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Abstract

Let G be a graph with at least half of the vertices having degree
at least k. For a tree T with k edges, Loebl, Koml6s, and Sés conjec-
tured that G contains T. It is known that if the length of a longest
path in T (i.e., the diameter of T') is at most 5, then G contains
T. Since T is a bipartite graph, let ¢ be the number of vertices in
the smaller (or equal) part. Clearly 1 < £ < 2(k+ 1). In our main
theorem, we prove that if 1 <2< 1k+ 1, then the graph G contains
T. Notice that this includes certain trees of diameter up to -;-k + 2.

If a tree T consists of only a path and vertices that are connected
to the path by an edge, then the tree T is a caterpillar. Let P be
the path obtained from the caterpillar T by removing each leaf of
T, where P = a1,...,a,. The path P is the spine of the caterpillar
T, and each vertex on the spine of T' with degree at least 3 in T is
a joint. It is known that the graph G contains certain caterpillars
having at most two joints. If only odd-indexed vertices on the spine
P are joints, then the caterpillar T is a an odd caterpillar. If the
spine P has at most [1k] vertices, then T is a short caterpillar. We
prove that the graph G contains every short, odd caterpillar with k

edges.

1 Introduction

Let G be a simple graph, and let k£ be a natural number. If at least one-half
of the vertices of G have degree at least k, then the graph G is a Loebl-
Komlds-Sés(k)-graph, or simply an LKS(k)-graph. Loebl, Komlos and Sés
conjectured the following.
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Conjecture 1 (LKS Conjecture). If G is an LK S(k)-graph, then G
contains every tree with k edges.

Various special cases of the conjecture have been proven. Many place
restrictions on the graph G. Soffer [12] proved the case where the graph G
has girth at least 7. The complement of the graph G is G. Dobson [3] proved
the case where G does not contain K 3. As stated in [6], Matsumoto and
Sakamoto [10] extended Dobson’s result by replacing K23 with a slightly
larger graph.

Other proven cases place restrictions on the class of trees. The diameter
of a tree T is the number of edges in a longest path in T'. Barr and Johann-
son [1], and Sun [13], independently proved that the LKS conjecture holds
for all trees of diameter at most 4. Piguet and Stein [11] improved this to

include trees of diameter 5.

In a series of four papers, [6, 7, 8, 9], the authors Hladky, Komlés,
Piguet, Simonovits, Stein, and Szemerédi proved an approximate version
of the conjecture for large values of k.

A tree is a bipartite graph, and the set of trees having £ and r as the
sizes of the two parts is T¢». Unless otherwise stated, the bipartition of T
is L, R, where £ and r are the numbers of vertices in L and R, respectively.
Let T € Te.- be a tree with k edges, where £ < r. Clearly 1 < £ < %(k +1).
In our main theorem, Theorem 1, we prove thatif 1 < £ < L1k +1, then the
LKS Conjecture holds for the tree T. Notice that this collection of trees
includes certain trees having diameter up to 3k + 2.

Theorem 1. Let G be an LK S(k)-graph, and let T € Ty, be a tree with k
edges. If 1 <{ < £k +1, then the graph G contains T.

If a tree consists of only a path and vertices that are connected to the
path by an edge, then the tree is a caterpillar. Let P be the path obtained
from a k-edge caterpillar T by removing each leaf of T. The path P is the
spine of the caterpillar T, and each vertex on the spine P with degree at
least 3 in T is a joint. Bazgan, Li and WozZniak [2] proved the conjecture
holds for caterpillars that contain at most one joint. Piguet and Stein [11]
improved this result to include caterpillars with up to two joints, however
the distance between two joints is restricted.

Let P be the spine of a k-edge caterpillar T, where P = a1,...,a;. If t
is at most [%k], then T is a short caterpillar. If only odd-indexed vertices
in P are joints, then the caterpillar T is a an odd caterpillar. In Theorem
2, we prove that the LKS Conjecture holds for short, odd caterpillars.
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Theorem 2. If G is an LK S(k)-graph, and T is a short, odd caterpillar
with k edges, then the graph G contains T'.

2 Terminology and tree lemmas

For standard notation and terminology in graph theory, see [14]. Let G
be a graph. The degree of a vertex v in G is dg(v) or simply d(v). For
two subgraphs C,D C G, the set of edges with one end-point in C' and
one in D is E(C,D); the number of edges in E(C,D) is e(C,D). The
bipartite subgraph with biparition C, D and edge set E(C, D) is (C, D).
The subgraph induced by V(C) is G[C], its edge-set is E(C), and the
number of edges in E(C) is e¢(C). The subgraph G — V(C), or simply
G — C, is obtained from G by deleting V(C) and the set of edges with an
endpoint in V(C).

