Note on p-competition graphs of double stars

Kyohei NAKADA, Kenjiro OGAWA, Satoshi TAGUSARI

Morimasa TSUCHIYA*

Department of Mathematical Sciences, Tokai University Hiratsuka 259-1292, JAPAN

e-mail: morimasa@keyaki.cc.u-tokai.ac.jp

Abstract

The p-competition graph $C_p(D)$ of a digraph D=(V,A) is a graph with $V(C_p(D))=V(D)$, where an edge between distinct vertices x and y if and only if there exist p distinct vertices $v_1, v_2, ..., v_p \in V$ such that $x \to v_i, y \to v_i$ are arcs of the digraph D for each i=1,2,...,p. In this paper, we prove that double stars DS_m $(m\geq 2)$ are p-competition graphs. We also show that full regular m-ary trees $T_{m,n}$ with height n are p-competition graphs, where $p\leq \frac{m-1}{2}$.

Keywords: p-competition graph, double star, full regular m-ary tree Mathematics Subject Classification:05C20, 05C75

* corresponding author

1 Introduction

In this paper we consider finite simple graphs and finite digraphs. For a digraph D and $v \in V(D)$, $\operatorname{Out}_D(v) = \{u : v \to u \text{ in } A(D)\}$. For a digraph D, the p-competition graph $C_p(D)$ of D is the graph satisfying the following:

- 1. $V(C_p(D)) = V(D)$,
- 2. $xy \in E(C_p(D))$ if and only if there exist p distinct vertices $v_1, v_2, \ldots, v_p \in V(D)$ such that $x \to v_i, y \to v_i$ in A(D) for each $i = 1, 2, \ldots, p$.

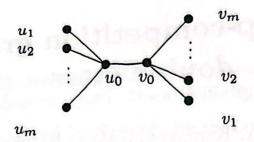


Figure 1: A double star DS_m

A graph G is called a p-competition graph if there exists a digraph D such that $C_p(D) \cong G$. In [4] McKee and McMorris surveyed various properties of intersection graphs, which contain p-competition graphs. In [2] and [3] Kim et al. dealt with cycles and chordal graphs in terms of p-competition graphs.

Theorem 1.1 (Kim et al. [2]) A chordal graph is a 2-competition graph.

Theorem 1.2 (Kim et al. [3]) Let C_n be a cycle with $n \geq 5$ vertices and p be a positive integer. Then C_n is a p-competition graph if and only if $n \geq p + 3$.

These results dealt with digraphs which allow loops and symmetric arcs. In [1] Kidokoro et al. dealt with paths, cycles and wheels in terms of p-competition graphs of loopless digraphs without symmetric arcs.

Theorem 1.3 (Kidokoro et al. [1]) For a positive integer p and $n \geq 3$, P_n and C_n are p-competition graphs of loopless digraphs without symmetric arcs if and only if $n \geq 2p + 3$.

In this paper we deal with some kinds of trees, that is, double trees and full regular m-ary trees in terms of p-completion graphs of loopless digraphs without symmetric arcs.

2 Double stars and 1-competition graphs

In this section we deal with double stars. The double star DS_m is the following graph: $V(DS_m) = \{u_0, u_1, ..., u_m, v_0, v_1, ..., v_m\}$ and $E(DS_m) = \{\{u_0, u_i\} ; i = 1, 2, ..., m\} \cup \{\{v_0, v_i\} ; i = 1, 2, ..., m\} \cup \{u_0, v_0\}$. We have the following result.

111 (2019), pp. 11

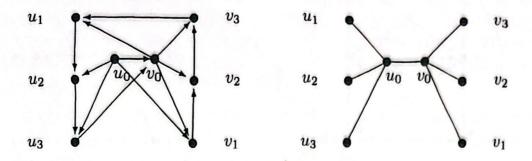


Figure 2: A digraph D and the 1-competition graph $C_1(D) \cong DS_3$

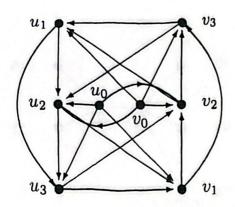
Theorem 2.1 For $m \geq 2$, DS_m is a 1-competition graph of a loopless digraph without symmetric arcs.

