color except for c(y;) and those colors that
appear k—1 times in Ng(y;) (i.e. Cg—1(v:)). Let L*(z;) = L(z;)\({c(y:)}V
Ck-1(¥:)), then we get |L*(z;)| > [k%l—] +2—-(1+ [izi—)—l ) > 2. For the
vertex v, we know that |L(v)| >[ 257 +2 > 3.

Now we extend the coloring c to the whole graph G as follows.

We first color z; with a color (say a) in L*(z;), then color zo with a
color ¢(z2) in L*(z3) \ {a}, color v with a color (say b) in L(v) \ {a, c(22)},
and then color z; with a color in L*(z;) \ {b} for i = 3,4,5. It is a k-
frugal L-coloring of G as long as it isn'’t ¢(z3) = c(z4) = c(xs) = a or
c(z3) = c(z4) = c(xs) = c(zz). Without loss of generality, now assume
that L*(z;) = {a,b} and c(z;) = a for all i = 3,4,5.
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If L*(z1) # {a,b}, then we can recolor z, by a color in L*(z;) \ {a},
which is a new k-frugal L-coloring of G. Now suppose L*(z;) = {a,b}.
We can recolor z; and z5 by the color b, and recolor v by a color ¢(v) €
L(v) \ {a,b}, and recolor z; by a color in L*(z2) \ {¢(v)}, which is also a
new k-frugal L-coloring of the whole graph G, a contradiction.

O

Now we assign an original weight w(v) = 2d(v) — 6 to each vertex v
and w(f) = d(f) — 6 to each face f. By Euler’s formula [V(G)| —| E(G)| +

|F(G)| = 2, we get
Z w(z) = —12.
zeVUF

If we obtain a new weight w*(z) for all z € V U F by transferring weights
from one element to another, and these transfers result in w*(z) > 0 for
all z € V UF, then we get a contradiction and the theorem is proved. We

transfer the weights by the following rule.

(R1). Each 4*-vertex v transfers 1 to each adjacent 2-vertex.

Let w*(z) be the new weight of z € V U F after (R1).

For each 6%-vertex v, it is easy to check that w*(v) > 2d(v) —6—d(v) >
d(v) — 6 > 0 by R1. For each 5-vertex v, w*(v) > 2d(v) —6 —4 > 0 by
Lemma 3.4 and (R1). For each 4-vertex v, w*(v) > 2d(v) —6 -2 >0
by Lemma 3.3 and (R1). For each 3-vertex v, w*(v) > 2d(v) —6 > 0 by
Lemma 3.2 and (R1). For each 2-vertex v, w*(v) > 2d(v) —6+1+12>0
by Lemma 3.2 and (R1).

For each face f, we have w*(f) > O since the girth g > 6.

Now we get a contradiction and the proof of Theorem 1.2 is completed.
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