Let T be a tree. For a vertex t in T, the set of leaf neighbors of t is L(t).
Let T' C T be a tree that is a subgraph of T. Let f be an embedding of T”
into a graph G. If the embedding f can be extended to an embedding of
T into G, then the embedding f is T-extensible (and the graph G contains
the tree T'). The next lemma states a sufficient condition for an embedding
of T' to be T-extensible.

Lemma 3. Let G be a graph and let T be a tree with k vertices. Let
L be a subset of vertices in T each of which has a leaf neighbor, where
L ={ai,...,ar}. Let T’ be the tree obtained from T by removing at least
one leaf neighbor of each vertez in L. For a graph G, let f be an embedding
of T' into G. If dg(f(a:)) > k —i for each i € [r], then the embedding f is
T-extensible.

Proof. We use induction on . If r = 1, then the tree 7’ was obtained
by removing at least one vertex from L(a;). Since d(f(a1)) > k — 1, the
embedding f is T-extensible.

Suppose that the statement holds for all natural numbers less than r.
Let T = T — L(ay), let ¥ = k — 1, and notice that T has at most k'
vertices. Let L = L —a; and notice that L consists of exactly r — 1 vertices.
In addition, we see that d(f(a;)) > k’ — i for each 7 € {2,...,7}. By the
induction hypothesis, the embedding f can be extended to an embedding of

T into G. Finally, since d(f(a;)) > k — 1, the embedding f is T-extensible.
O

In the following lemma, we establish a lower bound for the number of
leaves in a tree with k + 1 vertices.
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Lemma 4. Let T € Ty,r be a tree, where <7, and ¢ +7 =k + 1. Let R,
be vertices in R that are leaves in T, that is, let Ry = {w € R : dr(w) =1}.
If R, = R — Ry, then

(i) |Ri>k—2¢+2, and
(i) €3> |Ro| +1.

Proof. If Ry < k —2¢+ 1, then
k=eT)>(k—-20+1)(1)+(r—(k—20+41))(2) =k +1,

a contradiction. Thus |R;| > k — 2¢ + 2, and this proves (7).
If £ < |Ry|, then

k+1=|V(T)| =£+|Ri| + |Ra| | R1| +2|Rs| < e(T) = K,
a contradiction. Otherwise £ > |R2| + 1, and this proves (7). O

In Lemma 4(3), if £ < gk + 1, then we have the following corollary.

Corollary 5. Let T € T be a tree, where £ < r, and +7 =k+1. Let Ry
be vertices in R that are leaves in T, that is, let Ry = {w € R : dr(w) = 1}.
If £ < ¢k +1, then |Ry| > 2k.

For a graph G, the minimum degree among the vertices of G is §(G);
for a subset A C V(G), the minimum degree (in G) among the vertices in
A is 64(G). The average degree of G is d(G), where d(G) = 2¢(G)/|V (G)|.
A proof of the following lemma is in [4].

Lemma 6. If a graph G is minimal with d(G) > k — 2, then §(G) > L-’zﬁ_l

The following are two well-known lemmas that we state without proof.

Lemma 7. Let G be a graph with 6(G) > m. If T is a tree with at most
m + 1 vertices, then G contains T. Moreover, for atree T' C T, if f is an
embedding of T' into G, then the embedding f is T-extensible.

Lemma 8. Let T € Ty, and let H be a bipartite graph with bipartition
UW. Ify(H) > 7, and éw(H) > £, then H contains T. Moreover,
for a tree T' C T, if f is an embedding of T' into H, where a vertez from
V(T")NL is mapped to a vertez in U, or a vertez from V(T')N R is mapped
to a vertex in W, then the embedding f is T-extensible.
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3 The LKS Conjecture and short odd cater-
pillars

In this section, we prove Theorem 2 which states that the LKS Conjecture
holds for short, odd caterpillars. First we prove several lemmas that will
be used in the proof of Theorem 2, as well as in the proof of Theorem 1.
We believe these lemmas may prove to be useful in further studies of the

LKS conjecture as well,

For the remainder of the paper, if G is an LKS(k)-graph, then the set
of vertices in G with minimum degree k is B, and the set of vertices in G
with degree less than k is S, that is, § = V(G) — B. Lemma 9 compares
the average degrees of the subgraphs G[B] and (B, S) in an LKS(k)-graph

G.

Lemma 9. Let G be an LK S(k)-graph, and let m be a natural number. If
d(G[B]) < m, then d((B,S)) > k —m.

Proof. If d(G[B]) < m, then e(B) < 3m|B|. Let o be the degree sum

(in G) of the vertices in B, and notice that op 2 k|B|. Since op =
%¢(B) + (B, S), we see that

e(B,S) > op — 2e(B) > k|B| — m|B| = |B|(k — m)
and d((B,S)) 2 k—m. 0

Erdés and Gallai [5] proved the following which is central to the proofs
of Lemmas 11 and 12 which immediately follow.

