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ABSTRACT. Let G = C,, @ C,, with n > 3 and S be a sequence
with elements of G. Let £(S) C G denote the set of group elements
which can be expressed as a sum of a nonempty subsequence of S.
In this note, we show that if S contains 2n — 3 elements of G, then
either 0 € £(S) or |2(S)| > n2 —n — 1. Moreover, we determine
the structures of the sequence S over G with length |S| = 2n — 3
such that 0 ¢ ¥(S) and |Z(S)|=n% —n - 1.

1. INTRODUCTION AND MAIN RESULTS

Let N and Z be the sets of positive integers and integers respectively,
and Ny = NU {0}. For a,b € Z we set [a,b] = {z € Z|a < z < b}.

Let G be an additive finite abelian group and let C,, denote the cycli:
group of order n. Let ord(g) denote the order of g € G. Every sequence
S over G (i.e. S is a sequence with elements of G) can be written in

the form
S=g1----ge=]]9"?,
9€G

where v,(S) € Ny denotes the multiplicity of g in S. We call |S| =€ =
Y scc Ve(S) € Ny the length of S, h(S) = max{vy(S) | g € G} € No the
mazimum of the multiplicities of S, supp(S) = {g | v,(S) > 1} C C
the support of S, and o(S) = Zle 9i = D _,ecVe(S)g € G the sum of
S. '

A sequence T is called a subsequence of S if vyo(T') < v4(S) for ali-
g € G. If S; and S, are two subsequences of S such that v,(S1) +
Vg(S2) < v, (S) for all g € G, let 515, denote the subsequence of &

satisfying that vy(S152) = v,(S1) 4 Vy(S2) for all g € G. Let
¥(S) ={o(T) | T is a subsequence of S with 1 < |T'| < |S]}.
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The sequence S is called zero-sum if 0(S) = 0 € G, zero-sum free if
0 & £(S), and minimal zero-sum if o(S) = 0 and o(T") # 0 for every
subsequence T of S with 1 < |T| < [S].

The problem of determining the minimal cardinality of £(5) for zero-
sum free sequences S of a finite abelian group attracts many authors
such as R.B. Eggleton and P. Erdos [2], J.E. Olson (7], B. Bollobés and
I. Leader [1], W. Gaoet al. [4], A. Pixton [10], P. Yuan and X. Zeng [15].
In 1999, B. Bollobds and I. Leader [1] stated the following conjecture.

Conjecture 1.1. (1, Conjecture 6] Let G = C, & C, with n > 2
and 0 < k < n — 2 be an integer. Let {e;,es} be a basis of G and
T = e}~ 'ekt!. Let S be a zero-sum free sequence over G with length

S| = n + k. Then |S(S)| > [E(T)| = (k +2)n - 1.

Conjecture 1.1 was confirmed for the cases when k = 0,1,2,n — 2 by
several authors (see [12, 4, 14]).

The inverse problem associated with |£(.5)| is to determine the struc-
ture of the sequence S over G with the given length such that |X(S)|
archives the the minimal cardinality (see [6, 8, 13] for more known
results). Recently, J. Peng et al. [9] stated the following conjecture.

Conjecture 1.2. [9, Conjecture 2.4] Let G = Cp, ®...®Cy, be a finite
abelian group with 1 <ny | ...|n,. Let k € [0,n.—1 — 2| be an integer
and S be a zero-sum free sequence over G of length |S| = n. +k. Then
|X(S)| > (k + 2)n, — 1, and the equality holds if and only if S has one
of the following forms.
(1) (S) & Cy12® Cn,, where k + 2 | ny;
2) S = gt (h+t1g) ...  (h+ trs19), where g,h € G with
ord(g) = nr, th &€ (g) for everyi € [1,k+ 1], and t1,...,tk41 €
[0,n, — 1] are integers.

In this note we give a positive answer to Conjecture 1.1 and Conjec-
ture 1.2 for the case when G = C, & C, withn >3 and k =n = &
Our main result is as follows.

Theorem 1.3. Let G = C, @ C, withn > 3. If W is a zero-sum
free sequence over G with |W| = 2n — 3, then |Z(W)| > n?—n -
1. Furthermore the equality holds if and only if there ezist a basis
(g1,92) of G and integers z1,...,2n € [0,n — 1] such that W =

G L (20 + 92)-
2. PROOF OF THEOREM 1.3

We need the following technical result.



Lemma 2.1. [4, Lemma 3.1) Let G be a finite abelian group and A
be a finite nonempty subset of G. Letr € N, y;,...y, € G and k =
min{ord(g:) | ¢ € (1,7]}. Then |E(0y; ... y,) + Al = min{k,r + |A|}.

Let G = C, @ C, with n > 2. We say that G has Property B
if every minimal zero-sum sequence S over G of length |S| = 2n - ]
contains some element with multiplicity n — 1. It was proved that G
has Property B for every positive integer n > 2 (see contributions in
[3, 11]). Therefore, we have the following conclusion.

Lemma 2.2. [5, Theorem 5.8.7] Let G = C,, ® C,, withn > 2 and S
be a minimal zero-sum sequence over G of length |S| = 2n — 1. Then
there exist a basis (e1,e2) of G and integers zy,...,z, € [0,n — 1] with
1+ ...+ 2, =1 (mod n) such that S = e~ IHU _,(zver + e3).