Proof. The digraph D is the digraph as follows: $V(D) = V(DS_m)$ and $A(D) = \{u_0 \to u_i \; ; \; i = 2, 3, ..., m\} \cup \{u_0 \to v_0, u_0 \to v_1\} \cup \{u_i \to u_{i+1} \; ; \; i = 1, 2, ..., m-1\} \cup \{u_m \to v_0\} \cup \{v_0 \to v_i \; ; \; i = 1, 2, ..., m\} \cup \{v_0 \to u_1\} \cup \{v_i \to v_{i+1} \; ; \; i = 1, 2, ..., m-1\} \cup \{v_m \to u_1\}.$ Then the digraph D is a loopless digraph without symmetric arcs. In the following, we show $C_1(D) \cong DS_m$. Note that $Out_D(u_0) = \{u_i \; ; \; i = 2, 3, ..., m\} \cup \{v_0, v_1\}, Out_D(u_i) = \{u_{i+1}\} \text{ for } i = 1, 2, ..., m-1, Out_D(u_m) = \{v_0\}, Out_D(v_0) = \{v_i \; ; \; i = 1, 2, ..., m\} \cup \{u_1\}, Out_D(v_i) = \{v_{i+1}\} \text{ for } i = 1, 2, ..., m-1, Out_D(v_m) = \{u_1\}.$

First, we consider adjacency relations. For i = 1, 2, ..., m, $\{u_0, u_i\} \in E(C_1(D))$, because for i = 1, 2, ..., m - 1, $\operatorname{Out}_D(u_0) \cap \operatorname{Out}_D(u_i) = \{u_{i+1}\}$ and $\operatorname{Out}_D(u_0) \cap \operatorname{Out}_D(u_m) = \{v_0\}$. Since $\operatorname{Out}_D(u_0) \cap \operatorname{Out}_D(v_0) = \{v_1\}$, $\{u_0, v_0\} \in E(C_1(D))$. For i = 1, 2, ..., m, $\{v_0, v_i\} \in E(C_1(D))$, because for i = 1, 2, ..., m - 1, $\operatorname{Out}_D(v_0) \cap \operatorname{Out}_D(v_i) = \{v_{i+1}\}$ and $\operatorname{Out}_D(v_0) \cap \operatorname{Out}_D(v_m) = \{u_1\}$.

Next, we consider non-adjacency relations. For i=1,2,...,m, $\{u_0,v_i\}\notin E(C_1(D))$, because $\operatorname{Out}_D(u_0)\cap\operatorname{Out}_D(v_i)=\emptyset$. For i,j=1,2,...,m and $i\neq j,$ $\{u_i,u_j\}\notin E(C_1(D))$, because $\operatorname{Out}_D(u_i)\cap\operatorname{Out}_D(u_j)=\emptyset$. For i=1,2,...,m, $\{u_i,v_0\}\notin E(C_1(D))$, because $\operatorname{Out}_D(u_i)\cap\operatorname{Out}_D(v_0)=\emptyset$. For i,j=1,2,...,m, $\{u_i,v_j\}\notin E(C_1(D))$, because $\operatorname{Out}_D(u_i)\cap\operatorname{Out}_D(v_j)=\emptyset$. For i,j=1,2,...,m and $i\neq j,$ $\{v_i,v_j\}\notin E(C_1(D))$, because $\operatorname{Out}_D(v_i)\cap\operatorname{Out}_D(v_i)\cap\operatorname{Out}_D(v_i)=\emptyset$.

Therefore $C_1(D) \cong \mathrm{DS}_m$. \square



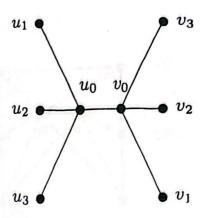


Figure 3: A digraph D and the 2-competition graph $C_2(D)$, DS_3

3 Double stars and p-competition graphs of loopless digraphs without symmetric arcs

In this section we deal with double stars DS_m in terms of p-competition graphs on loopless digraphs without symmetric arcs. We have the following result.

