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Abstract

Rautenbach and Volkmann [Appl. Math. Lett. 20 (2007), 98-
102] gave an upper bound for the k-domination number and k-tuple
domination number of a graph. Hansberg and Volkmann, [Discrete
Appl, Math. 157 (2009), 1634-1639] gave upper bounds for the k-
domination number and Roman k-domination number of a graph.
In this note, using the probabilistic method and the known Caro-

Wei Theorem on the size of the independence number of a graph, we
improve the above bounds on the k-domination number, the k-tuple
domination number and the Roman k-domination number in a graph
for any integer k > 1. The special case k = 1 of our bounds improve
the known bounds of Arnautov and Payan [V.I. Arnautov, Prikl
Mat. Programm. 11 (1974), 3-8 (in Russian); C. Payan, Cahiers
Centre Etudes Recherche Opér. 17 (1975) 307-317] and Cockayne et
al. [Discrete Math. 278 (2004), 11-22].
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1 Introduction

For notation and graph theory terminology not given here we refer to [9].
We consider finite, undirected and simple graphs G with vertex set V =
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V(G) and edge set E(G). The number of vertices of G is called the order
of G and is denoted by n = n(G). The open neighborhood of a vertex v € V
is N(v) = Ng(v) = {u € V | uv € E} and the closed neighborhood of v is
N[v] = Ng[v] = N(v) U {v}. The degree of a vertex v, denoted by deg(v)
(or degg(v) to refer to G), is the cardinality of its open neighborhood. We
denote by 6(G) and A(G), the minimum and maximum degrees among all
vertices of G, respectively. For a subset S of vertices of G the subgraph of G
induced by S is denoted by G[S]. A subset S of vertices is an independent set
if G[S] has no edge. The independence number, a(G) of G, is the maximum
cardinality of an independent set. A subset S C V is a dominating set of
G if every vertex in V — S has a neighbor in S. The domination number,
v(G), is the minimum cardinality of a dominating set of G.

Fink and Jacobson [5, 6] introduced the concept of k-domination in graphs
for a positive integer k. A subset D C V(G) is a k-dominating set of G,
if IN(v) N D| > k for every v € V(G) — D. The k-domination number,
7%(G), is the minimum cardinality among the k-dominating sets of G. Note
that the 1-domination number +; (G) coincides with the usual domination
number 7(G). A set S C V(G) is called a k-tuple dominating set in G if
for every vertex v € V(G), |N[v] N S| > k. The minimum cardinality of a
k-tuple dominating set in G is the k-tuple domination number v, (G) of
G. The concept of k-tuple domination number was introduced by Harary
and Haynes [8].

A Roman dominating function (or just RDF) on a graph G is a func-
tion f : V(G) — {0, 1,2} satisfying the condition that every vertex u with
f(u) = 0 is adjacent to at least one vertex v of G for which f(v) = 2. The
weight of f is w(f) = f(V(G)) = Y yev(c) f(v). The minimum weight
over all such functions f is called the Roman domination number, Yr(G).
Roman domination was introduced by Cockayne et al. [4]. This concept has
been extended to Roman k-domination by Kammerling and Volkmann [10).
A Roman k-dominating function on G is a function f : V(G) — {0, 1,2}
such that every vertex u for which f(u) = 0 is adjacent to at least k ver-
tices vq,vg, ..., vk With f(v;) =2 for ¢ = 1,2, ..., k. The weight of a Roman
k-dominating function is defined as expected. The Roman k-domination
number yxr(G) is the minimum weight of a Roman k-dominating func-
tion on G. Note that v, corresponds to yr. Hansberg, Rautenbach and
Volkmann proved the following.

Theorem 1 (Hansberg and Volkmann [7]) Let G be a graph of order
n and with minimum degree § > 1, and let k be a positive integer. If
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Theorem 2 (Rautenbach and Volkmann [12]) Let G be a graph of or-
der n and with minimum degree § > 1, and let k be a positive integer. If
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In this note, following the same probabilistic method as in [7, 12] (also
[2]), we improve the bounds of Theorems 1 and 2, for any integer k > 1.
Our results for the special case k = 1 improve the following known bounds.