In 2008, W. Gao et al. [4] proved the following result.

Lemma 2.3. [4, Lemma 4.3] Suppose G = C,®C,, withn > 3 satisfies
Property B. If W is a zero-sum free sequence over G with |W| = 2n—3
then |[S(W)| > n?—n -1,

Proof of Theorem 1.3

Proof. Note that G = C,®C,, has Property B for every positive integer
n > 2. If W is a zero-sum free sequence over G with [W| = 2n — 3, it
follows from Lemma 2.3 that |S(W)| > n? —n — 1.

Suppose that there exist a basis (91, g2) of G and integers z, . .., Zn_»
€ [0,n—1] such that W = g7 [["Z%(,g1 +g2). Then |Z(W)N(g1)| =
{91, -, (n=1)g1}| = n—1, [EW)N(iga+(g1))| = |ig2+(>_7—; z) g1+
{0,91,...,(n—=1)g1}| = n for every j € [1,n — 2], and |E(W) N ((n —
1)g> + (91))] = 0. Therefore, [S(W)| = X35 [Z(W) N (g2 + (91))] =
n—1+4+nn—2)=n?-n-1.

Next we assume that W is a zero sum free sequence over G such tha§
W| =2n -3 and |E(W)| =n?—n-1<n?-1=|G|-1. Then
Y(W) # G\ {0} and thus there exists h € G such that Wh is zero-sum
free. So Wh(—h — o(W)) is a minimal zero-sum sequence of length
2n — 1. It follows from Lemma 2.2 that there exist a basis (e;, e3) of
G and integers z1,...,2, € [0,n — 1] with 2; + ... + z, = 1 (mod n)
such that Wh(—h — a(W)) = e} [])_, (zv€1 + €2).

Suppose W = e2n=3-* Hﬁ=1(x,,el + e3), where £ € [n — 2,n]. If
£=n-2 let g = e and g, = e;. Then W is of the form as desired
So we may assume that £ € [n — 1,n] and we divide the rest of the
proof into two cases according to the values of 2.

Case 1. £=n—1. Let Wy =e} 2 and Wy = []/_ l(x,,el-i—ez)



We first show that T1=...=1z,_;. Otherwise, we may assume that
e # Tn-1. Then jez + (3207} 2,)e) + {xn_2e1,2n-101} C B(W2) N
(jea + (e1)) for every j € [1,n - 2]. It follows from Lemma 2.1 that

IZ(W) N (Gea + (1)) = |(E(Wa) N (jez + (e1))) + E(OW)]
j-1
>|je2 + (}: z,)e; + Z(OW))[ =2 n
v=I
for every j € [1,n — 2] and
IE(W)N((n—1)ez + (en)|

n-1

_|(n = 1)ea + (O zu)er + E(0W1)| =n — 1.
v=1

Note that |S(W) N ()] = {e1, -, (n = 2)e1}| = n — 2. Therefore,
n-1
W)l = 3 [E(W) N (jez + (e)] 2 (n = 2) +n(n = 2) +(n—1)
=0
=n2-3>nt-n-1,
yielding a contradiction. Therefore z; = ... = Zn-1.

Let g1 = z1e; + e, and go = e1. Then {g1, 92} is a basis of G and
W= gi"lgg’z as desired.

Case 2. { =n. Let W} = e{“3 and Wy = H:=1 (z,e1 + €2).

We first show that h(W;) = n — 1. Assume to the contrary that
h(Ws) < n — 2. Suppose that z; # z,. Similar to Case 1, we obtain
that |Z(W) N (jez + (e1))] > n — 1 for every Jj € [1,n — 1]. Since
z1+...+z, =1 (mod n), we infer that o(W2) = € and thus |12 (W) ri
(er)] = |{ers- -+ (= 2)e;}| = n — 2. Then

n—1
n?—n—1=[S(W)| =) [E(W)N (jez + {en))]
=0

>n—2+m-1)(n-1)=n*—n—-1

So |[Z(W) N (jez + (e1))| = n — 1 for every j € [1,n — 1].
By Lemma 2.1, we obtain that
n—1<les + {z1€1, 2201} + {0,€1,..., (n — 3)e1}|
<|IZW)N (ex + (e1))| =n— 1.
So |Z(W)N(ez+(e1))| = lea+{z1e1, 2261} +{0,€1,..., (n—3)e1 }| = n—

1. This forces that supp(z;-. ..-z,) = {21, 72} and z; = z,+1. Suppose
zy-... 3, =2} 'z} and z, = 1 + 1. Since h(S) < n— 2, we infer that



t€2n=2]. Thenay +...42p=(n=t)r; +t(x; 4+ 1) = nry 4+t = ¢

(mod n), yielding a contradiction to that z; + ... + 7, = 1 (mod nj.
Therefore h(Wy) = n — 1.
Next we assume that z; = ... = z,.1. Since z; + ... + r, = |

(mod n), we infer that z,, = z; + 1. Let g; = z1e; 4 €, and g; = ¢,.
Then {91, 9} is a basis of G and W = g]'"'g5 (g, + 93) as desired. 0
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