Theorem 3.1 Let p be a positive integer and $2 \le p \le m-1$. Then DS_m $(m \ge 2)$ are p-competition graphs of loopless digraphs without symmetric arcs.

Proof. The digraph D is the digraph as follows: $V(D) = V(\mathrm{DS}_m)$ and $A(D) = \{u_0 \to u_i; i = 2, 3, ..., m\} \cup \{u_0 \to v_i; i = 1, 2, ..., p\} \cup \{u_i \to u_{i+1}, u_i \to u_{i+2}, ..., u_i \to u_{i+p}; \text{ if } i \leq m-p \text{ with } i = 1, 2, ..., m\} \cup \{u_i \to u_{i+1}, u_i \to u_{i+2}, ..., u_i \to u_m, u_i \to v_1, u_i \to v_2, ..., u_i \to v_{i+p-m}; i = 1, 2, ..., m-1 \text{ if } i > m-p\} \cup \{u_m \to v_1, u_m \to v_2, ..., u_m \to v_p\} \cup \{v_0 \to v_i; i = 2, 3, ..., m\} \cup \{v_0 \to u_i; i = 1, 2, ..., p\} \cup \{v_i \to v_{i+1}, v_i \to v_{i+2}, ..., v_i \to v_{i+p}; i = 1, 2, ..., m \text{ if } i \leq m-p\} \cup \{v_i \to v_{i+1}, v_i \to v_{i+2}, ..., v_i \to v_m, v_i \to u_1, v_i \to u_2, ..., v_i \to u_{i+p-m}; \text{ if } i > m-p \text{ with } i = 1, 2, ..., m-1 \} \cup \{v_m \to u_1, v_m \to u_2, ..., v_m \to u_p\}.$ The digraph D is a loopless digraph without symmetric arcs.

In the following we show that $C_p(D) \cong \mathrm{DS}_m$. We consider adjacency relations of u_0 and other vertices. Then $\mathrm{Out}_D(u_0) = \{u_i; i = 2, 3, ..., m\} \cup \{v_i; i = 1, 2, ..., p\}$. For i = 1, 2, ..., m, $\mathrm{Out}_D(u_i) = \{u_{i+1}, u_{i+2}, ..., u_{i+p}\}$ if $i \leq m-p$ and $\mathrm{Out}_D(u_i) = \{u_{i+1}, u_{i+2}, ..., u_m, v_1, v_2, ..., v_{i+p-m}\}$ if i > m-p.

Since $2 \leq p \leq m-1$ and $\operatorname{Out}_D(v_0) = \{v_i; i = 2, 3, ..., m\} \cup \{u_i; i = 1, 2, ..., p\}, \operatorname{Out}_D(u_0) \cap \operatorname{Out}_D(v_0) = \{u_2, u_3, ..., u_p, v_2, v_3, ..., v_p\}, |\operatorname{Out}_D(u_0) \cap \operatorname{Out}_D(v_0)| \geq p$ and $\{u_0, v_0\} \in E(C_p(D))$.

If $i \leq m-p$, then $\operatorname{Out}_D(u_0) \cap \operatorname{Out}_D(u_i) = \{u_{i+1}, u_{i+2}, ..., u_{i+p}\}$ and $|\operatorname{Out}_D(u_0) \cap \operatorname{Out}_D(u_i)| = p$ for i = 1, 2, ..., m-p. If i > m-p, then $\operatorname{Out}_D(u_0) \cap \operatorname{Out}_D(u_i) = \{u_{i+1}, u_{i+2}, ..., u_m, v_1, v_2, ..., v_{i+p-m}\}$ and $|\operatorname{Out}_D(u_0) \cap \operatorname{Out}_D(u_i)| = p$ for i = m-p+1, m-p+2, ..., m-1. Moreover $\operatorname{Out}_D(u_0) \cap \operatorname{Out}_D(u_m) = \{v_1, v_2, ..., v_p\}$ and $|\operatorname{Out}_D(u_0) \cap \operatorname{Out}_D(u_m)| = p$. Thus $\{u_0, u_i\} \in E(C_p(D))$ for i = 1, 2, ..., m.