Theorem 3 (Arnautov [1], Payan [11]) If G is a graph on n vertices
with minimum degree 6 > 1, then 7(G) < z47(In(6 + 1) +1).

Theorem 4 (Cockayne et al. [4]) If G is a graph on n vertices with
minimum degree 6 > 1, then yr(G) < #% 5+1 L (In(é + 1) —In(2) + 1).

Our proofs are along similar lines to those presented in the proof of The-
orem 1 (given in [7]) and Theorem 2 (given in [12]), and we do not state
(repeat) details. The following theorem plays a fundamental role in this
paper.

Theorem 5 (Caro [3] and Wei [13]) For any graph G,

1
aG) = Y ———.
vEV(G) 1+ deg(v)
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2 Main Results

Theorem 6 Let G be a graph of order n, with minimum degree § > 1 and
mazimum degree A, and let k be a positive integer. If m—;";l— > 2k, then
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Proof. (i). Letp = %ﬁflill. The assumption ﬁf_}%ﬁ > 2k implies
that p < 1. Moreover, § > k, as it is shown in [7]. We form a set A by
picking every vertex v of G independently at random with P[v € A] =
Let A’ = {v € V(G) : N[v] C A}, and I be a maximum independent,
set in G[A/]. Let B be the set of vertices of V(G) — A with fewer than
k neighbors in A. Then (A — I)U B is a k-dominating set for G. Thus
(G) < E((A~ 1)U BJ) = E(A| +|B| - 1) = E(A]) + E(B]) - E(I).
As it is shown in [7],
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We calculate the expectation of |I|. By Theorem 5,

1
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We conclude that
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(ii) Let p = ﬂ'ﬂ%ﬁlzﬂzl, and follow the proof of (i).

(iii). Let p = kln(‘s'g}r)l_ln@, and A, B, and I be defined as in the proof
of (i). Then f: V(G) — {0,1,2} defined by f(x) =2if z € (A—-1I) UB,
and f(x) = 0 otherwise, is an RDF for G. Thus 1xr(G) < E(w(f)) =
2E(|(A—I)U B|) < 2E(|A|) +2E(|B|) — 2E(|I]). Now putting the bounds
for E(|B|) and E(|I|) that are presented in the proof of (i) completes the
proof of (iii).

(iv) Let p, A and A’ be defined as in the proof of (i). Let A” = {v :
N[v] C A’}, and let I be a maximum independent set in G[A”]. Clearly,
degga(v) = deg(v) for every vertex v € A”. For 0 < ¢ < k—1 let
B; = {ve V(G) | IN[w]JnA| =4}, and let B = USZ} B;. Clearly BN A’ = 0.
For 1 <i<k-1,let B CV — A be the union of sets containing k — ¢
neighbors of v € B; that do not lie in A. Then |B!| £ (k —4)|B;| and
INg[v] N B!| > k —i for all v € B;. Let B’ = U;-}B]. Then (A—I)UB'
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is a k-tuple dominating set for G. Thus Yxk(G) < E(|(A — I)U B’|) =
E(|A| +|B'| - 1)) = E(|4]) + E(|B']) - E(I]). As it is shown in [12],

E(A) + E(B']) € #2| kIn(d + 1) + E,—o W) For a vertex v,
if N(v) = {v1,..-yva}, then

Pr(v € A") = pplea)  pdee(va) > pltda 5 1447

Thus, the expectation of |I| is bounded bellow as:

B(1) 2 E(Z ! )
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Now the result follows from yxk(G) < E(|A|) + E(|B’|) — E(|I])- =

Note that if £ = 1 then we have the following improvements of Theorems
3 and 4.

Corollary 7 If G is a graph on n vertices with minimum degree § > 1,
1+A
d0+1
then 1(G) < 2 (n(f+1) +1) — 25 ( n(s )> .

Corollary 8 If G is a graph on n vertices with minimum degree § > 1,
then

&= 1+A
7R(G)S32Tn1-(ln(6+1)—1n(2)+1)_ e (1“(‘5 +1) m(z)) :
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