Theorem 10 (Erdés-Gallai Theorem). If G is a graph with d(G) >
k —2, then G contains a path on k vertices.

Lemma 11. Let G be an LK S(k)-graph, and let d be a natural number. If
d(G[B]) > d, then the graph G' contains

(i) every caterpillar T with k+1 vertices whose spine has at most d+2
vertices, and

(i) every tree T on k+ 1 vertices that has at least (k—1) — | 3d] leaves.

Proof. (). Let P be the spine of the caterpillar T', where P = a,...,a,
and t is at most d + 2. By Theorem 10, there is an embedding f of P
into G[B] (and into G). Since each vertex on the path f(a;),..., f(a¢) has
degree at least k in G, the embedding f is T-extensible (by Lemma 3), and
this proves (7).
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(7i). Let T’ be the tree obtained from T' by removing every leaf. Notice
that 7 has at most |1d| + 2 vertices. Let H C G[B] be a subgraph that
is minimal with d(H) > d, and notice that 6(H) > [4d| + 1 (by Lemma
6). By Lemma 7, there is an embedding f of T” into H. Since each vertex
in f(T') has degree at least k, the embedding is T-extensible, and this
completes the proof. -

Lemma 12. Let G be an LK S(k)-graph, and let d € N be at most k — 1.
Let T be an _odd caterpillar with k + 1 vertices whose spine has at most d
vertices. If d((B,S)) > d, then the graph G contains T .

Proof. Let ao,...,a;41 be a longest path in T'. It follows that the spine P

of T is aq,...,as, where t is at most d.
By Theorem 10, the graph (B,S) contains a (d + 2)-path Q, where
Q = v1,...,v442. Since (B, S) is bipartite, either the even-indexed or the

odd-indexed vertices of Q are members of B.

If the vertex v; is in B, then let f(a;) = v; for each 7 € [t+1]. Otherwise
vy € S, and let f(a;) = viy1 for each ¢ € [t + 1]. In either case, we see that

f is an embedding of aj,...,a;4+1 into G. Since each odd-indexed vertex
in the path f(ai),...,f(a:) has degree at least k in G, the embedding f is
T-extensible (by Lemma 3). 0

In Theorem 2, we prove that the LKS Conjecture holds for short, odd
caterpillars.

Theorem 2. If G is an LK S(k)-graph, and T is a short, odd caterpillar
with k edges, then the graph G contains T'.

Proof. Let t = [3k]. Since T is a short caterpillar, its spine has at most
t vertices. If d(G[B]) > t — 2, then the graph G contains T (by Lemma

11(3)).
Otherwise d(G[B]) <t — 2. By Lemma 9, we see that
- 1
A(B,S) 2 k= (t=2)= 5kl +2> 141

Therefore, the graph G contains T' (by Lemma 12). 0

4 The LKS Conjecture and lopsided trees

In this section, we prove our main theorem which states that the LKS
Conjecture holds for a collection of lopsided trees, namely, the set of k-edge
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trees where the smaller (or equal) partition has at most é—k + 1 vertices.

Theorem 1. Let G be an LK S(k)-graph, and let T € T, be a tree with
k edges. If 1 < €< tk+1, then the graph G contains T

Proof. Let R; be the subset of vertices of R that have degree 1 in T', and
let R, = R—R,. Since £ < 1k +1, we see that |R;| > 3k (by Corollary 5).

Let " =T — Ry = (L, R;). By Lemma 4(ii), we see that
ék+12€2|R2|+1, (1)

and { 1
V(T')| = £+|By) <2k +1)-1= gh+1

Let d = [2k] — 2. Since the tree T has at least |R;| leaves, and

1 1.2 k+1 2
(k=1)= 15d) < (k1) = 51[3K] ~2] =k~ [ 23— < [2K] < |R],
we see that the tree T has at least (k + 1) — | 1d] leaves.
If G[B] has average degree greater than d, then the graph G contains T
(by Lemma 11(44)).
Otherwise G[B] has average degree at most d, and

d(B,5) 2 k—d=k-([2K -2)= [3h] +2 @)

(by Lemma 9).

Let k = |2k] + 3. By Inequality (2), we see that d((B, S)) > k—2. Let
(B',S') be a subgraph of (B, S) that is minimal with d((B’,S")) > k — 2,
where B’ C B and S’ C S.

By Lemma 6 and Inequality (1) we have

| IS | |
0 Ly = =|=|=
(B',8Y) 2 3H] = 1513

Since ép/(B’,S') > |Ry| and dg:(B’, S’) > £, there is an embedding f of T"
into (B’,S’), where the vertices of L and R, are mapped into B’ and §’,
respectively (by Lemma 8). Since every vertex in B’ has degree at least k
in G, the embedding f is T-extensible (by Lemma 3). O

E43)] 2 [ZH] +12 05 |Ry|.
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