For i = 1, 2, ..., m, we consider the following cases on u_0 and v_i . Then for i = 1, 2, ..., m, $\operatorname{Out}_D(v_i) = \{v_{i+1}, v_{i+2}, ..., v_{i+p}\}$ if $i \leq m-p$ and $\operatorname{Out}_D(v_i) = \{v_{i+1}, v_{i+2}, ..., v_m, u_1, u_2, ..., u_{i+p-m}\}$ if i > m-p.

Case 1: $i \leq m-p$. Then $\text{Out}_D(u_0) \cap \text{Out}_D(v_i) = \emptyset$ if $i \geq p$ and $\text{Out}_D(u_0) \cap \text{Out}_D(v_i) = \{v_{i+1}, v_{i+2}, ..., v_p\}$ if i < p. Thus for i = 1, 2, ..., m, $|\text{Out}_D(u_0) \cap \text{Out}_D(v_i)| \leq p-1 < p$.

Case 2: i > m - p. Since $p \le m - 1$, $\operatorname{Out}_D(u_0) \cap \operatorname{Out}_D(v_i) \subseteq \{u_2, u_3, ..., u_{i+p-m}, v_{i+1}, v_{i+2}, ..., v_{m-1}\}$ and $|\operatorname{Out}_D(u_0) \cap \operatorname{Out}_D(v_i)| \le ((i+p-m)-1) + ((m-1)-i) = p-2 < p$.

Thus $\{u_0, v_i\} \notin E(C_p(D))$ for i = 1, 2, ..., m.

By similar way of u_0 , we can show that for i = 1, 2, ..., m, $\{v_0, v_i\} \in E(C_p(D))$ and $\{v_0, u_i\} \notin E(C_p(D))$.

Next, we consider adjacency relations of u_i and v_j . Note that $|\operatorname{Out}_D(u_i)| = p$, $|\operatorname{Out}_D(v_j)| = p$, $\operatorname{Out}_D(u_i) \neq \operatorname{Out}_D(u_j)$ $(i \neq j)$, $\operatorname{Out}_D(v_i) \neq \operatorname{Out}_D(v_j)$ $(i \neq j)$ and $\operatorname{Out}_D(u_i) \neq \operatorname{Out}_D(v_j)$ for i, j = 1, 2, ..., m. Then $|\operatorname{Out}_D(u_i) \cap \operatorname{Out}_D(u_j)| < p$ $(i \neq j)$, $|\operatorname{Out}_D(v_i) \cap \operatorname{Out}_D(v_j)| < p$ $(i \neq j)$ and $|\operatorname{Out}_D(u_i) \cap \operatorname{Out}_D(v_j)| < p$ for i, j = 1, 2, ..., m. Thus $\{u_i, u_j\} \notin E(C_p(D))$, $\{v_i, v_j\} \notin E(C_p(D))$ and $\{u_i, v_j\} \notin E(C_p(D))$ for i, j = 1, 2, ..., m.

Therefore $C_p(D) \cong \mathrm{DS}_m$. \square

4 Trees and *p*-competition graphs of loopless digraphs without symmetric arcs

We already knew the following result.

Theorem 4.1 (Kidokoro et al. [1]) Let p be a positive integer and $p \leq \frac{m-1}{2}$. Then $K_{1,m}$ is a p-competition graph of a loopless digraph without symmetric arcs.

In [1] Kidokoro et al. gave the digraph $D_{m,1}$ whose p-competition graph is $K_{1,m}$. The digraph $D_{m,1}$ is the following loopless digraph without symmetric arcs, all subscript arithmetic is taken modulo m.

- 1. $V(D_{m,1}) = \{v_0, v_1, ..., v_{m-1}\} \cup \{u\},\$
- 2. $A(D_{m,1}) = \{v_i \to v_{i+j} ; i = 0, 1, ..., m-1 \text{ and } j = 1, 2, ..., p\} \cup \{u \to v_i ; i = 0, 1, ..., m-1\}.$

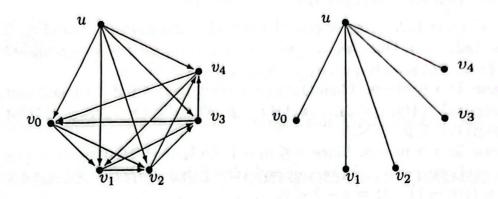


Figure 4: The digraph $D_{5,1}$ and $C_2(D_{5,1}) \cong K_{1,5}$

Let $\overrightarrow{T_{m,n}}$ be a full regular m-ary tree with height n, that is, every non-leaf has exactly m children and the leaves being equidistance n from the root. Let u be the root of $\overrightarrow{T_{m,n}}$ and $v_0, v_1, ..., v_{m-1}$ be children of the root u and $v_{i_1,i_2,...,i_k,0}, v_{i_1,i_2,...,i_k,1}, ..., v_{i_1,i_2,...,i_k,m-1}$ be children of a non-leaf $v_{i_1,i_2,...,i_k}$. Let $T_{m,n}$ be the graph from $\overrightarrow{T_{m,n}}$ without direction. Then $T_{m,n}$ is a tree.

The graph $K_{1,m}$ is a full regular m-ary tree with height 1, $T_{m,1}$. And each subtree of $T_{m,n}$ induced by a non-leaf and its children is also a full regular m-ary tree with height 1.

For graphs G and H, the union of G and H is the graph $G \cup H$ such that

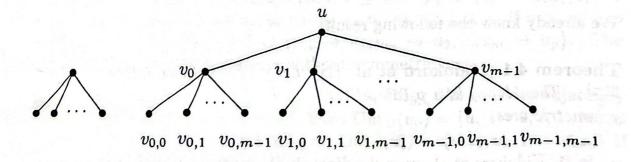


Figure 5: A regular m-ary $T_{m,1}$ and $T_{m,2}$

 $V(G \cup H) = V(G) \cup V(H)$ and $E(G \cup H) = E(G) \cup E(H)$. For digraphs D and F, the union of D and F is the graph $D \cup F$ such that $V(D \cup F) = V(D) \cup V(F)$ and $A(D \cup F) = A(D) \cup A(F)$.

We obtain the following result from Theorem 4.1.

Proposition 4.2 Let p be a positive integer and $p \leq \frac{m-1}{2}$. Then $T_{m,n}$ is a p-competition graph of a loopless digraph without symmetric arcs.

Proof. For a non-leaf v in $T_{m,n}$, let $V(v) = \{v\} \cup \{u; u \text{ is a child of } v\}$. For a $T_{m,n}$, let $\operatorname{Nl}(T_{m,n}) = \{v \in V(T_{m,n}); v \text{ is a non-leaf of } \overrightarrow{T_{m,n}}\}$. Let T_v be the subgraph induced by V(v). Then $T_v \cong K_{1,m}$, $C_p(D_{m,1}) \cong K_{1,m}$ and $\bigcup_{v \in \operatorname{Nl}(T_{m,n})} T_v = T_{m,n}$. Thus $C_p(D) \cong T_{m,n}$, where $D = \bigcup_{v \in \operatorname{Nl}(T_{m,n})} D_{m,1}$. \square

References

- [1] Y. Kidokoro, D. Kishida, K. Ogawa, S. Tagusari and M. Tsuchiya, Note on p-competition graphs of loopless digraphs which have no symmetric arcs, to appear in Ars Combinatoria.
- [2] S.-R. Kim, T. A. McKee, F. R. McMorris, and F. S. Roberts, p-competition graphs. Linear Algebra and its Applications 217, (1995) 167-178.
- [3] S. -R. Kim, B. Park and Y. Sano, Cycles and p-competition graphs, Congressus Numerantium, 196 (2009), 23-30.
- [4] T. A. McKee and F. R. McMorris, *Topics in intersection graph the-ory*, SIAM Monographs on Discrete Mathematics and Applications 2, SIAM, Philadelphia, 1999.